Nanoscience & Nanotechnology-Asia

Author(s): Lata Kothapalli*, Navdeep Singh, Asha Thomas and Yash Ghadge

DOI: 10.2174/0122106812220085241024041311

DownloadDownload PDF Flyer Cite As
Selenium Nanoparticles: Cut-edge Therapeutic Entity

Article ID: e22106812220085 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Selenium is a significant trace microelement responsible for detoxification and supporting the health of human beings. Selenium is consumed as a part of dietary supplements where in it has a very narrow margin for its physiological role and the toxic effects produced. Selenium nanoparticles (SeNP) have proven significant as a chemoprotective agent in treatment of the neurodegenerative conditions, diabetes, and antimicrobial, and antioxidant activity. The present review briefs the requirement of selenium and its various methods of preparation. Further emphasizing on the application of SeNP for the treatment of various disease conditions. A literature search on Science Direct, Pubmed, and Google Scholar, was done and the recent articles regarding the preparation of Selenium NP by chemical and biological techniques including microbial conversions and using plant extracts along with physical conversions were studied. Further diversified applications were looked for where SeNP can exhibit antioxidant properties as Se is an innate member of the antioxidant system. Summarizing the review on SeNP has been more exciting as Se as an element is known as trace element but phytofabricated and biogenic preparations of SeNP having low toxicity with synergistic effects. Toxicity studies indicate the safety of SeNP as compared to selenium oxide and itsinorganic salts, however in-depth study and species-to-species variation must be understoodto formulate the SeNP in the appropriate dosage form. Various techniques have been studied for the preparation of SeleniumNanoparticles and havethe potential for application in the treatment of various lifethreateningdiseases and metabolic disorders, infectious conditions. The synergistic effect of Se and the plants or microorganisms known for their medicinal application reduces the toxicity of the selenium nanoparticles when compared within organic salts. Further extensive studies on the epidemiology regarding the variation in serum level of Se and its administration as a supplement or therapeutic purpose can be a cut-edge treatment for life-threatening conditions.

Keywords: Selenium, nanoparticles, bioconversion, chemoprotective, neurodegeneration, phytofabricated.

Graphical Abstract

[1]
Bisht, N.; Phalswal, P.; Khanna, P.K. Selenium nanoparticles: A review on synthesis and biomedical applications. Mater. Adv., 2022, 3(3), 1415-1431.
[http://dx.doi.org/10.1039/D1MA00639H]
[2]
Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the environment, metabolism and involvement in body functions. Molecules, 2013, 18(3), 3292-3311.
[http://dx.doi.org/10.3390/molecules18033292] [PMID: 23486107]
[4]
S, K.; Iyer, S.; Sinkar, P.; Sengupta, C. Selenium levels in whole blood - the borderline low analysis. Clin. Chim. Acta, 2018, 487, 309-310.
[http://dx.doi.org/10.1016/j.cca.2018.10.023] [PMID: 30326216]
[5]
Kiełczykowska, M.; Kocot, J.; Paździor, M.A.R.E.K.; Musik, I. Selenium – a fascinating antioxidant of protective properties. Adv. Clin. Exp. Med., 2018, 27(2), 245-255.
[http://dx.doi.org/10.17219/acem/67222] [PMID: 29521069]
[6]
Eroglu, C.; Unal, D.; Cetin, A.; Orhan, O.; Sivgin, S.; Oztürk, A. Effect of serum selenium levels on radiotherapy-related toxicity in patients undergoing radiotherapy for head and neck cancer. Anticancer Res., 2012, 32(8), 3587-3590.
[PMID: 22843950]
[7]
Alves, M.R.A.; Starling, A.L.P.; Kanufre, V.C.; Soares, R.D.L.; Norton, R.C.; Aguiar, M.J.B.; Januario, J.N. Selenium intake and nutritional status of children with phenylketonuria in Minas Gerais, Brazil. J. Pediatr. (Rio J.), 2012, 88(5), 396-400.
[http://dx.doi.org/10.2223/JPED.2217] [PMID: 23092958]
[8]
Finley, J.W. Selenium accumulation in plant foods. Nutr. Rev., 2005, 63(6), 196-202.
[http://dx.doi.org/10.1111/j.1753-4887.2005.tb00137.x] [PMID: 16028563]
[9]
Kieliszek, M. Selenium–fascinating microelement, properties, and sources in food. Molecules, 2019, 24(7), 1298.
[http://dx.doi.org/10.3390/molecules24071298] [PMID: 30987088]
[10]
Aronow, L.; Kerdel-Vegas, F. Seleno-cystathionine, a pharmacologically active factor in the seeds of Lecythisollaria: Cytotoxic and depilatory effects of extracts of Lecythisollaria. Nature, 1965, 205(4977), 1185-1186.
[http://dx.doi.org/10.1038/2051185a0]
[11]
Maseko, T.; Callahan, D.L.; Dunshea, F.R.; Doronila, A.; Kolev, S.D.; Ng, K. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chem., 2013, 141(4), 3681-3687.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.027] [PMID: 23993536]
[12]
Arnault, I.; Auger, J. Seleno-compounds in garlic and onion. J. Chromatogr. A, 2006, 1112(1-2), 23-30.
[http://dx.doi.org/10.1016/j.chroma.2006.01.036] [PMID: 16480995]
[13]
Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics, 2014, 6(1), 25-54.
[http://dx.doi.org/10.1039/C3MT00185G] [PMID: 24185753]
[14]
Schallreuter, K.U.; Wood, J.M. Thioredoxin reductase — its role in epidermal redox status. J. Photochem. Photobiol. B, 2001, 64(2-3), 179-184.
[http://dx.doi.org/10.1016/S1011-1344(01)00235-4] [PMID: 11744405]
[15]
Shini, S.; Sultan, A.; Bryden, W. Selenium biochemistry and bioavailability: Implications for animal agriculture. Agriculture, 2015, 5(4), 1277-1288.
[http://dx.doi.org/10.3390/agriculture5041277]
[16]
Mostert, V.; Selenoprotein, P. Properties, functions, and regulation. Arch. Biochem. Biophys., 2000, 376(2), 433-438.
[http://dx.doi.org/10.1006/abbi.2000.1735] [PMID: 10775431]
[17]
Yao, H.D.; Wu, Q.; Zhang, Z.W.; Li, S.; Wang, X.L.; Lei, X.G.; Xu, S.W. Selenoprotein W serves as an antioxidant in chicken myoblasts. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(4), 3112-3120.
[http://dx.doi.org/10.1016/j.bbagen.2013.01.007] [PMID: 23333634]
[18]
Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev., 2014, 94(3), 739-777.
[http://dx.doi.org/10.1152/physrev.00039.2013] [PMID: 24987004]
[19]
Nie, X.; Yang, X.; He, J.; Liu, P.; Shi, H.; Wang, T.; Zhang, D. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front. Bioeng. Biotechnol., 2023, 11, 1167123.
[http://dx.doi.org/10.3389/fbioe.2023.1167123] [PMID: 36994362]
[20]
Rosen, B.P.; Liu, Z. Transport pathways for arsenic and selenium: A minireview. Environ. Int., 2009, 35(3), 512-515.
[http://dx.doi.org/10.1016/j.envint.2008.07.023] [PMID: 18789529]
[21]
Finley, J.W. Bioavailability of selenium from foods. Nutr. Rev., 2006, 64(3), 146-151.
[http://dx.doi.org/10.1111/j.1753-4887.2006.tb00198.x] [PMID: 16572602]
[22]
Hosnedlova, B.; Kepinska, M.; Skalickova, S.; Fernandez, C.; Ruttkay-Nedecky, B.; Peng, Q.; Baron, M.; Melcova, M.; Opatrilova, R.; Zidkova, J.; Bjørklund, G.; Sochor, J.; Kizek, R. Nano-selenium and its nanomedicine applications: A critical review. Int. J. Nanomedicine, 2018, 13, 2107-2128.
[http://dx.doi.org/10.2147/IJN.S157541] [PMID: 29692609]
[23]
Drake, E.N. Cancer chemoprevention: Selenium as a prooxidant, not an antioxidant. Med. Hypotheses, 2006, 67(2), 318-322.
[http://dx.doi.org/10.1016/j.mehy.2006.01.058] [PMID: 16574336]
[24]
Chandrakala, V.; Aruna, V.; Angajala, G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater., 2022, 5(6), 1593-1615.
[http://dx.doi.org/10.1007/s42247-021-00335-x] [PMID: 35005431]
[25]
Aboyewa, J.A.; Sibuyi, N.R.S.; Meyer, M.; Oguntibeju, O.O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants, 2021, 10(9), 1929.
[http://dx.doi.org/10.3390/plants10091929] [PMID: 34579460]
[26]
Antunes Filho, S.; dos Santos, M.S.; dos Santos, O.A.L.; Backx, B.P.; Soran, M.L.; Opriş, O.; Lung, I.; Stegarescu, A.; Bououdina, M. Biosynthesis of nanoparticles using plant extracts and essential oils. Molecules, 2023, 28(7), 3060.
[http://dx.doi.org/10.3390/molecules28073060] [PMID: 37049821]
[27]
Alsaiari, N.S.; Alzahrani, F.M.; Amari, A.; Osman, H.; Harharah, H.N.; Elboughdiri, N.; Tahoon, M.A. Plant and microbial approaches as green methods for the synthesis of nanomaterials: Synthesis, applications, and future perspectives. Molecules, 2023, 28(1), 463.
[http://dx.doi.org/10.3390/molecules28010463] [PMID: 36615655]
[28]
Sentkowska, A.; Pyrzyńska, K. The influence of synthesis conditions on the antioxidant activity of selenium nanoparticles. Molecules, 2022, 27(8), 2486.
[http://dx.doi.org/10.3390/molecules27082486] [PMID: 35458683]
[29]
Panahi-Kalamuei, M.; Mousavi-Kamazani, M.; Salavati-Niasari, M.; Hosseinpour-Mashkani, S.M. A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application. Ultrason. Sonochem., 2015, 23, 246-256.
[http://dx.doi.org/10.1016/j.ultsonch.2014.09.006] [PMID: 25248917]
[30]
Shar, A.H.; Lakhan, M.N.; Wang, J.; Ahmed, M.; Alali, K.T.; Ahmed, R.; Ali, I.; Dayo, A.Q. Facile synthesis and characterization of selenium nanoparticles by the hydrothermal approach. Dig. J. Nanomater. Biostruct., 2019, 14, 867-872.
[31]
Singh, S.C.; Mishra, S.K.; Srivastava, R.K.; Gopal, R. Optical properties of selenium quantum dots produced with laser irradiation of water suspended se nanoparticles. J. Phys. Chem. C, 2010, 114(41), 17374-17384.
[http://dx.doi.org/10.1021/jp105037w]
[32]
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine, 2010, 6(2), 257-262.
[http://dx.doi.org/10.1016/j.nano.2009.07.002] [PMID: 19616126]
[33]
Shi, X.D.; Tian, Y.Q.; Wu, J.L.; Wang, S.Y. Synthesis, characterization, and biological activity of selenium nanoparticles conjugated with polysaccharides. Crit. Rev. Food Sci. Nutr., 2021, 61(13), 2225-2236.
[http://dx.doi.org/10.1080/10408398.2020.1774497] [PMID: 32567982]
[34]
Langi, B.; Shah, C.; Singh, K.; Chaskar, A.; Kumar, M.; Bajaj, P.N. Ionic liquid-induced synthesis of selenium nanoparticles. Mater. Res. Bull., 2010, 45(6), 668-671.
[http://dx.doi.org/10.1016/j.materresbull.2010.03.005]
[35]
Guleria, A.; Neogy, S.; Raorane, B.S.; Adhikari, S. Room temperature ionic liquid assisted rapid synthesis of amorphous Se nanoparticles: Their prolonged stabilization and antioxidant studies. Mater. Chem. Phys., 2020, 253, 123369.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123369]
[36]
Mehta, S.K.; Chaudhary, S.; Kumar, S.; Bhasin, K.K.; Torigoe, K.; Sakai, H.; Abe, M. Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions. Nanotechnology, 2008, 19(29), 295601.
[http://dx.doi.org/10.1088/0957-4484/19/29/295601] [PMID: 21730604]
[37]
Shah, C.P.; Kumar, M.; Pushpa, K.K.; Bajaj, P.N. Acrylonitrile-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Cryst. Growth Des., 2008, 8(11), 4159-4164.
[http://dx.doi.org/10.1021/cg800669d]
[38]
Dwivedi, C.; Shah, C.P.; Singh, K.; Kumar, M.; Bajaj, P.N. An organic acid-induced synthesis and characterization of selenium nanoparticles. J. Nanotechnol., 2011, 2011, 1-6.
[http://dx.doi.org/10.1155/2011/651971]
[39]
Shah, C.P.; Singh, K.K.; Kumar, M.; Bajaj, P.N. Vinyl monomers-induced synthesis of polyvinyl alcohol-stabilized selenium nanoparticles. Mater. Res. Bull., 2010, 45(1), 56-62.
[http://dx.doi.org/10.1016/j.materresbull.2009.09.001]
[40]
Yu, B.; You, P.; Song, M.; Zhou, Y.; Yu, F.; Zheng, W. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New J. Chem., 2016, 40(2), 1118-1123.
[http://dx.doi.org/10.1039/C5NJ02519B]
[41]
Van Overschelde, O.; Guisbiers, G.; Snyders, R. Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water. Appl Materials, 2013, 1(4), 1-6.
[http://dx.doi.org/10.1063/1.4824148]
[42]
Quintana, M.; Haro-Poniatowski, E.; Morales, J.; Batina, N. Synthesis of selenium nanoparticles by pulsed laser ablation. Appl. Surf. Sci., 2002, 195(1-4), 175-186.
[http://dx.doi.org/10.1016/S0169-4332(02)00549-4]
[43]
Tzeng, W.Y.; Tseng, Y.H.; Yeh, T.T.; Tu, C.M.; Sankar, R.; Chen, Y.H.; Huang, B.H.; Chou, F.C.; Luo, C.W. Selenium nanoparticle prepared by femtosecond laser-induced plasma shock wave. Opt. Express, 2020, 28(1), 685-694.
[http://dx.doi.org/10.1364/OE.381898] [PMID: 32118991]
[44]
Ionin, A.; Ivanova, A.; Khmel’nitskii, R.; Klevkov, Y.; Kudryashov, S.; Mel’nik, N.; Nastulyavichus, A.; Rudenko, A.; Saraeva, I.; Smirnov, N.; Zayarny, D.; Baranov, A.; Kirilenko, D.; Brunkov, P.; Shakhmin, A. Milligram-per-second femtosecond laser production of Se nanoparticle inks and ink-jet printing of nanophotonic 2D-patterns. Appl. Surf. Sci., 2018, 436, 662-669.
[http://dx.doi.org/10.1016/j.apsusc.2017.12.057]
[45]
Karthik, K.K.; Cheriyan, B.V.; Rajeshkumar, S.; Gopalakrishnan, M. A review on selenium nanoparticles and their biomedical applications. Biomed Technol, 2024, 6, 61-74.
[http://dx.doi.org/10.1016/j.bmt.2023.12.001]
[46]
El-Batal, A.I.; Mosallam, F.M.; Ghorab, M.M.; Hanora, A.; Gobara, M.; Baraka, A.; Elsayed, M.A.; Pal, K.; Fathy, R.M.; Abd Elkodous, M.; El-Sayyad, G.S. Factorial design-optimized and gamma irradiation-assisted fabrication of selenium nanoparticles by chitosan and Pleurotus ostreatus fermented fenugreek for a vigorous in vitro effect against carcinoma cells. Int. J. Biol. Macromol., 2020, 156, 1584-1599.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.210] [PMID: 31790741]
[47]
Alagesan, V.; Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience, 2019, 9(1), 105-116.
[http://dx.doi.org/10.1007/s12668-018-0566-8]
[48]
Al-Qaraleh, S.Y.; Al-Zereini, W.A.; Oran, S.A. Phyto-decoration of selenium nanoparticles using Moringa peregrina (forssk.) Fiori aqueous extract: Chemical characterization and bioactivity evaluation. Biointerface Res. Appl. Chem., 2022, 13(2), 112.
[http://dx.doi.org/10.33263/BRIAC132.112]
[49]
Fritea, L.; Laslo, V.; Cavalu, S.; Costea, T.; Vicas, S.I. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Stud. Univ. Vasile Goldiş” Arad. Lif. Sci. Seri., 2017, 27(3), 203-208.
[50]
Mirza, K.; Naaz, F.; Ahmad, T.; Manzoor, N.; Sardar, M. Development of cost-effective, ecofriendly selenium nanoparticle-functionalized cotton fabric for antimicrobial and antibiofilm activity. Fermentation, 2022, 9(1), 18.
[http://dx.doi.org/10.3390/fermentation9010018]
[51]
Santanu, S.; Sowmiya, R.; Balakrishnaraja, R. Biosynthesis of selenium nanoparticles using citrus reticulata peel extract. World J. Pharm. Res., 2015, 4(1), 1322-1330.
[52]
Mohammed Ali, I.A. AL-Ahmed, H.I.; Ben Ahmed, A. AL-Ahmed HI, Ben Ahmed A. Evaluation of green synthesis (Withania somnifera) of selenium nanoparticles to reduce sperm DNA fragmentation diabetic mice induced with streptozotocin. Appl. Sci. , 2023, 13(2), 728.
[http://dx.doi.org/10.3390/app13020728]
[53]
Kokila, K.; Elavarasan, N.; Sujatha, V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J. Chem., 2017, 41(15), 7481-7490.
[http://dx.doi.org/10.1039/C7NJ01124E]
[54]
Puri, A.; Patil, S. Biogenic synthesis of selenium nanoparticles using Diospyros montana bark extract: Characterization, antioxidant, antibacterial, and antiproliferative activity. Biosci. Biotechnol. Res. Asia, 2022, 19(2), 423-441.
[http://dx.doi.org/10.13005/bbra/2997]
[55]
Ramamurthy, C.; Sampath, K.S.; Arunkumar, P.; Kumar, M.S.; Sujatha, V.; Premkumar, K.; Thirunavukkarasu, C. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng., 2013, 36(8), 1131-1139.
[http://dx.doi.org/10.1007/s00449-012-0867-1] [PMID: 23446776]
[56]
Fardsadegh, B.; Jafarizadeh-Malmiri, H. Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their In vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green Process Synth, 2019, 8(1), 399-407.
[http://dx.doi.org/10.1515/gps-2019-0007]
[57]
Kapur, M.; Soni, K.; Kohli, K. Green synthesis of selenium nanoparticles from broccoli, characterization, application and toxicity. Adv. Techn. Biol. Med., 2017, 5(1), 2379-1764.
[http://dx.doi.org/10.4172/2379-1764.1000198]
[58]
Dhanraj, G.; Rajeshkumar, S. Anticariogenic effect of selenium nanoparticles synthesized using Brassica oleracea. J. Nanomater., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/8115585]
[59]
Sribenjarat, P.; Jirakanjanakit, N.; Jirasripongpun, K. Selenium nanoparticles biosynthesized by garlic extract as antimicrobial agent. Sci Enginee Heal Stud, 2020, 30, 22-31.
[http://dx.doi.org/10.14456/sehs.2020.3]
[60]
Ezhuthupurakkal, P.B.; Polaki, L.R.; Suyavaran, A.; Subastri, A.; Sujatha, V.; Thirunavukkarasu, C. Selenium nanoparticles synthesized in aqueous extract of Allium sativum perturbs the structural integrity of Calf thymus DNA through intercalation and groove binding. Mater. Sci. Eng. C, 2017, 74, 597-608.
[http://dx.doi.org/10.1016/j.msec.2017.02.003] [PMID: 28254334]
[61]
Alizadeh, S.R.; Seyedabadi, M.; Montazeri, M.; Khan, B.A.; Ebrahimzadeh, M.A. Allium paradoxum extract mediated green synthesis of SeNPs: Assessment of their anticancer, antioxidant, iron chelating activities, and antimicrobial activities against fungi, ATCC bacterial strains, Leishmania parasite, and catalytic reduction of methylene blue. Mater. Chem. Phys., 2023, 296, 127240.
[http://dx.doi.org/10.1016/j.matchemphys.2022.127240]
[62]
Sharma, G.; Sharma, A.; Bhavesh, R.; Park, J.; Ganbold, B.; Nam, J.S.; Lee, S.S. Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (raisin) extract. Molecules, 2014, 19(3), 2761-2770.
[http://dx.doi.org/10.3390/molecules19032761] [PMID: 24583881]
[63]
Kirupagaran, R.; Saritha, A.; Bhuvaneswari, S. Green synthesis of selenium nanoparticles from leaf and stem extract of Leucas lavandulifolia Sm. and their application. J. Nanosci. Tech., 2016, 31, 224-226.
[64]
Hashem, A.H.; Selim, T.A.; Alruhaili, M.H.; Selim, S.; Alkhalifah, D.H.M.; Al Jaouni, S.K.; Salem, S.S. Unveiling antimicrobial and insecticidal activities of biosynthesized selenium nanoparticles using prickly pear peel waste. J. Funct. Biomater., 2022, 13(3), 112.
[http://dx.doi.org/10.3390/jfb13030112] [PMID: 35997450]
[65]
Salem, S.S.; Badawy, M.S.E.M.; Al-Askar, A.A.; Arishi, A.A.; Elkady, F.M.; Hashem, A.H. Green biosynthesis of selenium nanoparticles using orange peel waste: Characterization, antibacterial and antibiofilm activities against multidrug-resistant bacteria. Life, 2022, 12(6), 893.
[http://dx.doi.org/10.3390/life12060893] [PMID: 35743924]
[66]
Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica. Environ. Technol., 2009, 30(12), 1313-1326.
[http://dx.doi.org/10.1080/09593330902984751] [PMID: 19950474]
[67]
Eswayah, A.S.; Smith, T.J.; Gardiner, P.H.E. Microbial transformations of selenium species of relevance to bioremediation. Appl. Environ. Microbiol., 2016, 82(16), 4848-4859.
[http://dx.doi.org/10.1128/AEM.00877-16] [PMID: 27260359]
[68]
Wells, M.; McGarry, J.; Gaye, M.M.; Basu, P.; Oremland, R.S.; Stolz, J.F. Respiratory selenite reductase from Bacillus selenitireducens strain MLS10. J. Bacteriol., 2019, 201(7), 10-128.
[http://dx.doi.org/10.1128/JB.00614-18] [PMID: 30642986]
[69]
Switzer Blum, J.; Stolz, J.F.; Oren, A.; Oremland, R.S. Selenihalanaerobacter shriftii gen. nov., sp. nov., a halophilic anaerobe from dead sea sediments that respires selenate. Arch. Microbiol., 2001, 175(3), 208-219.
[http://dx.doi.org/10.1007/s002030100257] [PMID: 11357513]
[70]
Staicu, L.C.; Barton, L.L. Bacterial Metabolism of Selenium—For Survival or Profit. In: Bioremediation of Selenium Contaminated Wastewater; van Hullebusch, E., Ed.; Springer: Cham, 2017.
[http://dx.doi.org/10.1007/978-3-319-57831-6_1]
[71]
Fesharaki, P.J.; Nazari, P.; Shakibaie, M.; Rezaie, S.; Banoee, M.; Abdollahi, M.; Shahverdi, A.R. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol., 2010, 41(2), 461-466.
[http://dx.doi.org/10.1590/S1517-83822010000200028] [PMID: 24031517]
[72]
Presentato, A.; Piacenza, E.; Anikovskiy, M.; Cappelletti, M.; Zannoni, D.; Turner, R.J. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. N. Biotechnol., 2018, 41, 1-8.
[http://dx.doi.org/10.1016/j.nbt.2017.11.002] [PMID: 29174512]
[73]
Alam, H.; Khatoon, N.; Khan, M.A.; Husain, S.A.; Saravanan, M.; Sardar, M. Synthesis of selenium nanoparticles using probiotic bacteria Lactobacillus acidophilus and their enhanced antimicrobial activity against resistant bacteria. J. Cluster Sci., 2020, 31(5), 1003-1011.
[http://dx.doi.org/10.1007/s10876-019-01705-6]
[74]
Shoeibi, S.; Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol., 2017, 39, 135-139.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.003] [PMID: 27908405]
[75]
Kumar, A.; Bera, S.; Singh, M.; Mondal, D. Agrobacterium-assisted selenium nanoparticles: Molecular aspect of antifungal activity. Adv. Nat. Sci: Nanosci. Nanotechnol., 2017, 9(1), 015004.
[http://dx.doi.org/10.1088/2043-6254/aa9f4a]
[76]
Martínez, F.G.; Moreno-Martin, G.; Pescuma, M.; Madrid-Albarrán, Y.; Mozzi, F. Biotransformation of selenium by lactic acid bacteria: Formation of seleno-nanoparticles and seleno-amino acids. Front. Bioeng. Biotechnol., 2020, 8, 506.
[http://dx.doi.org/10.3389/fbioe.2020.00506] [PMID: 32596220]
[77]
Wang, Z.; Li, Y.; Hui, Z.; Liu, J.; Guo, X.; Chen, Z.; Yu, Z.; Zhao, A.; Wang, S.; Cai, Y.; He, N.; Xu, J.; Zhuang, W.; Ying, H. Biologically active selenium nanoparticles composited with Bacillus licheniformis extracellular polymeric substances fermented from cane molasses. Lebensm. Wiss. Technol., 2023, 187, 115255.
[http://dx.doi.org/10.1016/j.lwt.2023.115255]
[78]
Zare, B.; Babaie, S.; Setayesh, N.; Shahverdi, A.R. Isolation and characterization of a fungus for extracellular synthesis of small selenium nanoparticles. Nanomed. J., 2013, 1(1), 13-19.
[http://dx.doi.org/10.7508/nmj.2013.01.002]
[79]
Wang, Y.; Shu, X.; Zhou, Q.; Fan, T.; Wang, T.; Chen, X.; Li, M.; Ma, Y.; Ni, J.; Hou, J.; Zhao, W.; Li, R.; Huang, S.; Wu, L. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamusalternatus (Coleoptera: Cerambycidae). Int. J. Mol. Sci., 2018, 19(9), 2799.
[http://dx.doi.org/10.3390/ijms19092799] [PMID: 30227664]
[80]
Wang, Y.; Shu, X.; Hou, J.; Lu, W.; Zhao, W.; Huang, S.; Wu, L. Selenium nanoparticle synthesized by Proteus mirabilis YC801: An efficacious pathway for selenite biotransformation and detoxification. Int. J. Mol. Sci., 2018, 19(12), 3809.
[http://dx.doi.org/10.3390/ijms19123809] [PMID: 30501097]
[81]
Hassan, M.G.; Hawwa, M.T.; Baraka, D.M.; El-Shora, H.M.; Hamed, A.A. Biogenic selenium nanoparticles and selenium/chitosan-Nanoconjugate biosynthesized by Streptomyces parvulus MAR4 with antimicrobial and anticancer potential. BMC Microbiol., 2024, 24(1), 21.
[http://dx.doi.org/10.1186/s12866-023-03171-7] [PMID: 38216871]
[82]
Wadhwani, S.; Gorain, M.; Banerjee, P.; Shedbalkar, U.; Singh, R.; Kundu, G.; Chopade, B.A. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: Optimization, characterization and its anticancer activity in breast cancer cells. Int. J. Nanomedicine, 2017, 12, 6841-6855.
[http://dx.doi.org/10.2147/IJN.S139212] [PMID: 28979122]
[83]
Ashengroph, M.; Tozandehjani, S. Optimized resting cell method for green synthesis of selenium nanoparticles from a new Rhodotorula mucilaginosa strain. Process Biochem., 2022, 116, 197-205.
[http://dx.doi.org/10.1016/j.procbio.2022.03.014]
[84]
Ullah, A.; Yin, X.; Wang, F.; Xu, B.; Mirani, Z.A.; Xu, B.; Chan, M.W.H.; Ali, A.; Usman, M.; Ali, N.; Naveed, M. Biosynthesis of selenium nanoparticles (via Bacillus subtilis BSN313), and their isolation, characterization, and bioactivities. Molecules, 2021, 26(18), 5559.
[http://dx.doi.org/10.3390/molecules26185559] [PMID: 34577029]
[85]
Blinov, A.V.; Nagdalian, A.A.; Siddiqui, S.A.; Maglakelidze, D.G.; Gvozdenko, A.A.; Blinova, A.A.; Yasnaya, M.A.; Golik, A.B.; Rebezov, M.B.; Jafari, S.M.; Shah, M.A. Synthesis and characterization of selenium nanoparticles stabilized with cocamidopropyl betaine. Sci. Rep., 2022, 12(1), 21975.
[http://dx.doi.org/10.1038/s41598-022-25884-x] [PMID: 36539549]
[86]
Patra, A.R.; Hajra, S.; Baral, R.; Bhattacharya, S. Use of selenium as micronutrients and for future anticancer drug: A review. Nucleus, 2020, 63(2), 107-118.
[http://dx.doi.org/10.1007/s13237-019-00306-y]
[87]
Radomska, D.; Czarnomysy, R.; Radomski, D.; Bielawska, A.; Bielawski, K. Selenium as a bioactive micronutrient in the human diet and its cancer chemopreventive activity. Nutrients, 2021, 13(5), 1649.
[http://dx.doi.org/10.3390/nu13051649] [PMID: 34068374]
[88]
Zeng, H. Selenium as an essential micronutrient: Roles in cell cycle and apoptosis. Molecules, 2009, 14(3), 1263-1278.
[http://dx.doi.org/10.3390/molecules14031263] [PMID: 19325522]
[89]
Kuršvietienė, L.; Mongirdienė, A.; Bernatonienė, J.; Šulinskienė, J.; Stanevičienė, I. Selenium anticancer properties and impact on cellular redox status. Antioxidants, 2020, 9(1), 80.
[http://dx.doi.org/10.3390/antiox9010080] [PMID: 31963404]
[90]
Zou, J.; Su, S.; Chen, Z.; Liang, F.; Zeng, Y.; Cen, W.; Zhang, X.; Xia, Y.; Huang, D. Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3456-3464.
[http://dx.doi.org/10.1080/21691401.2019.1626863] [PMID: 31469318]
[91]
Maiyo, F.; Singh, M. Polymerized selenium nanoparticles for folate-receptor-targeted delivery of anti-luc-siRNA: Potential for gene silencing. Biomedicines, 2020, 8(4), 76.
[http://dx.doi.org/10.3390/biomedicines8040076] [PMID: 32260507]
[92]
Othman, M.S.; Obeidat, S.T.; Al-Bagawi, A.H.; Fareid, M.A.; Fehaid, A.; Abdel Moneim, A.E. Green-synthetized selenium nanoparticles using berberine as a promising anticancer agent. J. Integr. Med., 2022, 20(1), 65-72.
[http://dx.doi.org/10.1016/j.joim.2021.11.002] [PMID: 34802980]
[93]
Singh, D.; Singh, M. Hepatocellular-targeted mRNA delivery using functionalized selenium nanoparticles in vitro. Pharmaceutics, 2021, 13(3), 298.
[http://dx.doi.org/10.3390/pharmaceutics13030298] [PMID: 33668320]
[94]
Fu, Y.; Ji, C.; Ma, Z.; Xu, D.; Hu, H. Targeted delivery of doxorubicin to hepatoma cells by lactobionic acid-decorated dual redox-responsive polyethylene glycol-doxorubicin nanoparticles. Int. J. Nanosci., 2023, 22(3), 2350019.
[http://dx.doi.org/10.1142/S0219581X23500199]
[95]
Rajeshkumar, S.; Ganesh, L.; Santhoshkumar, J. Selenium nanoparticles as therapeutic agents in neurodegenerative diseases. In: In Book: Nanobiotechnology in neurodegenerative diseases; ,, 2019, pp. 209-224.
[http://dx.doi.org/10.1007/978-3-030-30930-5_8]
[96]
Cong, W.; Bai, R.; Li, Y.F.; Wang, L.; Chen, C. Selenium nanoparticles as an efficient nanomedicine for the therapy of Huntington’s disease. ACS Appl. Mater. Interfaces, 2019, 11(38), 34725-34735.
[http://dx.doi.org/10.1021/acsami.9b12319] [PMID: 31479233]
[97]
Nazıroğlu, M.; Muhamad, S.; Pecze, L. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: Focus on selenium nanoparticles. Expert Rev. Clin. Pharmacol., 2017, 10(7), 773-782.
[http://dx.doi.org/10.1080/17512433.2017.1324781] [PMID: 28463572]
[98]
Abozaid, O.A.R.; Sallam, M.W.; El-Sonbaty, S.; Aziza, S.; Emad, B.; Ahmed, E.S.A. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating sirt1/miRNA-134/gsk3β expression. Biol. Trace Elem. Res., 2022, 200(12), 5104-5114.
[http://dx.doi.org/10.1007/s12011-021-03073-7] [PMID: 35059981]
[99]
Li, C.; Wang, N.; Zheng, G.; Yang, L. Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting Aβ aggregation and regulating gut microbiota. ACS Appl. Mater. Interfaces, 2021, 13(39), 46406-46420.
[http://dx.doi.org/10.1021/acsami.1c14818] [PMID: 34569225]
[100]
Yin, T.; Yang, L.; Liu, Y.; Zhou, X.; Sun, J.; Liu, J. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater., 2015, 25, 172-183.
[http://dx.doi.org/10.1016/j.actbio.2015.06.035] [PMID: 26143603]
[101]
Yang, L.; Wang, Y. Resveratrol-loaded selenium/chitosan nano-flowers alleviate glucolipid metabolism disorder-associated cognitive impairment in Alzheimer’s disease. Int. J. Biol. Macromol., 2023, 239, 124316.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124316]
[102]
Xu, K.; Huang, P.; Wu, Y.; Liu, T.; Shao, N.; Zhao, L.; Hu, X.; Chang, J.; Peng, Y.; Qu, S. Engineered selenium/human serum albumin nanoparticles for efficient targeted treatment of parkinson’s disease via oral gavage. ACS Nano, 2023, 17(20), 19961-19980.
[http://dx.doi.org/10.1021/acsnano.3c05011] [PMID: 37807265]
[103]
Salaramoli, S.; Joshaghani, H.R.; Hosseini, M.; Hashemy, S.I. Therapeutic effects of selenium on alpha-synuclein accumulation in substantia nigra pars compacta in a rat model of parkinson’s disease: Behavioral and biochemical outcomes. Biol. Trace Elem. Res., 2024, 202(3), 1115-1125.
[http://dx.doi.org/10.1007/s12011-023-03748-3] [PMID: 37386228]
[104]
Yue, D.; Zeng, C.; Okyere, S.K.; Chen, Z.; Hu, Y. Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. J. Trace Elem. Med. Biol., 2021, 64, 126680.
[http://dx.doi.org/10.1016/j.jtemb.2020.126680] [PMID: 33242795]
[105]
Altuhafi, A.; Altun, M.; Hadwan, M.H. The correlation between selenium-dependent glutathione peroxidase activity and oxidant/antioxidant balance in sera of diabetic patients with nephropathy. Rep. Biochem. Mol. Biol., 2021, 10(2), 164-172.
[http://dx.doi.org/10.52547/rbmb.10.2.164] [PMID: 34604406]
[106]
Ge, Y.M.; Xue, Y.; Zhao, X.F.; Liu, J.Z.; Xing, W.C.; Hu, S.W.; Gao, H.M. Antibacterial and antioxidant activities of a novel biosynthesized selenium nanoparticles using Rosa roxburghii extract and chitosan: Preparation, characterization, properties, and mechanisms. Int. J. Biol. Macromol., 2024, 254(Pt 3), 127971.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127971] [PMID: 37944720]
[107]
Kora, A.J. Tree gum stabilised selenium nanoparticles: Characterisation and antioxidant activity. IET Nanobiotechnol., 2018, 12(5), 658-662.
[http://dx.doi.org/10.1049/iet-nbt.2017.0310] [PMID: 30095429]
[108]
Liu, Y.; Huang, W.; Han, W.; Li, C.; Zhang, Z.; Hu, B.; Chen, S.; Cui, P.; Luo, S.; Tang, Z.; Wu, W.; Luo, Q. Structure characterization of Oudemansiella radicata polysaccharide and preparation of selenium nanoparticles to enhance the antioxidant activities. Lebensm. Wiss. Technol., 2021, 146, 111469.
[http://dx.doi.org/10.1016/j.lwt.2021.111469]
[109]
Yao, M.; Deng, Y.; Zhao, Z.; Yang, D.; Wan, G.; Xu, X. Selenium Nanoparticles Based on Morinda officinalis Polysaccharides: Characterization, Anti-Cancer Activities, and Immune-Enhancing Activities Evaluation In Vitro. Molecules, 2023, 28(6), 2426.
[http://dx.doi.org/10.3390/molecules28062426] [PMID: 36985397]
[110]
Qiu, W.Y.; Wang, Y.Y.; Wang, M.; Yan, J.K. Construction, stability, and enhanced antioxidant activity of pectin-decorated selenium nanoparticles. Colloids Surf. B Biointerfaces, 2018, 170, 692-700.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.003] [PMID: 29986266]
[111]
Han, H.W.; Patel, K.D.; Kwak, J.H.; Jun, S.K.; Jang, T.S.; Lee, S.H.; Knowles, J.C.; Kim, H.W.; Lee, H.H.; Lee, J.H. Selenium nanoparticles as candidates for antibacterial substitutes and supplements against multidrug-resistant bacteria. Biomolecules, 2021, 11(7), 1028.
[http://dx.doi.org/10.3390/biom11071028] [PMID: 34356651]
[112]
Yuan, Q.; Xiao, R.; Afolabi, M.; Bomma, M.; Xiao, Z. Evaluation of antibacterial activity of selenium nanoparticles against food-borne pathogens. Microorganisms, 2023, 11(6), 1519.
[http://dx.doi.org/10.3390/microorganisms11061519] [PMID: 37375021]
[113]
Sentkowska, A.; Konarska, J.; Szmytke, J.; Grudniak, A. Herbal polyphenols as selenium reducers in the green synthesis of selenium nanoparticles: Antibacterial and antioxidant capabilities of the obtained SeNPs. Molecules, 2024, 29(8), 1686.
[http://dx.doi.org/10.3390/molecules29081686] [PMID: 38675506]
[114]
Tomić, N.; Stevanović, M.M.; Filipović, N.; Ganić, T.; Nikolić, B.; Gajić, I.; Ćulafić, D.M. Resveratrol/selenium nanocomposite with antioxidative and antibacterial properties. Nanomaterials , 2024, 14(4), 368.
[http://dx.doi.org/10.3390/nano14040368] [PMID: 38392741]
[115]
Green synthesis of Annona muricata mediated selenium nanoparticles and its antifungal activity against Candida albicans. J. Popul. Ther. Clin. Pharmacol., 2023, 30(16), 282-287.
[http://dx.doi.org/10.47750/jptcp.2023.30.16.038]
[116]
Nile, S.H.; Thombre, D.; Shelar, A.; Gosavi, K.; Sangshetti, J.; Zhang, W.; Sieniawska, E.; Patil, R.; Kai, G. Antifungal properties of biogenic selenium nanoparticles functionalized with nystatin for the inhibition of Candida albicans biofilm formation. Molecules, 2023, 28(4), 1836.
[http://dx.doi.org/10.3390/molecules28041836] [PMID: 36838823]
[117]
Satpathy, S.; Panigrahi, L.L.; Arakha, M. The role of selenium nanoparticles in addressing diabetic complications: A comprehensive study. Curr. Top. Med. Chem., 2024, 24(15), 1327-1342.
[http://dx.doi.org/10.2174/0115680266299494240326083936] [PMID: 38561614]
[118]
Abdel Moneim, A.; Al-Quraishy, S.; Dkhil, M.A. Anti-hyperglycemic activity of selenium nanoparticles in streptozotocin-induced diabetic rats. Int. J. Nanomedicine, 2015, 10, 6741-6756.
[http://dx.doi.org/10.2147/IJN.S91377] [PMID: 26604749]
[119]
Lotfy, M.M.; Dowidar, M.F.; Ali, H.A.; Ghonimi, W.A.M. AL-Farga, A.; Ahmed, A.I. Effect of selenium nanoparticles and/or bee venom against STZ-induced diabetic cardiomyopathy and nephropathy. Metabolites, 2023, 13(3), 400.
[http://dx.doi.org/10.3390/metabo13030400] [PMID: 36984840]
[120]
Bellini, S.; Barutta, F.; Mastrocola, R.; Imperatore, L.; Bruno, G.; Gruden, G. Heat shock proteins in vascular diabetic complications: Review and future perspective. Int. J. Mol. Sci., 2017, 18(12), 2709.
[http://dx.doi.org/10.3390/ijms18122709] [PMID: 29240668]
[121]
Kumar, G.S.; Kulkarni, A.; Khurana, A.; Kaur, J.; Tikoo, K. Selenium nanoparticles involve HSP-70 and SIRT1 in preventing the progression of type 1 diabetic nephropathy. Chem. Biol. Interact., 2014, 223, 125-133.
[http://dx.doi.org/10.1016/j.cbi.2014.09.017] [PMID: 25301743]
[122]
Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology, 2020, 28(3), 667-695.
[http://dx.doi.org/10.1007/s10787-020-00690-x] [PMID: 32144521]
[123]
YA A. Effect of Selenium nanoparticles in wound healing. Biochemistry Letters., 2020, 16(1), 160-168.
[http://dx.doi.org/10.21608/blj.2020.146617]
[124]
Ramya, S.; Shanmugasundaram, T.; Balagurunathan, R. Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J. Trace Elem. Med. Biol., 2015, 32, 30-39.
[http://dx.doi.org/10.1016/j.jtemb.2015.05.005] [PMID: 26302909]
[125]
Gangadevi, V.; Thatikonda, S.; Pooladanda, V.; Devabattula, G.; Godugu, C. Selenium nanoparticles produce a beneficial effect in psoriasis by reducing epidermal hyperproliferation and inflammation. J. Nanobiotechnology, 2021, 19(1), 101.
[http://dx.doi.org/10.1186/s12951-021-00842-3] [PMID: 33849555]
[126]
El-Ghazaly, M.A.; Fadel, N.; Rashed, E.; El-Batal, A.; Kenawy, S.A. Anti-inflammatory effect of selenium nanoparticles on the inflammation induced in irradiated rats. Can. J. Physiol. Pharmacol., 2017, 95(2), 101-110.
[http://dx.doi.org/10.1139/cjpp-2016-0183] [PMID: 27936913]
[127]
Javdani, M.; Barzegar, A. Application of chitosan hydrogels in traumatic spinal cord injury: A therapeutic approach based on the anti-inflammatory and antioxidant properties of selenium nanoparticles. Front. Biomed. Technolog., 2023, 11, 1-6.
[http://dx.doi.org/10.18502/fbt.v10i3.13166]
[128]
Malhotra, S.; Welling, M.N.; Mantri, S.B.; Desai, K. In vitro and in vivo antioxidant, cytotoxic, and anti‐chronic inflammatory arthritic effect of selenium nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater., 2016, 104(5), 993-1003.
[http://dx.doi.org/10.1002/jbm.b.33448] [PMID: 25994972]
[129]
Urbankova, L.; Skalickova, S.; Pribilova, M.; Ridoskova, A.; Pelcova, P.; Skladanka, J.; Horky, P. Effects of sub-lethal doses of selenium nanoparticles on the health status of rats. Toxics, 2021, 9(2), 28.
[http://dx.doi.org/10.3390/toxics9020028] [PMID: 33546233]
[130]
Kalishwaralal, K.; Jeyabharathi, S.; Sundar, K.; Muthukumaran, A. A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 471-477.
[http://dx.doi.org/10.3109/21691401.2014.962744] [PMID: 25287880]
[131]
Chandramohan, S.; Sundar, K.; Muthukumaran, A. Monodispersed spherical shaped selenium nanoparticles (SeNPs) synthesized by Bacillus subtilis and its toxicity evaluation in zebrafish embryos. Mater. Res. Express, 2018, 5(2), 025020.
[http://dx.doi.org/10.1088/2053-1591/aaabeb]
[132]
Zhang, Z.; Du, Y.; Liu, T.; Wong, K.H.; Chen, T. Systematic acute and subchronic toxicity evaluation of polysaccharide–protein complex-functionalized selenium nanoparticles with anticancer potency. Biomater. Sci., 2019, 7(12), 5112-5123.
[http://dx.doi.org/10.1039/C9BM01104H] [PMID: 31573569]
[133]
Patil, D.P.; Usharani, M.; Reddy, G.; Kalakumar, B.; Sawale, GK.; Rindhe, SL. Subacute intravenous dose toxicity evaluation of nano selenium particles in rabbits. Int J Vet Sci Anim Husbandry, 2024, 9(2), 10-17.
[http://dx.doi.org/10.22271/veterinary.2024.v9.i2a.1163]
[134]
Vahdati, M.; Tohidi Moghadam, T. Synthesis and characterization of selenium nanoparticles-lysozyme nanohybrid system with synergistic antibacterial properties. Sci. Rep., 2020, 10(1), 510.
[http://dx.doi.org/10.1038/s41598-019-57333-7] [PMID: 31949299]
[135]
Anna, V. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesized by the bacterium Azospirillum thiophilum spectrochimica acta part A Molec. Biomolecul. Spectros., 2018, 192, 458-463.
[http://dx.doi.org/10.1016/j.saa.2017.11.050]
[136]
Zambonino, M.C.; Quizhpe, E.M.; Jaramillo, F.E.; Rahman, A.; Santiago Vispo, N.; Jeffryes, C.; Dahoumane, S.A. Green synthesis of selenium and tellurium nanoparticles: Current trends, biological properties and biomedical applications. Int. J. Mol. Sci., 2021, 22(3), 989.
[http://dx.doi.org/10.3390/ijms22030989] [PMID: 33498184]