Current Pharmacogenomics and Personalized Medicine

Author(s): Jyotsna Singh*, Vijay Tripathi, Nachimuthu Senthil Kumar, Rajiv Kant and Jonathan A. Lal

DOI: 10.2174/0118756921327160241022074236

DownloadDownload PDF Flyer Cite As
Comparative Study on the Genetic Architecture of Type 2 Diabetes in Indian and Other Ethnic Groups: A Review

Article ID: e18756921327160 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Type 2 diabetes mellitus (T2DM) is a condition of metabolism that impacts people worldwide regardless of country, age group, and gender. In addition to a sedentary lifestyle, genetic susceptibility, specifically single nucleotide polymorphisms, is implicated in the emergence and progression of T2DM. This study compares the genetic variants of the Indian population with three other ethnic cohorts: African, European, and Chinese. Based on the literature survey, common and unique Single Nucleotide Polymorphisms (SNPs) and genes were explored in different Populations, including PPARG, TCF7L2, THADA, CDKN2A, IGF2BP2, SLC30A8, HHEX and CDKAL1. Identifying common and specific markers may help in risk prediction and early detection of T2DM. In conclusion, this comparative study of T2DM-susceptible SNPs in Indian and other ethnic groups highlights the complexity and diversity of genetic factors contributing to T2DM. By shedding light on the similarities and disparities in genetic predisposition across populations, this review contributes to the ongoing efforts to develop more effective and tailored approaches for managing and avoiding T2DM in diverse global populations.

Keywords: Type 2 diabetes, genetics, candidate genes, genome-wide association scan, single nucleotide polymorphism, pandemic.

Graphical Abstract

[1]
International diabetes federation. In: IDF Diabetes Atlas. (10th ed.). International Diabetes Federation: Brussels 2021; pp. 1-6.
[2]
World Health Organization. Diabetes. 2021. Available from: https://www.who.int/health-topics/diabetes#tab=tab_1 accessed on 2021 Jun 04
[3]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[4]
Chan JCN, Lim LL, Wareham NJ, et al. The lancet commission on diabetes: Using data to transform diabetes care and patient lives. Lancet 2021; 396(10267): 2019-82.
[http://dx.doi.org/10.1016/S0140-6736(20)32374-6]
[5]
Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract 2022; 183: 109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[6]
Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet 2022; 400(10365): 1803-20.
[http://dx.doi.org/10.1016/S0140-6736(22)01655-5] [PMID: 36332637]
[7]
Bhutta ZA, Salam RA, Gomber A, et al. A century past the discovery of insulin: Global progress and challenges for type 1 diabetes among children and adolescents in low-income and middle-income countries. Lancet 2021; 398(10313): 1837-50.
[http://dx.doi.org/10.1016/S0140-6736(21)02247-9] [PMID: 34774146]
[8]
Flood D, Seiglie JA, Dunn M, et al. The state of diabetes treatment coverage in 55 low-income and middle-income countries: A cross-sectional study of nationally representative, individual-level data in 680 102 adults. Lancet Healthy Longev 2021; 2(6): e340-51.
[http://dx.doi.org/10.1016/S2666-7568(21)00089-1] [PMID: 35211689]
[9]
Manne-Goehler J, Geldsetzer P, Agoudavi K, et al. Health system performance for people with diabetes in 28 low- and middle-income countries: A cross-sectional study of nationally representative surveys. PLoS Med 2019; 16(3): e1002751.
[http://dx.doi.org/10.1371/journal.pmed.1002751] [PMID: 30822339]
[10]
Hill-Briggs F, Adler NE, Berkowitz SA, et al. Social determinants of health and diabetes: A scientific review. Diabetes Care 2021; 44(1): 258-79.
[http://dx.doi.org/10.2337/dci20-0053] [PMID: 33139407]
[11]
Corsi DJ, Subramanian SV. Socioeconomic gradients and distribution of diabetes, hypertension, and obesity in india. JAMA Netw Open 2019; 2(4): e190411.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0411] [PMID: 30951154]
[12]
Spanakis EK, Golden SH. Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep 2013; 13(6): 814-23.
[http://dx.doi.org/10.1007/s11892-013-0421-9] [PMID: 24037313]
[13]
Whyte MB, Hinton W, McGovern A, et al. Disparities in glycaemic control, monitoring, and treatment of type 2 diabetes in England: A retrospective cohort analysis. PLoS Med 2019; 16(10): e1002942.
[http://dx.doi.org/10.1371/journal.pmed.1002942] [PMID: 31589609]
[14]
Das AK, Shah S. History of diabetes: From ants to analogs. J Assoc Physicians India 2011; 59 (Suppl.): 6-7.
[PMID: 21818991]
[15]
Patel CJ, Chen R, Kodama K, Ioannidis JPA, Butte AJ. Systematic identification of interaction effects between genome- and environment-wide associations in type 2 diabetes mellitus. Hum Genet 2013; 132(5): 495-508.
[http://dx.doi.org/10.1007/s00439-012-1258-z] [PMID: 23334806]
[16]
Ali O. Genetics of type 2 diabetes. World J Diabetes 2013; 4(4): 114-23.
[http://dx.doi.org/10.4239/wjd.v4.i4.114] [PMID: 23961321]
[17]
Bodhini D, Radha V, Mohan V. Association study of IRS1 gene polymorphisms with type 2 diabetes in south Indians. Diabetes Technol Ther 2011; 13(7): 767-72.
[http://dx.doi.org/10.1089/dia.2011.0017] [PMID: 21612394]
[18]
Joseph A, Thirupathamma M, Mathews E, Alagu M. Genetics of type 2 diabetes mellitus in Indian and Global Population: A Review. Egypt J Med Hum Genet 2022; 23(1): 135.
[http://dx.doi.org/10.1186/s43042-022-00346-1] [PMID: 37192883]
[19]
Maher B. Personal genomes: The case of the missing heritability. Nature 2008; 456(7218): 18-21.
[http://dx.doi.org/10.1038/456018a] [PMID: 18987709]
[20]
Altshuler D, Hirschhorn JN, Klannemark M, et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 2000; 26(1): 76-80.
[http://dx.doi.org/10.1038/79216] [PMID: 10973253]
[21]
Sandhu MS, Weedon MN, Fawcett KA, et al. Common variants in WFS1 confer risk of type 2 diabetes. Nat Genet 2007; 39(8): 951-3.
[http://dx.doi.org/10.1038/ng2067] [PMID: 17603484]
[22]
Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445(7130): 881-5.
[http://dx.doi.org/10.1038/nature05616]
[23]
Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316(5829): 1331-6.
[http://dx.doi.org/10.1126/science.1142358] [PMID: 17463246]
[24]
Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316(5829): 1341-5.
[http://dx.doi.org/10.1126/science.1142382] [PMID: 17463248]
[25]
Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 2007; 39(6): 770-5.
[http://dx.doi.org/10.1038/ng2043] [PMID: 17460697]
[26]
Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447(7145): 661-78.
[http://dx.doi.org/10.1038/nature05911] [PMID: 17554300]
[27]
Gudmundsson J, Sulem P, Steinthorsdottir V, et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39(8): 977-83.
[http://dx.doi.org/10.1038/ng2062] [PMID: 17603485]
[28]
Zeggini E, Scott LJ, Saxena R, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40(5): 638-45.
[http://dx.doi.org/10.1038/ng.120] [PMID: 18372903]
[29]
Simonis-Bik AM, Nijpels G, van Haeften TW, et al. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes 2010; 59(1): 293-301.
[http://dx.doi.org/10.2337/db09-1048] [PMID: 19833888]
[30]
Grarup N, Andersen G, Krarup NT, et al. Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 2008; 57(9): 2534-40.
[http://dx.doi.org/10.2337/db08-0436] [PMID: 18567820]
[31]
Lyssenko V, Nagorny CLF, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 2009; 41(1): 82-8.
[http://dx.doi.org/10.1038/ng.288] [PMID: 19060908]
[32]
Bouatia-Naji N, Bonnefond A, Cavalcanti-Proença C, et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nat Genet 2009; 41(1): 89-94.
[http://dx.doi.org/10.1038/ng.277] [PMID: 19060909]
[33]
Rung J, Cauchi S, Albrechtsen A, et al. Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia. Nat Genet 2009; 41(10): 1110-5.
[http://dx.doi.org/10.1038/ng.443] [PMID: 19734900]
[34]
Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 2010; 42(2): 105-16.
[http://dx.doi.org/10.1038/ng.520] [PMID: 20081858]
[35]
Qi L, Cornelis MC, Kraft P, et al. Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet 2010; 19(13): 2706-15.
[http://dx.doi.org/10.1093/hmg/ddq156] [PMID: 20418489]
[36]
Voight BF, Scott LJ, Steinthorsdottir V, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42(7): 579-89.
[http://dx.doi.org/10.1038/ng.609] [PMID: 20581827]
[37]
Saxena R, Elbers CC, Guo Y, et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am J Hum Genet 2012; 90(3): 410-25.
[http://dx.doi.org/10.1016/j.ajhg.2011.12.022] [PMID: 22325160]
[38]
Morris AP, Voight BF, Teslovich TM, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 2012; 44(9): 981-90.
[http://dx.doi.org/10.1038/ng.2383] [PMID: 22885922]
[39]
Ali F, Kumar R, Sahu PL, Singh GN. Physicochemical characterization and compatibility study of roflumilast with various pharmaceutical excipients. J Therm Anal Calorim 2017; 130(3): 1627-41.
[http://dx.doi.org/10.1007/s10973-017-6274-8]
[40]
Ali F, Neha K, Sharma K, Khasimbi S, Chauhan G. Nanotechnology-based medicinal products and patents: A promising way to treat psoriasis. Curr Drug Deliv 2022; 19(5): 587-99.
[http://dx.doi.org/10.2174/1567201819666220126163943] [PMID: 35081890]
[41]
Khatak S, Khatak M, Ali F, et al. Development and validation of a RP-HPLC method for simultaneous estimation of antitubercular drugs in solid lipid nanoparticles. Indian J Pharm Sci 2018; 80(6): 996-1002.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000449]
[42]
Ali F, Nandi U, Trivedi M, et al. Quantitative characterization and pharmaceutical compatibility between teneligliptin and widely used excipients by using thermal and liquid chromatography tandem mass spectrometry techniques. J Therm Anal Calorim 2018; 132(1): 385-96.
[http://dx.doi.org/10.1007/s10973-018-6962-z]
[43]
Ali F, Khasimbi S, Ali A. Lipid-based nano-phytomedicines for disease treatment and theranostic applications. Curr Nanomed 2021; 11(1): 40-50.
[http://dx.doi.org/10.2174/2468187310999201023151700]
[44]
Mahajan A, Go MJ, Zhang W, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 2014; 46(3): 234-44.
[http://dx.doi.org/10.1038/ng.2897] [PMID: 24509480]
[45]
Liou CW, Chen JB, Tiao MM, et al. Mitochondrial DNA coding and control region variants as genetic risk factors for type 2 diabetes. Diabetes 2012; 61(10): 2642-51.
[http://dx.doi.org/10.2337/db11-1369] [PMID: 22891220]
[46]
Ye Z, Gillson C, Sims M, et al. The association of the mitochondrial DNA OriB variant (16184–16193 polycytosine tract) with type 2 diabetes in Europid populations. Diabetologia 2013; 56(9): 1907-13.
[http://dx.doi.org/10.1007/s00125-013-2945-6] [PMID: 23702607]
[47]
Pradeepa R, Mohan V. Epidemiology of type 2 diabetes in India. Indian J Ophthalmol 2021; 69(11): 2932-8.
[http://dx.doi.org/10.4103/ijo.IJO_1627_21] [PMID: 34708726]
[48]
Sheth J, Trivedi S, Shah A, et al. Are we predisposed to type 2 diabetes risk: A case-control study from urban population in western india. Endocrinol Metab Int J 2017; 5(3): 00122.
[http://dx.doi.org/10.15406/emij.2017.05.00122]
[49]
Tai ES, Corella D, Deurenberg-Yap M, et al. Differential effects of the C1431T and Pro12Ala PPARγ gene variants on plasma lipids and diabetes risk in an Asian population. J Lipid Res 2004; 45(4): 674-85.
[http://dx.doi.org/10.1194/jlr.M300363-JLR200] [PMID: 14729856]
[50]
Radha V, Vimaleswaran KS, Babu HNS, et al. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: Evidence for heterogeneity. Diabetes Care 2006; 29(5): 1046-51.
[http://dx.doi.org/10.2337/dc05-1473] [PMID: 16644635]
[51]
Viswanathan V, Zhu Y, Bala K, et al. Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients. JOP 2001; 2(2): 83-7.
[PMID: 11867868]
[52]
Bhavani BA, Padma T, Sastry BKS, Reddy NK, Nausheen K. The insertion I/deletion D polymorphism of angiotensin-converting enzyme (ACE) gene increase the susceptibility to hypertension and/or diabetes. Int J Hum Genet 2005; 5(4): 247-52.
[http://dx.doi.org/10.1080/09723757.2005.11885934]
[53]
Raza ST, Fatima J, Ahmed F, et al. Association of angiotensin-converting enzyme (ACE) and fatty acid binding protein 2 (FABP2) genes polymorphism with type 2 diabetes mellitus in Northern India. J Renin Angiotensin Aldosterone Syst 2014; 15(4): 572-9.
[http://dx.doi.org/10.1177/1470320313481082] [PMID: 23468166]
[54]
Raza ST, Abbas S, Ahmed F, Fatima J, Zaidi ZH, Mahdi F. Association of MTHFR and PPARγ2 gene polymorphisms in relation to type 2 diabetes mellitus cases among north Indian population. Gene 2012; 511(2): 375-9.
[http://dx.doi.org/10.1016/j.gene.2012.09.072] [PMID: 23036708]
[55]
Yajnik CS, Janipalli CS, Bhaskar S, et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 2009; 52(2): 247-52.
[http://dx.doi.org/10.1007/s00125-008-1186-6] [PMID: 19005641]
[56]
Tabassum R, Chavali S, Dwivedi OP, Tandon N, Bharadwaj D. Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians. J Hum Genet 2008; 53(11-12): 957-65.
[http://dx.doi.org/10.1007/s10038-008-0335-6] [PMID: 18797817]
[57]
Mahajan A, Tabassum R, Chavali S, et al. Obesity-dependent association of TNF-LTA locus with type 2 diabetes in North Indians. J Mol Med (Berl) 2010; 88(5): 515-22.
[http://dx.doi.org/10.1007/s00109-010-0594-5] [PMID: 20177654]
[58]
Chavali S, Mahajan A, Tabassum R, et al. Association of variants in genes involved in pancreatic β-cell development and function with type 2 diabetes in North Indians. J Hum Genet 2011; 56(10): 695-700.
[http://dx.doi.org/10.1038/jhg.2011.83] [PMID: 21814221]
[59]
Bodhini D, Radha V, Deepa R, et al. The G1057D polymorphism of IRS-2 gene and its relationship with obesity in conferring susceptibility to type 2 diabetes in Asian Indians. Int J Obes 2007; 31(1): 97-102.
[http://dx.doi.org/10.1038/sj.ijo.0803356] [PMID: 16652127]
[60]
Jahnavi S, Poovazhagi V, Kanthimathi S, et al. Novel ABCC8 (SUR1) gene mutations in Asian Indian children with congenital hyperinsulinemic hypoglycemia. Ann Hum Genet 2014; 78(5): 311-9.
[http://dx.doi.org/10.1111/ahg.12070] [PMID: 25117148]
[61]
Singh PP, Naz I, Gilmour A, Singh M, Mastana S. Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India. Diabetes Res Clin Pract 2006; 74(1): 95-102.
[http://dx.doi.org/10.1016/j.diabres.2006.03.013] [PMID: 16621107]
[62]
Singh S, Venketesh S, Verma JS, Verma M, Lellamma CO, Goel RC. Paraoxonase (PON1) activity in north west Indian Punjabis with coronary artery disease & type 2 diabetes mellitus. Indian J Med Res 2007; 125(6): 783-7.
[PMID: 17704557]
[63]
Singh P, Singh M, Gaur S, Kaur T. The ApoAI-CIII-AIV gene cluster and its relation to lipid levels in type 2 diabetes mellitus and coronary heart disease: determination of a novel susceptible haplotype. Diab Vasc Dis Res 2007; 4(2): 124-9.
[http://dx.doi.org/10.3132/dvdr.2007.030] [PMID: 17654446]
[64]
Achyut BR, Srivastava A, Bhattacharya S, Mittal B. Genetic association of interleukin-1β (−511C/T) and interleukin-1 receptor antagonist (86 bp repeat) polymorphisms with Type 2 diabetes mellitus in North Indians. Clin Chim Acta 2007; 377(1-2): 163-9.
[http://dx.doi.org/10.1016/j.cca.2006.09.012] [PMID: 17069782]
[65]
Banerjee M, Bid HK, Konwar R, Agrawal CG. Association of IL-4 and IL-1RN (receptor antagonist) gene variants and the risk of type 2 diabetes mellitus: A study in the north Indian population. Indian J Med Sci 2008; 62(7): 259-66.
[http://dx.doi.org/10.4103/0019-5359.42021] [PMID: 18688110]
[66]
Vimaleswaran KS, Radha V, Ghosh S, et al. Peroxisome proliferator‐activated receptor‐γ co‐activator‐1α (PGC‐1α) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet Med 2005; 22(11): 1516-21.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01709.x] [PMID: 16241916]
[67]
Vimaleswaran KS, Radha V, Anjana M, et al. Effect of polymorphisms in the PPARGC1A gene on body fat in Asian Indians. Int J Obes 2006; 30(6): 884-91.
[http://dx.doi.org/10.1038/sj.ijo.0803228] [PMID: 16446747]
[68]
Sharma R, Matharoo K, Kapoor R, Bhanwer AJS. Association of PGC-1α gene with type 2 diabetes in three unrelated endogamous groups of North-West India (Punjab): a case-control and meta-analysis study. Mol Genet Genomics 2018; 293(2): 317-29.
[http://dx.doi.org/10.1007/s00438-017-1385-2] [PMID: 29063962]
[69]
Bhat A, Koul A, Rai E, Sharma S, Dhar MK, Bamezai RNK. PGC-1α Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: A replicate case-control study. Hum Genet 2007; 121(5): 609-14.
[http://dx.doi.org/10.1007/s00439-007-0352-0] [PMID: 17390150]
[70]
Ali S, Chopra R, Manvati S, et al. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS One 2013; 8(3): e58881.
[http://dx.doi.org/10.1371/journal.pone.0058881] [PMID: 23527042]
[71]
Abate N, Chandalia M, Satija P, et al. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 2005; 54(4): 1207-13.
[http://dx.doi.org/10.2337/diabetes.54.4.1207] [PMID: 15793263]
[72]
Chauhan G, Spurgeon CJ, Tabassum R, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 2010; 59(8): 2068-74.
[http://dx.doi.org/10.2337/db09-1386] [PMID: 20424228]
[73]
Reddy BM, Kommoju UJ, Samy SK, et al. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India. Indian J Med Res 2016; 143(4): 455-63.
[http://dx.doi.org/10.4103/0971-5916.184303] [PMID: 27377502]
[74]
Chidambaram M, Radha V, Mohan V. Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 2010; 59(12): 1760-6.
[http://dx.doi.org/10.1016/j.metabol.2010.04.024] [PMID: 20580033]
[75]
Bodhini D, Radha V, Dhar M, Narayani N, Mohan V. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism 2007; 56(9): 1174-8.
[http://dx.doi.org/10.1016/j.metabol.2007.04.012] [PMID: 17697858]
[76]
Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 2006; 50(1): 63-7.
[http://dx.doi.org/10.1007/s00125-006-0502-2] [PMID: 17093941]
[77]
Tabassum R, Chauhan G, Dwivedi OP, et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 2013; 62(3): 977-86.
[http://dx.doi.org/10.2337/db12-0406] [PMID: 23209189]
[78]
Kommoju UJ, Maruda J, Kadarkarai S, et al. No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad, India. Meta Gene 2013; 1: 15-23.
[http://dx.doi.org/10.1016/j.mgene.2013.09.003] [PMID: 25606370]
[79]
Khan IA, Poornima S, Jahan P, Rao P, Hasan Q. Type 2 diabetes mellitus and the association of candidate genes in asian indian population from hyderabad, india. J Clin Diagn Res 2015; 9(11): GC01-5.
[http://dx.doi.org/10.7860/JCDR/2015/14471.6855] [PMID: 26673680]
[80]
Saxena R, Saleheen D, Been LF, et al. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 2013; 62(5): 1746-55.
[http://dx.doi.org/10.2337/db12-1077] [PMID: 23300278]
[81]
Sharma R, Matharoo K, Kapoor R, Chopra H, Bhanwer A. Ethnic differences in CAPN10 SNP-19 in type 2 diabetes: A North-West Indian case control study and evidence from meta-analysis. Genet Res 2013; 95(5): 146-55.
[http://dx.doi.org/10.1017/S0016672313000207] [PMID: 24429295]
[82]
Lalrohlui F, Sharma V, Sharma I, et al. MACF1 gene variant rs2296172 is associated with T2D susceptibility in Mizo population from Northeast India. Int J Diabetes Dev Ctries 2020; 40(2): 223-6.
[http://dx.doi.org/10.1007/s13410-019-00788-1]
[83]
Bains V, Kaur H, Badaruddoza B. Association analysis of polymorphisms in LEP (rs7799039 and rs2167270) and LEPR (rs1137101) gene towards the development of type 2 diabetes in North Indian Punjabi population. Gene 2020; 754: 144846.
[http://dx.doi.org/10.1016/j.gene.2020.144846] [PMID: 32512158]
[84]
Matharoo K, Arora P, Bhanwer AJS. Association of adiponectin (AdipoQ) and sulphonylurea receptor (ABCC8) gene polymorphisms with Type 2 Diabetes in North Indian population of Punjab. Gene 2013; 527(1): 228-34.
[http://dx.doi.org/10.1016/j.gene.2013.05.075] [PMID: 23764562]
[85]
Gupta V, Vinay DG, Rafiq S, et al. Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs. Diabetologia 2012; 55(2): 349-57.
[http://dx.doi.org/10.1007/s00125-011-2355-6] [PMID: 22052079]
[86]
Nair AK, Sugunan D, Kumar H, Anilkumar G. Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: Association of SNPs in STRA6 with type 2 diabetes in a South Indian population. PLoS One 2010; 5(7): e11444.
[http://dx.doi.org/10.1371/journal.pone.0011444] [PMID: 20625434]
[87]
Lalrohlui F, Sharma V, Sharma I, et al. Genotyping of T2D susceptible genes in a high risk North-East Indian population. Obes Med 2020; 17: 100162.
[http://dx.doi.org/10.1016/j.obmed.2019.100162]
[88]
Phani NM, Vohra M, Rajesh S, et al. Implications of critical PPARγ2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population. Mol Genet Genomics 2016; 291(1): 193-204.
[http://dx.doi.org/10.1007/s00438-015-1097-4] [PMID: 26243686]
[89]
Ryuk JA, Zhang X, Ko BS, Daily JW, Park S. Association of β3-adrenergic receptor rs4994 polymorphisms with the risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2017; 129: 86-96.
[http://dx.doi.org/10.1016/j.diabres.2017.03.034] [PMID: 28521197]
[90]
Ma RCW, Hu C, Tam CH, et al. Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4. Diabetologia 2013; 56(6): 1291-305.
[http://dx.doi.org/10.1007/s00125-013-2874-4] [PMID: 23532257]
[91]
Tsai FJ, Yang CF, Chen CC, et al. A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 2010; 6(2): e1000847.
[http://dx.doi.org/10.1371/journal.pgen.1000847] [PMID: 20174558]
[92]
Hu C, Zhang R, Wang C, et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 2009; 4(10): e7643.
[http://dx.doi.org/10.1371/journal.pone.0007643] [PMID: 19862325]
[93]
Peng D, Wang J, Zhang R, et al. CDKAL1 rs7756992 is associated with diabetic retinopathy in a Chinese population with type 2 diabetes. Sci Rep 2017; 7(1): 8812.
[http://dx.doi.org/10.1038/s41598-017-09010-w] [PMID: 28821857]
[94]
Chen MP, Chung FM, Chang DM, et al. ENPP1 K121Q polymorphism is not related to type 2 diabetes mellitus, features of metabolic syndrome, and diabetic cardiovascular complications in a Chinese population. Rev Diabet Stud 2006; 3(1): 21-30.
[http://dx.doi.org/10.1900/RDS.2006.3.21] [PMID: 17491709]
[95]
Li Y. ENPP1 K121Q polymorphism and type 2 diabetes mellitus in the Chinese population: a meta-analysis including 11 855 subjects. Metabolism 2012; 61(5): 625-33.
[http://dx.doi.org/10.1016/j.metabol.2011.10.002] [PMID: 22136912]
[96]
Liu L, Ding H, Wang HR, et al. Polymorphism of HMGA1 is associated with increased risk of type 2 diabetes among Chinese individuals. Diabetologia 2012; 55(6): 1685-8.
[http://dx.doi.org/10.1007/s00125-012-2518-0] [PMID: 22411136]
[97]
Brunetti A, Chiefari E, Foti D. Recent advances in the molecular genetics of type 2 diabetes mellitus. World J Diabetes 2014; 5(2): 128-40.
[http://dx.doi.org/10.4239/wjd.v5.i2.128]
[98]
Dou H, Ma E, Yin L, Jin Y, Wang H. The association between gene polymorphism of TCF7L2 and type 2 diabetes in Chinese Han population: A meta-analysis. PLoS One 2013; 8(3): e59495.
[http://dx.doi.org/10.1371/journal.pone.0059495] [PMID: 23527206]
[99]
Rao P, Zhou Y, Ge SQ, et al. Validation of type 2 diabetes risk variants identified by genome-wide association studies in northern han chinese. Int J Environ Res Public Health 2016; 13(9): 863.
[http://dx.doi.org/10.3390/ijerph13090863] [PMID: 27589775]
[100]
Jiang B, Liu Y, Liu Y, Fang F, Wang X, Li B. Association of four insulin resistance genes with type 2 diabetes mellitus and hypertension in the Chinese Han population. Mol Biol Rep 2014; 41(2): 925-33.
[http://dx.doi.org/10.1007/s11033-013-2937-0] [PMID: 24414038]
[101]
Xiao S, Zeng X, Quan L, Zhu J. Correlation between polymorphism of FTO gene and type 2 diabetes mellitus in Uygur people from northwest China. Int J Clin Exp Med 2015; 8(6): 9744-50.
[PMID: 26309651]
[102]
Hu C, Zhang R, Wang C, et al. Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 are associated with glucose metabolism in the Chinese. PLoS One 2010; 5(11): e15542.
[http://dx.doi.org/10.1371/journal.pone.0015542] [PMID: 21103350]
[103]
Yasuda K, Miyake K, Horikawa Y, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 2008; 40(9): 1092-7.
[http://dx.doi.org/10.1038/ng.207] [PMID: 18711367]
[104]
Li Q, Tang T, Jiang F, et al. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes. Acta Pharmacol Sin 2017; 38(1): 80-9.
[http://dx.doi.org/10.1038/aps.2016.103] [PMID: 27694910]
[105]
Li H, Gan W, Lu L, et al. A genome-wide association study identifies GRK5 and RASGRP1 as type 2 diabetes loci in Chinese Hans. Diabetes 2013; 62(1): 291-8.
[http://dx.doi.org/10.2337/db12-0454] [PMID: 22961080]
[106]
Yao M, Wu Y, Fang Q, Sun L, Li T, Qiao H. Association ofADIPOQ variants with type 2 diabetes mellitus susceptibility in ethnic Han Chinese from northeast China. J Diabetes Investig 2016; 7(6): 853-9.
[http://dx.doi.org/10.1111/jdi.12535] [PMID: 27181706]
[107]
Fan Y, Li X, Zhang Y, et al. Genetic variants of TPCN2 associated with type 2 diabetes risk in the chinese population. PLoS One 2016; 11(2): e0149614.
[http://dx.doi.org/10.1371/journal.pone.0149614] [PMID: 26918892]
[108]
Chang YC, Chiu YF, Liu PH, et al. Replication of genome‐wide association signals of type 2 diabetes in Han Chinese in a prospective cohort. Clin Endocrinol (Oxf) 2012; 76(3): 365-72.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04175.x] [PMID: 21767287]
[109]
Yuan F, Li H, Song C, et al. A replication study identified seven SNPS associated with quantitative traits of type 2 diabetes among chinese population in a cross-sectional study. Int J Environ Res Public Health 2020; 17(7): 2439.
[http://dx.doi.org/10.3390/ijerph17072439] [PMID: 32260174]
[110]
Deng X, Liu H. Nalima, Qiqiger A, Zhu J. Association of polymorphisms rs290487, rs864745, rs4430796 and rs23136 with type 2 diabetes in the Uyghur population in China. Int J Clin Exp Pathol 2017; 10(8): 8813-9.
[PMID: 31966747]
[111]
Kazakova E, Zghuang T, Li T, Fang Q, Han J, Qiao H. Gas6 gene rs8191974 and Ap3s2 gene rs2028299 are associated with type 2 diabetes in the northern Chinese Han population. Acta Biochim Pol 2017; 64(2): 227-31.
[http://dx.doi.org/10.18388/abp.2016_1299] [PMID: 28399188]
[112]
Zhou X, Chen C, Yin D, et al. A variation in the abcc8 gene is associated with type 2 diabetes mellitus and repaglinide efficacy in chinese type 2 diabetes mellitus patients. Intern Med 2019; 58(16): 2341-7.
[http://dx.doi.org/10.2169/internalmedicine.2133-18] [PMID: 31118371]
[113]
Matsha T, Fanampe , Yako Y, et al. Association of the ENPP1 rs997509 polymorphism with obesity in South African mixed ancestry learners. East Afr Med J 2010; 87(8): 323-9.
[PMID: 23451554]
[114]
Yako YY, Madubedube JH, Kengne AP, Erasmus RT, Pillay TS, Matsha TE. Contribution of ENPP1, TCF7L2, and FTO polymorphisms to type 2 diabetes in mixed ancestry ethnic population of South Africa. Afr Health Sci 2016; 15(4): 1149-60.
[http://dx.doi.org/10.4314/ahs.v15i4.14] [PMID: 26958016]
[115]
Staiger H, Stančáková A, Zilinskaite J, et al. A candidate type 2 diabetes polymorphism near the HHEX locus affects acute glucose-stimulated insulin release in European populations: results from the EUGENE2 study. Diabetes 2008; 57(2): 514-7.
[http://dx.doi.org/10.2337/db07-1254] [PMID: 18039816]
[116]
Horikawa Y, Miyake K, Yasuda K, et al. Replication of genome-wide association studies of type 2 diabetes susceptibility in Japan. J Clin Endocrinol Metab 2008; 93(8): 3136-41.
[http://dx.doi.org/10.1210/jc.2008-0452] [PMID: 18477659]
[117]
Pirie FJ, Motala AA, Pegoraro RJ, Paruk IM, Govender T, Rom L. Variants in PPARG, KCNJ11, TCF7L2, FTO, and HHEX genes in South African subjects of Zulu descent with type 2 diabetes. Afr J Diabetes Med 2010; 1468-6570.
[118]
Lewis JP, Palmer ND, Hicks PJ, et al. Association analysis in african americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 2008; 57(8): 2220-5.
[http://dx.doi.org/10.2337/db07-1319] [PMID: 18443202]
[119]
Palmer ND, McDonough CW, Hicks PJ, et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS One 2012; 7(1): e29202.
[http://dx.doi.org/10.1371/journal.pone.0029202] [PMID: 22238593]
[120]
Li Y, Wang L, Lu X, et al. CDKAL1 gene rs7756992 A/G polymorphism and type 2 diabetes mellitus: a meta-analysis of 62,567 subjects. Sci Rep 2013; 3(1): 3131.
[http://dx.doi.org/10.1038/srep03131] [PMID: 24185407]
[121]
Chen G, Bentley A, Adeyemo A, et al. Genome-wide association study identifies novel loci association with fasting insulin and insulin resistance in African Americans. Hum Mol Genet 2012; 21(20): 4530-6.
[http://dx.doi.org/10.1093/hmg/dds282] [PMID: 22791750]
[122]
Ng MC, Shriner D, Chen BH, et al. MEta-analysis of type 2 diabetes in african americans consortium. PLoS Genet 2014; 10(8): e1004517.
[http://dx.doi.org/10.1371/journal.pgen.1004517] [PMID: 25102180]
[123]
Cauchi S, Ezzidi I, El Achhab Y, et al. European genetic variants associated with type 2 diabetes in North African Arabs. Diabetes Metab 2012; 38(4): 316-23.
[http://dx.doi.org/10.1016/j.diabet.2012.02.003] [PMID: 22463974]
[124]
Turki A, Al-Zaben GS, Khirallah M, Marmouch H, Mahjoub T, Almawi WY. Gender-dependent associations of CDKN2A/2B, KCNJ11, POLI, SLC30A8, and TCF7L2 variants with type 2 diabetes in (North African) Tunisian Arabs. Diabetes Res Clin Pract 2014; 103(3): e40-3.
[http://dx.doi.org/10.1016/j.diabres.2013.12.040] [PMID: 24485399]
[125]
Ayelign B, Genetu M, Wondmagegn T, Adane G, Negash M, Berhane N. TNF-α (−308) gene polymorphism and type 2 diabetes mellitus in ethiopian diabetes patients. Diabetes Metab Syndr Obes 2019; 12: 2453-9.
[http://dx.doi.org/10.2147/DMSO.S229987] [PMID: 31819571]
[126]
Abdelhamid I, Lasram K, Meiloud G, et al. E23K variant in KCNJ11 gene is associated with susceptibility to type 2 diabetes in the Mauritanian population. Prim Care Diabetes 2014; 8(2): 171-5.
[http://dx.doi.org/10.1016/j.pcd.2013.10.006] [PMID: 24332549]
[127]
Engwa GA, Nwalo FN, Chikezie CC, et al. Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population. BMC Med Genet 2018; 19(1): 78.
[http://dx.doi.org/10.1186/s12881-018-0601-1] [PMID: 29751826]
[128]
Danquah I, Othmer T, Frank LK, Bedu-Addo G, Schulze MB, Mockenhaupt FP. The TCF7L2 rs7903146 (T) allele is associated with type 2 diabetes in urban Ghana: A hospital-based case–control study. BMC Med Genet 2013; 14(1): 96.
[http://dx.doi.org/10.1186/1471-2350-14-96] [PMID: 24059590]
[129]
Adeyemo AA, Zaghloul NA, Chen G, et al. ZRANB3 is an African-specific type 2 diabetes locus associated with beta-cell mass and insulin response. Nat Commun 2019; 10(1): 3195.
[http://dx.doi.org/10.1038/s41467-019-10967-7] [PMID: 31324766]
[130]
Cooke JN, Ng MCY, Palmer ND, et al. Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans. Diabetes Care 2012; 35(2): 287-92.
[http://dx.doi.org/10.2337/dc11-0957] [PMID: 22275441]