Current Pharmacogenomics and Personalized Medicine

Author(s): Ujwal Dahal, Anu Bansal* and Dheeraj Chitara

DOI: 10.2174/0118756921344687241015063919

DownloadDownload PDF Flyer Cite As
Decoding Multidrug Resistance: Genetic Architecture and Codon Usage Patterns in ESKAPE Pathogens

Article ID: e18756921344687 Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Introduction: The escalating challenge of multidrug resistance among ESKAPE pathogens has become a prominent concern for global healthcare providers, leading to amplified morbidity and mortality rates.

Methods: We conducted this study to elucidate the genetic architecture of ESKAPE constituents with the intent of ameliorating pathogenicity and facilitating drug development efforts. A comprehensive array of computational tools and statistical methodologies were employed to scrutinize the genomes of ESKAPE pathogens.

Results: Translational selection profoundly influences the codon usage bias within this pathogenic cohort. Notably, leucine emerged as the predominant amino acid, except in the case of Acinetobacter baumannii, where arginine exhibited preeminence. There was a universal preference for at least one histidine codon across all ESKAPE pathogens. GpC emerged as the most prominently overrepresented dinucleotide at the codon pair junction in all ESKAPE pathogens. Furthermore, a comparison of gyrB gene sequences and phylogenic tree construction showed a distinct evolutionary relationship between AT-rich and GC-rich ESKAPE pathogens. Additionally, identification, characterization, and phylogenetic analysis of multiple antibiotic resistance genes revealed distinct evolutionary relationships.

Conclusion: It was discerned that despite substantial variability amongst antibiotic resistance genes of pathogens, leucine emerged as the predominant amino acid.

Keywords: ESKAPE, amino acid usage, codon usage, translational selection, compositional constraint, mortality rates.

Graphical Abstract

[1]
Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res Int 2016; 2016: 1-8.
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[2]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[3]
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021; 10(10): 1310.
[http://dx.doi.org/10.3390/pathogens10101310] [PMID: 34684258]
[4]
Miller WR, Murray BE, Rice LB, Arias CA. Resistance in vancomycin-resistant enterococci. Infect Dis Clin North Am 2020; 34(4): 751-71.
[http://dx.doi.org/10.1016/j.idc.2020.08.004] [PMID: 33131572]
[5]
Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiol 2019; 5(2): 117-37.
[http://dx.doi.org/10.3934/microbiol.2019.2.117] [PMID: 31384707]
[6]
Rubic Z, Jelic M, Soprek S, et al. Molecular characterization of colistin resistance genes in a high-risk ST101/KPC-2 clone of Klebsiella pneumoniae in a University Hospital of Split, Croatia. Int Microbiol 2023; 26(3): 631-7.
[http://dx.doi.org/10.1007/s10123-023-00327-3] [PMID: 36683114]
[7]
Dahal U, Paul K, Gupta S. The multifaceted genus Acinetobacter: From infection to bioremediation. J Appl Microbiol 2023; 134(8): lxad145.
[http://dx.doi.org/10.1093/jambio/lxad145] [PMID: 37442632]
[8]
Miller WR, Arias CA. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol 2024; 22(10): 598-616.
[http://dx.doi.org/10.1038/s41579-024-01054-w] [PMID: 38831030]
[9]
Hsu AJ, Tamma PD. Treatment of multidrug-resistant gram-negative infections in children. Clin Infect Dis 2014; 58(10): 1439-48.
[http://dx.doi.org/10.1093/cid/ciu069] [PMID: 24501388]
[10]
Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: A clinical update. Clin Microbiol Rev 2005; 18(4): 657-86.
[http://dx.doi.org/10.1128/CMR.18.4.657-686.2005] [PMID: 16223952]
[11]
Gou J, Liu N, Guo L, et al. Carbapenem-resistant enterobacter hormaechei ST1103 with IMP-26 carbapenemase and ESBL gene blaSHV-178. Infect Drug Resist 2020; 13: 597-605.
[http://dx.doi.org/10.2147/IDR.S232514] [PMID: 32110070]
[12]
Botelho J, Cazares A, Schulenburg H. The ESKAPE mobilome contributes to the spread of antimicrobial resistance and CRISPR-mediated conflict between mobile genetic elements. Nucleic Acids Res 2023; 51(1): 236-52.
[http://dx.doi.org/10.1093/nar/gkac1220] [PMID: 36610752]
[13]
Pandey D, Singhal N, Kumar M. Investigating the OXA variants of ESKAPE pathogens. Antibiotics (Basel) 2021; 10(12): 1539.
[http://dx.doi.org/10.3390/antibiotics10121539] [PMID: 34943751]
[14]
Botzman M, Margalit H. Variation in global codon usage bias among prokaryotic organisms is associated with their lifestyles. Genome Biol 2011; 12(10): R109.
[http://dx.doi.org/10.1186/gb-2011-12-10-r109] [PMID: 22032172]
[15]
Hart A, Cortés MP, Latorre M, Martinez S. Codon usage bias reveals genomic adaptations to environmental conditions in an acidophilic consortium. PLoS One 2018; 13(5): e0195869.
[http://dx.doi.org/10.1371/journal.pone.0195869] [PMID: 29742107]
[16]
Brandis G, Hughes D. The selective advantage of synonymous codon usage bias in salmonella. PLoS Genet 2016; 12(3): e1005926.
[http://dx.doi.org/10.1371/journal.pgen.1005926] [PMID: 26963725]
[17]
Dehlinger B, Jurss J, Lychuk K, Putonti C. The dynamic codon Biaser: Calculating prokaryotic codon usage biases. Microb Genom 2021; 7(10): 000663.
[http://dx.doi.org/10.1099/mgen.0.000663] [PMID: 34699346]
[18]
Das S, Bombaywala S, Srivastava S, Kapley A, Dhodapkar R, Dafale NA. Genome plasticity as a paradigm of antibiotic resistance spread in ESKAPE pathogens. Environ Sci Pollut Res Int 2022; 29(27): 40507-19.
[http://dx.doi.org/10.1007/s11356-022-19840-5] [PMID: 35349073]
[19]
Priyamvada P, Debroy R, Anbarasu A, Ramaiah S. A comprehensive review on genomics, systems biology and structural biology approaches for combating antimicrobial resistance in ESKAPE pathogens: Computational tools and recent advancements. World J Microbiol Biotechnol 2022; 38(9): 153.
[http://dx.doi.org/10.1007/s11274-022-03343-z] [PMID: 35788443]
[20]
Saha U, Gondi R, Patil A, Saroj SD. CRISPR in modulating antibiotic resistance of ESKAPE pathogens. Mol Biotechnol 2023; 65(1): 1-16.
[http://dx.doi.org/10.1007/s12033-022-00543-8] [PMID: 35939207]
[21]
Callens M, Scornavacca C, Bedhomme S. Evolutionary responses to codon usage of horizontally transferred genes in Pseudomonas aeruginosa: Gene retention, amelioration and compensatory evolution. Microb Genom 2021; 7(6): 000587.
[http://dx.doi.org/10.1099/mgen.0.000587] [PMID: 34165421]
[22]
West SEH, Iglewski BH. Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res 1988; 16(19): 9323-35.
[http://dx.doi.org/10.1093/nar/16.19.9323] [PMID: 2845370]
[23]
Quax TEF, Claassens NJ, Söll D, van der Oost J. Codon bias as a means to fine-tune gene expression. Mol Cell 2015; 59(2): 149-61.
[http://dx.doi.org/10.1016/j.molcel.2015.05.035] [PMID: 26186290]
[24]
Sharp PM, Li WH. An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 1986; 24(1-2): 28-38.
[http://dx.doi.org/10.1007/BF02099948] [PMID: 3104616]
[25]
Bentele K, Saffert P, Rauscher R, Ignatova Z, Blüthgen N. Efficient translation initiation dictates codon usage at gene start. Mol Syst Biol 2013; 9(1): 675.
[http://dx.doi.org/10.1038/msb.2013.32] [PMID: 23774758]
[26]
Liu H, Lu Y, Lan B, Xu J. Codon usage by chloroplast gene is bias in Hemiptelea davidii. J Genet 2020; 99(1): 8.
[http://dx.doi.org/10.1007/s12041-019-1167-1] [PMID: 32089527]
[27]
Sharp PM, Li WH. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 1987; 15(3): 1281-95.
[http://dx.doi.org/10.1093/nar/15.3.1281] [PMID: 3547335]
[28]
dos Reis M, Wernisch L, Savva R. Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 2003; 31(23): 6976-85.
[http://dx.doi.org/10.1093/nar/gkg897] [PMID: 14627830]
[29]
Wright F. The ‘effective number of codons’ used in a gene. Gene 1990; 87(1): 23-9.
[http://dx.doi.org/10.1016/0378-1119(90)90491-9] [PMID: 2110097]
[30]
Chakraborty S, Mazumder TH, Uddin A. Compositional dynamics and codon usage pattern of BRCA1 gene across nine mammalian species. Genomics 2019; 111(2): 167-76.
[http://dx.doi.org/10.1016/j.ygeno.2018.01.013] [PMID: 29395657]
[31]
Jia X, Liu S, Zheng H, et al. Non-uniqueness of factors constraint on the codon usage in Bombyx mori. BMC Genomics 2015; 16(1): 356.
[http://dx.doi.org/10.1186/s12864-015-1596-z] [PMID: 25943559]
[32]
Shen Z, Gan Z, Zhang F, Yi X, Zhang J, Wan X. Analysis of codon usage patterns in citrus based on coding sequence data. BMC Genomics 2020; 21(S5): 234.
[http://dx.doi.org/10.1186/s12864-020-6641-x] [PMID: 33327935]
[33]
Sophiarani Y, Chakraborty S. Comparison of compositional constraints: Nuclear genome vs plasmid genome of Pseudomonas syringae pv. tomato DC3000. J Biosci 2022; 47(4): 57.
[http://dx.doi.org/10.1007/s12038-022-00296-1] [PMID: 36222129]
[34]
Gouy M, Gautier C. Codon usage in bacteria: Correlation with gene expressivity. Nucleic Acids Res 1982; 10(22): 7055-74.
[http://dx.doi.org/10.1093/nar/10.22.7055] [PMID: 6760125]
[35]
Gatherer D, McEwan NR. Small regions of preferential codon usage and their effect on overall codon bias ‐ The case of the plp gene. IUBMB Life 1997; 43(1): 107-14.
[http://dx.doi.org/10.1080/15216549700203871] [PMID: 9315288]
[36]
Sharma A, Gupta S, Paul K. Codon usage behavior distinguishes pathogenic Clostridium species from the non-pathogenic species. Gene 2023; 873: 147394.
[http://dx.doi.org/10.1016/j.gene.2023.147394] [PMID: 37137382]
[37]
Xia X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol Biol Evol 2018; 35(6): 1550-2.
[http://dx.doi.org/10.1093/molbev/msy073] [PMID: 29669107]
[38]
Kariin S, Burge C. Dinucleotide relative abundance extremes: A genomic signature. Trends Genet 1995; 11(7): 283-90.
[http://dx.doi.org/10.1016/S0168-9525(00)89076-9] [PMID: 7482779]
[39]
Kunec D, Osterrieder N. Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep 2016; 14(1): 55-67.
[http://dx.doi.org/10.1016/j.celrep.2015.12.011] [PMID: 26725119]
[40]
Behura SK, Severson DW. Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS One 2012; 7(8): e43111.
[http://dx.doi.org/10.1371/journal.pone.0043111] [PMID: 22912801]
[41]
Arora P, Mukhopadhyay CS, Kaur S. Comparative genome wise analysis of codon usage of Staphylococcus genus. Curr Genet 2024; 70(1): 10.
[http://dx.doi.org/10.1007/s00294-024-01297-3] [PMID: 39083100]
[42]
Patil AB, Dalvi VS, Mishra AA, Krishna B, Azeez A. Analysis of synonymous codon usage bias and phylogeny of coat protein gene in banana bract mosaic virus isolates. Virusdisease 2017; 28(2): 156-63.
[http://dx.doi.org/10.1007/s13337-017-0380-x] [PMID: 28770241]
[43]
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982; 157(1): 105-32.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[44]
Chen Y, Chen YF. Analysis of synonymous codon usage patterns in duck hepatitis A virus: A comparison on the roles of mutual pressure and natural selection. Virusdisease 2014; 25(3): 285-93.
[http://dx.doi.org/10.1007/s13337-014-0191-2] [PMID: 25674595]
[45]
Supek F, Škunca N, Repar J, Vlahoviček K, Šmuc T. Translational selection is ubiquitous in prokaryotes. PLoS Genet 2010; 6(6): e1001004.
[http://dx.doi.org/10.1371/journal.pgen.1001004] [PMID: 20585573]
[46]
Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH. Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA 2004; 101(10): 3480-5.
[http://dx.doi.org/10.1073/pnas.0307827100] [PMID: 14990797]
[47]
Hershberg R, Petrov DA. General rules for optimal codon choice. PLoS Genet 2009; 5(7): e1000556.
[http://dx.doi.org/10.1371/journal.pgen.1000556] [PMID: 19593368]
[48]
Dauga C. Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: A model molecule for molecular systematic studies. Int J Syst Evol Microbiol 2002; 52(2): 531-47.
[http://dx.doi.org/10.1099/00207713-52-2-531] [PMID: 11931166]
[49]
Bortolaia V, Kaas RS, Ruppe E, et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75(12): 3491-500.
[http://dx.doi.org/10.1093/jac/dkaa345] [PMID: 32780112]
[50]
Kumar S, Nei M, Dudley J, Tamura K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008; 9(4): 299-306.
[http://dx.doi.org/10.1093/bib/bbn017] [PMID: 18417537]
[51]
Gupta S, Paul K, Roy A. Codon usage signatures in the genus Cryptococcus: A complex interplay of gene expression, translational selection and compositional bias. Genomics 2021; 113(1): 821-30.
[http://dx.doi.org/10.1016/j.ygeno.2020.10.013] [PMID: 33096254]
[52]
Tats A, Tenson T, Remm M. Preferred and avoided codon pairs in three domains of life. BMC Genomics 2008; 9(1): 463.
[http://dx.doi.org/10.1186/1471-2164-9-463] [PMID: 18842120]
[53]
Tamura K, Stecher G, Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol Biol Evol 2021; 38(7): 3022-7.
[http://dx.doi.org/10.1093/molbev/msab120] [PMID: 33892491]
[54]
Zhang Y, Shen Z, Meng X, et al. Codon usage patterns across seven Rosales species. BMC Plant Biol 2022; 22(1): 65.
[http://dx.doi.org/10.1186/s12870-022-03450-x] [PMID: 35123393]
[55]
Díaz-Pérez AL, Díaz-Pérez C, Campos-García J. Bacterial l-leucine catabolism as a source of secondary metabolites. Rev Environ Sci Biotechnol 2016; 15(1): 1-29.
[http://dx.doi.org/10.1007/s11157-015-9385-3]
[56]
Yáñez MA, Catalán V, Apráiz D, Figueras MJ, Martínez-Murcia AJ. Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 2003; 53(3): 875-83.
[http://dx.doi.org/10.1099/ijs.0.02443-0] [PMID: 12807216]
[57]
Deb B, Uddin A, Chakraborty S. Analysis of codon usage of Horseshoe Bat Hepatitis B virus and its host. Virology 2021; 561: 69-79.
[http://dx.doi.org/10.1016/j.virol.2021.05.008] [PMID: 34171764]
[58]
Ren X, Palmer LD. Acinetobacter metabolism in infection and antimicrobial resistance. Infect Immun 2023; 91(6): e00433-22.
[http://dx.doi.org/10.1128/iai.00433-22] [PMID: 37191522]
[59]
Miller JB, McKinnon LM, Whiting MF, Kauwe JSK, Ridge PG. Codon pairs are phylogenetically conserved: A comprehensive analysis of codon pairing conservation across the tree of life. PLoS One 2020; 15(5): e0232260.
[http://dx.doi.org/10.1371/journal.pone.0232260] [PMID: 32401752]
[60]
Moon DC, Choi CH, Lee SM, et al. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene. PLoS One 2012; 7(6): e38974.
[http://dx.doi.org/10.1371/journal.pone.0038974] [PMID: 22685614]
[61]
Bobetsis YA, Barros SP, Lin DM, et al. Bacterial infection promotes DNA hypermethylation. J Dent Res 2007; 86(2): 169-74.
[http://dx.doi.org/10.1177/154405910708600212] [PMID: 17251518]
[62]
Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8): 597-610.
[http://dx.doi.org/10.1038/nrg1655] [PMID: 16136652]
[63]
Du MZ, Zhang C, Wang H, Liu S, Wei W, Guo FB. The GC content as a main factor shaping the amino acid usage during bacterial evolution process. Front Microbiol 2018; 9: 2948.
[http://dx.doi.org/10.3389/fmicb.2018.02948] [PMID: 30581420]
[64]
Khrustalev VV, Arjomandzadegan M, Barkovsky EV, Titov LP. Low rates of synonymous mutations in sequences of Mycobacterium tuberculosis GyrA and KatG genes. Tuberculosis (Edinb) 2012; 92(4): 333-44.
[http://dx.doi.org/10.1016/j.tube.2012.03.004] [PMID: 22521568]
[65]
Trivedi RR, Crooks JA, Auer GK, et al. Mechanical genomic studies reveal the role of d-alanine metabolism in Pseudomonas aeruginosa cell stiffness. MBio 2018; 9(5): e01340-18.
[http://dx.doi.org/10.1128/mBio.01340-18] [PMID: 30206169]
[66]
Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci USA 2002; 99(6): 3695-700.
[http://dx.doi.org/10.1073/pnas.062526999] [PMID: 11904428]
[67]
Takumi K, Nonaka G. Bacterial cysteine-inducible cysteine resistance systems. J Bacteriol 2016; 198(9): 1384-92.
[http://dx.doi.org/10.1128/JB.01039-15] [PMID: 26883827]
[68]
Misawa K, Kikuno RF. Relationship between amino acid composition and gene expression in the mouse genome. BMC Res Notes 2011; 4(1): 20.
[http://dx.doi.org/10.1186/1756-0500-4-20] [PMID: 21272306]
[69]
Newman ZR, Young JM, Ingolia NT, Barton GM. Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci USA 2016; 113(10): E1362-71.
[http://dx.doi.org/10.1073/pnas.1518976113] [PMID: 26903634]
[70]
Brooks LE, Ul-Hasan S, Chan BK, Sistrom MJ. Quantifying the evolutionary conservation of genes encoding multidrug efflux pumps in the ESKAPE pathogens to identify antimicrobial drug targets. mSystems 2018; 3(3): e00024-18.
[http://dx.doi.org/10.1128/mSystems.00024-18] [PMID: 29719870]
[71]
Bouloc P, Vinella D, D’Ari R. Leucine and serine induce mecillinam resistance in Escherichia coli. Mol Gen Genet 1992; 235(2-3): 242-6.
[http://dx.doi.org/10.1007/BF00279366] [PMID: 1465098]
[72]
Idrees M, Mohammad AR, Karodia N, Rahman A. Multimodal role of amino acids in microbial control and drug development. Antibiotics (Basel) 2020; 9(6): 330.
[http://dx.doi.org/10.3390/antibiotics9060330] [PMID: 32560458]
[73]
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals (Basel) 2023; 16(11): 1615.
[http://dx.doi.org/10.3390/ph16111615] [PMID: 38004480]
[74]
Mauro VP, Chappell SA. A critical analysis of codon optimization in human therapeutics. Trends Mol Med 2014; 20(11): 604-13.
[http://dx.doi.org/10.1016/j.molmed.2014.09.003] [PMID: 25263172]
[75]
Haas J, Park EC, Seed B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 1996; 6(3): 315-24.
[http://dx.doi.org/10.1016/S0960-9822(02)00482-7] [PMID: 8805248]
[76]
Liu C, Chang Y, Xu Y, et al. Distribution of virulence-associated genes and antimicrobial susceptibility in clinical Acinetobacter baumannii isolates. Oncotarget 2018; 9(31): 21663-73.
[http://dx.doi.org/10.18632/oncotarget.24651] [PMID: 29774093]
[77]
Parvathy ST, Udayasuriyan V, Bhadana V. Codon usage bias. Mol Biol Rep 2022; 49(1): 539-65.
[http://dx.doi.org/10.1007/s11033-021-06749-4] [PMID: 34822069]