Current Chemical Biology

Author(s): Khaoula Diass, Imane Oualdi, Redouane Benabbas, Hanane Zaki*, Mohamed Ouabane, Belkheir Hammouti, Rachid Touzani and Mohammed Bouachrine

DOI: 10.2174/0122127968296919240926095348

DownloadDownload PDF Flyer Cite As
Use of Essential Oils for the Treatment of Fusarium oxysporum f. sp. Albedinis: Chemical Profile, In Vitro Antifungal Activity, and In Silico Investigation by Molecular Docking Study

Page: [193 - 214] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Background: Fusarium oxysporum f. sp. Albedinis a telluric fungal pathogen commonly found in soils, is the causal agent of fungal vascular wilt of date palms in Moroccan oases. The infection by the pathogen leads to the death of the date palm after six months to two years, which causes enormous economic and environmental damage.

Objective: The framework of this paper is to determine the chemical composition of six essential oils using GC-MS and their antifungal activity on the mycelial growth of Fusarium oxysporum f. sp. Albedinis, as well as the molecular docking study to evaluate the inhibitory potential of fungal trypsin.

Methods: The essential oils were extracted from different parts of the plants (whole plant, flowers, and leaves) by steam distillation, and were identified using gas chromatography-mass spectrometry (GC/MS). The antifungal assay of the extracted essential oils and their main components was assessed using the direct contact method with the fungus at different concentrations; the obtained results were evaluated by calculating the minimum inhibitory concentration (MIC) of each essential oil, followed by an in-silico study of the major identified compounds for better understanding of the inhibitory potential against fungal trypsin activity.

Results: The identification of the different bioactive compounds using GC-MS revealed that Rosmarinus officinalis Eo was characterized by eucalyptol 46.26%, camphor 10.03%, and β-pinene 6.63%; while Lavandula officinalis Eo was endowed by the presence of linalool 14.93%, camphor 14.11%, and linalyl acetate 11.17%. Furthermore, Artemisia herba alba was rich in 1,3,5-cycloheptatriene, 1,6- dimethyl- 36.44%, camphor 22.50%, and α-thujone 7.21%. While Eucalyptus globulus was rich in eucalyptol 74.32%, β-Cymene 11.41%, α-Pinene 6.96%. Finally, Mentha pepirita and Mentha pulegium were both characterized by the presence of D-limonene 20.15%, trans-carveol 19.59%, D-Carvone 14.96%, and pulegone (42.40%), 3-cyclopentene-1-ethanol, 2,2,4-trimethyl- (11.28%), 1,3,4- trimethyl-3-cyclohexenyl-1-carboxaldehyde (9.68%), respectively. Regarding the in vitro, all Eos from different plants exhibited pronounced antifungal effect. The MIC values recorded for E. globulus were MIC= 1.75 mg/L, M. pulegium and L. officinalis (MIC= 1.80 mg/L), and M. piperita (MIC= 1.90 mg/L). The strongest inhibition potential was associated with R. officinalis EO (MIC= 1.15 mg/L) and A. herba alba EO (MIC= 1.60 mg/L). As for the computational study performed camphor one of the bioactive compounds showed its ability to act against trypsin which could be considered a potential candidate against Fusarium oxysporum f. sp. Albedinis.

Conclusion: The studied essential oils from different medicinal and aromatic plants showed significant antifungal activity, probably due to the Camphor which could have an inhibitory effect on the Fusarium oxysporum f. sp. Albedinis trypsin. Further research should be conducted in vivo for a better understanding of the mechanism of action of these essential oils.

Keywords: Essential oil, GC–MS, Fusarium oxysporum f. sp. Albedinis, antifungal activity, minimal inhibitory concentration, molecular docking.

Graphical Abstract

[1]
Asma, N.; Salih, C.; Amar, O.; Meriem, B.; Wided, A. Chemical Composition of Myrtus Communis Essential Oil and its Antifungal Activity on Fusarium Oxysporum f. sp. Albedinis and Fusarium culmorum. Plant Arch., 2022, 22(2), 310-313.
[http://dx.doi.org/10.51470/PLANTARCHIVES.2022.v22.no2.053]
[2]
Meliani, H.; Makhloufi, A.; Cherif, A.; Mahjoubi, M.; Makhloufi, K. Biocontrol of toxinogenic Aspergillus flavus and Fusarium oxysporum f. sp. albedinis by two rare Saharan actinomycetes strains and LC-ESI/MS-MS profiling of their antimicrobial products. Saudi J. Biol. Sci., 2022, 29(6), 103288.
[http://dx.doi.org/10.1016/j.sjbs.2022.103288] [PMID: 35574281]
[3]
Benabbes, R.; Lahmass, I.; Souna, F.; El Youbi, M.; Saalaoui, E.; Hakkou, A. In Vitro Inhibitory Effect of the Extract Powder of Rosemary (Rosmarinus officinalis), Olender (Nerium Oleander), Grenadier (Punica Granatum) on the Growth of Fusarium Oxysporum f. sp Albidinis and in Vivo Test Antagonist Fungi on the Incidence and the control of Vascular wilt Disease of Date Palm in Palm Grove in Figuig South of Morocco. Adv. Environ. Biol., 2015, 9, 126-132.
[4]
Fatiha, A.; Larbi, B.; Ahmed, M.; Amar, Y.; Nassima, F.; Khadidja, M. The Causal Agent of the Bayoud and Gas Chromatography-Mass Spectrometry Analysis. Adv. Food Sci., 2010, 45, 21-27.
[5]
Khoulassa, S.; Elmoualij, B.; Benlyas, M.; Meziani, R.; Bouhlali, E.D.T.; Houria, B.; Alaoui, Y.E.H.; Haridas, S.; Guo, J.; Lipzen, A.; Hurtado, C.V.; Tejomurthula, S.; Barry, K.; Grigoriev, I.V.; Coleman, J.J.; Ayhan, D.H.; Ma, L.J.; Essarioui, A. High-Quality Draft Nuclear and Mitochondrial Genome Sequence of Fusarium oxysporum f. sp. albedinis strain 9, the Causal Agent of Bayoud Disease on Date Palm. Plant Dis., 2022, 106(7), 1974-1976.
[http://dx.doi.org/10.1094/PDIS-01-22-0245-A] [PMID: 35536698]
[6]
Ettakifi, H.; Abbassi, K.; Maouni, S.; Erbiai, E.H.; Rahmouni, A.; Legssyer, M.; Saidi, R.; Lamrani, Z.; Esteves da Silva, J.C.G.; Pinto, E.; Maouni, A. Chemical Characterization and Antifungal Activity of Blue Tansy (Tanacetum annuum) Essential Oil and Crude Extracts against Fusarium oxysporum f. sp. albedinis, an Agent Causing Bayoud Disease of Date Palm. Antibiotics (Basel), 2023, 12(9), 1451.
[http://dx.doi.org/10.3390/antibiotics12091451] [PMID: 37760747]
[7]
Chibane, E.; Essarioui, A.; Ouknin, M.; Boumezzourh, A.; Bouyanzer, A.; Majidi, L. Antifungal activity of Asteriscus graveolens (Forssk.) Less essential oil against Fusarium oxysporum f. sp. Albedinis, the causal agent of “Bayoud” disease on date palm. J. Chem., 2020, 8, 456-465.
[8]
Rahmouni, A.; Saidi, R.; Khaddor, M.; Pinto, E.; Da Silva Joaquim Carlos Gomes, E.; Maouni, A. Chemical composition and antifungal activity of five essential oils and their major components against Fusarium oxysporum f. sp. albedinis of Moroccan palm tree. Euro-Mediterranean Journal for Environmental Integration, 2019, 4(1), 27.
[http://dx.doi.org/10.1007/s41207-019-0117-x]
[9]
Bouissil, S.; Guérin, C.; Roche, J.; Dubessay, P.; El Alaoui-Talibi, Z.; Pierre, G.; Michaud, P.; Mouzeyar, S.; Delattre, C.; El Modafar, C. Induction of Defense Gene Expression and the Resistance of Date Palm to Fusarium oxysporum f. sp. Albedinis in Response to Alginate Extracted from Bifurcaria bifurcata. Mar. Drugs, 2022, 20(2), 88.
[http://dx.doi.org/10.3390/md20020088] [PMID: 35200618]
[10]
Rafiqi, M.; Jelonek, L.; Diouf, A.M.; Mbaye, A.; Rep, M.; Diarra, A. Profile of the in silico secretome of the palm dieback pathogen, Fusarium oxysporum f. sp. albedinis, a fungus that puts natural oases at risk. PLoS One, 2022, 17(5), e0260830.
[http://dx.doi.org/10.1371/journal.pone.0260830] [PMID: 35617325]
[11]
Rabach, B.; Lbekri, L.; Dihazi, A.; Meziani, R.; Benaceur, I.; Jaiti, F. Antifungal activity of Punica granatum root extracts and their potential role to trigger date palm defense reaction against bayoud disease. J. Crop Prot., 2022, 2022, 471-483.
[12]
Houiti, E. Inhibition of Fusarium oxysporum f.sp. Albedinis by essential oils of flowers and stems of Rhanterium adpressum. Archives, 2016, 3, 141-150.
[13]
Oualdi, I.; Diass, K.; Azizi, S-E.; Dalli, M.; Touzani, R.; Gseyra, N. Rosmarinus officinalis essential oils from Morocco: New advances on extraction, GC/MS analysis, and antioxidant activity. Nat. Prod. Res., 2022, Jun; 37(12), 2003-2008.
[http://dx.doi.org/10.1080/14786419.2022.2111561] [PMID: 35959692]
[14]
Zouirech, O.; Alajmi, R.; El jeddab, H.; Allali, A.; Bourhia, M.; El Moussaoui, A.; El Barnossi, A.; Ahmed, A.M.; Giesy, J.P.; Aboul-Soud, M.A.M.; Lyoussi, B.; Derwich, E. Chemical Composition and Evaluation of Antifungal and Insecticidal Activities of Essential Oils Extracted from Jambosa caryophyllus (Thunb.) Nied: Clove Buds. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-10.
[http://dx.doi.org/10.1155/2022/4675016] [PMID: 36310621]
[15]
Diass, K.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Hammouti, B. Biological and pharmaceutical properties of essential oils of Rosmarinus officinalis L. and Lavandula officinalis L. Mater. Today Proc., 2021, 45, 7768-7773.
[http://dx.doi.org/10.1016/j.matpr.2021.03.495]
[16]
Brahmi, F.; Mokhtari, O.; Legssyer, B.; Hamdani, I.; Asehraou, A.; Hasnaoui, I.; Rokni, Y.; Diass, K.; Oualdi, I.; Tahani, A. Chemical and biological characterization of essential oils extracted from citrus fruits peels. Mater. Today Proc., 2021, 45, 7794-7799.
[http://dx.doi.org/10.1016/j.matpr.2021.03.587]
[17]
Yusuf, U.; Jmohi, U.; Zaura, A.; Sanna, M.; Ahmad, M. An overview of the antibacterial properties of Mentha pulegium. Preprint, 2022.
[http://dx.doi.org/10.13140/RG.2.2.15636.68489]
[18]
Dalli, M.; Azizi, S.; Benouda, H.; Azghar, A.; Tahri, M.; Bouammali, B.; Maleb, A.; Gseyra, N. Molecular Composition and Antibacterial Effect of Five Essential Oils Extracted from Nigella sativa L. Seeds against Multidrug-Resistant Bacteria: A Comparative Study. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/6643765] [PMID: 33790979]
[19]
Locke, T.; Colhoun, J. Contributions to a Method of Testing Oil Palm Seedlings for Resistance to Fusarium oxysporum Schl. f. sp. elaeidts Toovey 1). J. Phytopathol., 1974, 79(1), 77-92.
[http://dx.doi.org/10.1111/j.1439-0434.1974.tb02691.x]
[20]
Neri, F.; Mari, M.; Brigati, S. Control of Penicillium expansum by plant volatile compounds. Plant Pathol., 2006, 55(1), 100-105.
[http://dx.doi.org/10.1111/j.1365-3059.2005.01312.x]
[21]
Bhattacharya, R.; Sourirajan, A.; Sharma, P.; Kumar, A.; Upadhyay, N.K.; Shukla, R.K.; Dev, K.; Krishnakumar, B.; Singh, M.; Bose, D. Bioenhancer potential of Aegle marmelos (L.) Corrêa essential oil with antifungal drugs and its mode of action against Candida albicans. Biocatal. Agric. Biotechnol., 2023, 48, 102647.
[http://dx.doi.org/10.1016/j.bcab.2023.102647]
[22]
Saxena, S.; Uniyal, V.; Bhatt, R.P. Inhibitory effect of essential oils against Trichosporon ovoides causing Piedra Hair Infection. Braz. J. Microbiol., 2012, 43(4), 1347-1354.
[http://dx.doi.org/10.1590/S1517-83822012000400016] [PMID: 24031963]
[23]
Bhattacharya, R.; Sharma, P.; Bose, D.; Singh, M. Synergistic potential of α-Phellandrene combined with conventional antifungal agents and its mechanism against antibiotic resistant Candida albicans. CABI Agriculture and Bioscience, 2024, 5(1), 17.
[http://dx.doi.org/10.1186/s43170-024-00218-1]
[24]
Hmouni, A.; Hajlaoui, M.R.; Mlaiki, A. Resistance de Bofrytis cinerea aux benzimidazoles et aux dicarboximides dans les cultures abritees de tomate en Tunisie. Bulletin OEPP/EPPO, 1996, 26, 697-705.
[25]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[26]
Prakash, V.; Gabrani, R. An Insight into Emerging Phytocompounds for Glioblastoma Multiforme Therapy. Cardiovasc. Hematol. Agents Med. Chem., 2023, 22, 71910.
[http://dx.doi.org/10.2174/0118715257262003231031171910] [PMID: 37957904]
[27]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[28]
Rypniewski, W.R.; Østergaard, P.R.; Nørregaard-Madsen, M.; Dauter, M.; Wilson, K.S. Fusarium oxysporum trypsin at atomic resolution at 100 and 283 K: A study of ligand binding. Acta Crystallogr. D Biol. Crystallogr., 2001, 57(1), 8-19.
[http://dx.doi.org/10.1107/S0907444900014116] [PMID: 11134922]
[29]
Becke, A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys., 1993, 98(2), 1372-1377.
[http://dx.doi.org/10.1063/1.464304]
[30]
Zaki, H.; Belhassan, A.; Aouidate, A.; Lakhlifi, T.; Benlyas, M.; Bouachrine, M. Antibacterial study of 3-(2-amino-6-phenylpyrimidin-4-yl)-N-cyclopropyl-1-methyl-1H-indole-2-carboxamide derivatives: CoMFA, CoMSIA analyses, molecular docking and ADMET properties prediction. J. Mol. Struct., 2019, 1177, 275-285.
[http://dx.doi.org/10.1016/j.molstruc.2018.09.073]
[31]
Elamrani, A.; Zrira, S.; Benjilali, B.; Berrada, M. A study of moroccan rosemary oils. J. Essent. Oil Res., 2011, 2000, 9572.
[http://dx.doi.org/10.1080/10412905.2000.9699572]
[32]
Derwich, E.; Benziane, Z.; Chabir, R.; Taouil, R. In vitro antibacterial activity and GC/MS analysis of the essential oil extract of leaves of Rosmarinus officinalis grown in Morocco. Int. J. Pharm. Pharm. Sci., 2011, 3, 89-95.
[33]
Zaouali, Y.; Bouzaine, T.; Boussaid, M. Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem. Toxicol., 2010, 48(11), 3144-3152.
[http://dx.doi.org/10.1016/j.fct.2010.08.010] [PMID: 20728499]
[34]
Wang, W.; Li, N.; Luo, M.; Zu, Y.; Efferth, T. Antibacterial activity and anticancer activity of Rosmarinus officinalis L. essential oil compared to that of its main components. Molecules, 2012, 17(3), 2704-13.
[http://dx.doi.org/10.3390/molecules17032704]
[35]
Diass, K.; Oualdi, I.; Dalli, M.; Azizi, S.; Mohamed, M.; Gseyra, N.; Touzani, R.; Hammouti, B. Artemisia herba alba Essential Oil: GC/MS analysis, antioxidant activities with molecular docking on S protein of SARS-CoV-2. Indonesian J. Sci. Technol., 2022, 8(1), 1-18.
[http://dx.doi.org/10.17509/ijost.v8i1.50737]
[36]
Ed-Dra, A.; Filali, F.R.; Lo Presti, V.; Zekkori, B.; Nalbone, L.; Elsharkawy, E.R.; Bentayeb, A.; Giarratana, F. Effectiveness of essential oil from the Artemisia herba-alba aerial parts against multidrug-resistant bacteria isolated from food and hospitalized patients. Biodiversitas (Surak.), 2021, 22(7), 2995-3005.
[http://dx.doi.org/10.13057/biodiv/d220753]
[37]
Messaoudi Moussii, I.; Nayme, K.; Timinouni, M.; Jamaleddine, J.; Filali, H.; Hakkou, F. Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy, 2020, 10, 100057.
[http://dx.doi.org/10.1016/j.synres.2019.100057]
[38]
Ouguırtı, N.; Bahrı, F.; Bouyahyaouı, A.; Wanner, J. Chemical characterization and bioactivities assessment of Artemisia herba-alba Asso essential oil from South-western Algeria. Nat. Volatiles Essen. Oils, 2021, 8(2), 27-36.
[http://dx.doi.org/10.37929/nveo.844309]
[39]
Hudaib, M.M.; Aburjai, T.A. Composition of the essential oil from Artemisia herba-alba grown in jordan. J. Essent. Oil Res., 2006, 18(3), 301-304.
[http://dx.doi.org/10.1080/10412905.2006.9699096]
[40]
Amri, I.; De Martino, L.; Marandino, A.; Lamia, H.; Mohsen, H.; Scandolera, E.; De Feo, V.; Mancini, E. Chemical composition and biological activities of the essential oil from Artemisia herba-alba growing wild in Tunisia. Nat. Prod. Commun., 2013, 8(3), 1934578X1300800.
[http://dx.doi.org/10.1177/1934578X1300800333] [PMID: 23678823]
[41]
Diass, K.; Merzouki, M.; Elfazazi, K.; Azzouzi, H.; Challioui, A.; Azzaoui, K.; Hammouti, B.; Touzani, R.; Depeint, F.; Ayerdi Gotor, A.; Rhazi, L. Essential Oil of Lavandula officinalis: Chemical Composition and Antibacterial Activities. Plants, 2023, 12(7), 1571.
[http://dx.doi.org/10.3390/plants12071571] [PMID: 37050197]
[42]
Moussi Imane, M.; Houda, F.; Said Amal, A.H.; Kaotar, N.; Mohammed, T.; Imane, R.; Farid, H. Phytochemical Composition and Antibacterial Activity of Moroccan Lavandula angustifolia Mill. J. Essent. Oil-Bear. Plants, 2017, 20(4), 1074-1082.
[http://dx.doi.org/10.1080/0972060X.2017.1363000]
[43]
Alnamer, R.; Alaoui, K.; Houcine Bouidida, E.; Benjouad, A.; Cherrah, Y. Toxicity and Psychotropic Activity of Essential Oils of Rosmarinus officinalis and Lavandula officinalis from Morocco. J. Biol. Active Prod. Nat., 2011, 1(4), 262-272.
[http://dx.doi.org/10.1080/22311866.2011.10719093]
[44]
Talbaoui, A. Chemical composition and antibacterial activity of essential oils from six Moroccan plants. J. Med. Plants Res., 2012, 6(31), 078.
[http://dx.doi.org/10.5897/JMPR10.078]
[45]
Slimani, C.; Sqalli, H.; Rais, C.; Farah, A.; Lazraq, A.; Ghadraoui, L.E.L.; Belmalha, S.; Echchgadda, G. Chemical composition and evaluation of biological effects of essential oil and aqueous extract of Lavandula angustifolia L. Not. Sci. Biol., 2022, 14(1), 11172.
[http://dx.doi.org/10.15835/nsb14111172]
[46]
Kirimer, N.; Mokhtarzadeh, S.; Demirci, B.; Goger, F.; Khawar, K.M.; Demirci, F. Phytochemical profiling of volatile components of Lavandula angustifolia Miller propagated under in vitro conditions. Ind. Crops Prod., 2017, 96, 120-125.
[http://dx.doi.org/10.1016/j.indcrop.2016.11.061]
[47]
Zenão, S.; Aires, A.; Dias, C.; Saavedra, M.J.; Fernandes, C. Antibacterial potential of Urtica dioica and Lavandula angustifolia extracts against methicillin resistant Staphylococcus aureus isolated from diabetic foot ulcers. J. Herb. Med., 2017, 10, 53-58.
[http://dx.doi.org/10.1016/j.hermed.2017.05.003]
[48]
Śmigielski, K.B.; Prusinowska, R.; Krosowiak, K.; Sikora, M. Comparison of qualitative and quantitative chemical composition of hydrolate and essential oils of lavender ( Lavandula angustifolia ). J. Essent. Oil Res., 2013, 25(4), 291-299.
[http://dx.doi.org/10.1080/10412905.2013.775080]
[49]
Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L). A review. Herba Pol., 2014, 60(2), 56-66.
[http://dx.doi.org/10.2478/hepo-2014-0010]
[50]
Hassiotis, C.N.; Ntana, F.; Lazari, D.M.; Poulios, S.; Vlachonasios, K.E. Environmental and developmental factors affect essential oil production and quality of Lavandula angustifolia during flowering period. Ind. Crops Prod., 2014, 62, 359-366.
[http://dx.doi.org/10.1016/j.indcrop.2014.08.048]
[51]
Despinasse, Y.; Moja, S.; Soler, C.; Jullien, F.; Pasquier, B.; Bessière, J.M.; Baudino, S.; Nicolè, F.; Nicolè, F. Structure of the chemical and genetic diversity of the true lavender over its natural range. Plants, 2020, 9(12), 1640.
[http://dx.doi.org/10.3390/plants9121640] [PMID: 33255497]
[52]
Crișan, I.; Ona, A.; Vârban, D.; Muntean, L.; Vârban, R.; Stoie, A.; Mihăiescu, T.; Morea, A. Current Trends for Lavender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. Plants, 2023, 12(2), 357.
[http://dx.doi.org/10.3390/plants12020357] [PMID: 36679071]
[53]
Ait-Ouazzou, A.; Lorán, S.; Bakkali, M.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis, Eucalyptus globulus and Rosmarinus officinalis from Morocco. J. Sci. Food Agric., 2011, 91(14), 2643-2651.
[http://dx.doi.org/10.1002/jsfa.4505] [PMID: 21769875]
[54]
Harkat-Madouri, L.; Asma, B.; Madani, K.; Bey-Ould Si Said, Z.; Rigou, P.; Grenier, D.; Allalou, H.; Remini, H.; Adjaoud, A.; Boulekbache-Makhlouf, L. Chemical composition, antibacterial and antioxidant activities of essential oil of Eucalyptus globulus from Algeria. Ind. Crops Prod., 2015, 78, 148-153.
[http://dx.doi.org/10.1016/j.indcrop.2015.10.015]
[55]
Usman, L.A.; Oguntoye, O.S.; Ismaeel, R.O. Phytochemical profile, antioxidant and antidiabetic potential of essential oil from fresh and dried leaves of Eucalyptus globulus. J. Chil. Chem. Soc., 2022, 67(1), 5453-5461.
[http://dx.doi.org/10.4067/S0717-97072022000105453]
[56]
Damjanović-Vratnica, B.; Đakov, T.; Šuković, D.; Damjanović, J. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J. Food Sci., 2011, 29(3), 277-284.
[http://dx.doi.org/10.17221/114/2009-CJFS]
[57]
Luís, Â.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorum sensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod., 2016, 79, 274-282.
[http://dx.doi.org/10.1016/j.indcrop.2015.10.055]
[58]
Fadil, M.; Farah, A.; Ihssane, B.; Lebrazi, S.; Chraibi, M.; Haloui, T. The screening of parameters influencing the hydrodistillation of Moroccan Mentha piperita L. leaves by experimental design methodology. J. Mater. Environ. Sci., 2016, 7, 1445-1453.
[59]
Chraibi, M.; Elamin, O.; Lebrazi, S.; Farah, A.; Iraqui, M. Antimycobacterial, Antifungal and Radical Scavenging Effects of Essential Oil from Moroccan Mentha piperita. Pharma Chem., 2017, 9(21), 6-9.
[60]
Hamad Al-Mijalli, S.; ELsharkawy, E.R.; Abdallah, E.M.; Hamed, M.; El Omari, N.; Mahmud, S.; Alshahrani, M.M.; Mrabti, H.N.; Bouyahya, A. Determination of Volatile Compounds of Mentha piperita and Lavandula multifida and Investigation of Their Antibacterial, Antioxidant, and Antidiabetic Properties. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/9306251] [PMID: 35747375]
[61]
İşcan, G.; Kırımer, N.; Kürkcüoǧlu, M.; Demırcı, F. Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural Food and Chemistry. J. Agric. Food Chem., 2002, 50(14), 3943-3946.
[http://dx.doi.org/10.1021/jf011476k]
[62]
Giménez-Santamarina, S.; Llorens-Molina, J.A.; Sempere-Ferre, F.; Santamarina, C.; Roselló, J.; Santamarina, M.P. Chemical composition of essential oils of three Mentha species and their antifungal activity against selected phytopathogenic and post-harvest fungi. All Life, 2022, 15(1), 64-73.
[http://dx.doi.org/10.1080/26895293.2021.2022007]
[63]
Jayaram, C.S.; Chauhan, N.; Dolma, S.K.; Reddy, S.G.E. Chemical Composition and Insecticidal Activities of Essential Oils against the Pulse Beetle. Molecules, 2022, 27(2), 568.
[http://dx.doi.org/10.3390/molecules27020568] [PMID: 35056883]
[64]
Gourich, A.A.; Bencheikh, N.; Bouhrim, M.; Regragui, M.; Rhafouri, R.; Drioiche, A.; Asbabou, A.; Remok, F.; Mouradi, A.; Addi, M.; Hano, C.; Zair, T. Comparative Analysis of the Chemical Composition and Antimicrobial Activity of Four Moroccan North Middle Atlas Medicinal Plants’ Essential Oils: Rosmarinus officinalis L., Mentha pulegium L., Salvia officinalis L., and Thymus zygis subsp. gracilis (Boiss.) R. Morales. Chemistry, 2022, 4(4), 1775-1788.
[http://dx.doi.org/10.3390/chemistry4040115]
[65]
Ez-Zriouli, R.; El Yacoubi, H.; Imtara, H.; El-Hessni, A.; Mesfioui, A.; Tarayrah, M.; Mothana, R.A.; Noman, O.M.; Mouhsine, F.; Rochdi, A. Chemical composition and antimicrobial activity of essential oils from Mentha pulegium and Rosmarinus officinalis against multidrug-resistant microbes and their acute toxicity study. Open Chem., 2022, 20(1), 694-702.
[http://dx.doi.org/10.1515/chem-2022-0185]
[66]
Bekka-Hadji, F.; Bombarda, I.; Djoudi, F.; Bakour, S.; Touati, A. Chemical Composition and Synergistic Potential of Mentha pulegium L. and Artemisia herba alba Asso. Essential Oils and Antibiotic against Multi-Drug Resistant Bacteria. Molecules, 2022, 27(3), 1095.
[http://dx.doi.org/10.3390/molecules27031095] [PMID: 35164360]
[67]
Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol., 2008, 119(2), 325-327.
[http://dx.doi.org/10.1016/j.jep.2008.07.023] [PMID: 18703127]
[68]
Pouryousef, N.; Ahmady, M.; Shariatifar, N.; Jafarian, S.; Shahidi, S.A. The effects of essential oil Mentha pulegium L. and nisin (free and nanoliposome forms) on inoculated bacterial in minced silver carp fish (Hypophthalmichthys molitrix). J. Food Meas. Charact., 2022, 16(5), 3935-3945.
[http://dx.doi.org/10.1007/s11694-022-01514-y]
[69]
Lahlou, M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res., 2004, 18(6), 435-448.
[http://dx.doi.org/10.1002/ptr.1465] [PMID: 15287066]
[70]
Barkaoui, H.; Chafik, Z.; Benabbas, R.; Chetouani, M. Antifungal activity of the essential oils of Rosmarinus officinalis, Salvia officinalis, Lavandula dentata and Cymbopogon citratus against the mycelial growth of Fusarium oxysporum f. sp. Albedinis. Arabian J. Med. Aromat. Plants, 2022, 8(1), 108-133.
[71]
Boumaaza, B.; Gacemi, A.; Benada, M.; Boudalia, S.; Benzohra, I.E.; Belaidi, H.; Khaladi, O. Effectiveness of Essential Oils from Three Medicinal Plants Against Bayoud Disease (Fusarium oxysporum f. sp. albedinis) of Date Palm (Phoenix dactylifera L.). Magallat Diyalá Li-l-'ulum al-Zira’iyyat, 2022, 14(2), 24-32.
[http://dx.doi.org/10.52951/dasj.22142003]
[72]
Elhouiti, F.; Benabed, K.H.; Tahri, D.; Ouinten, M.; Yousfi, M. Antioxidant and antifungal activities of essential oils from Algerian spontaneous plants against five strains of Fusarium spp. Hell. Plant Prot. J., 2022, 15(1), 30-39.
[http://dx.doi.org/10.2478/hppj-2022-0004]
[73]
Abouamama, S.; Noureddine, K.; Anis, B.; Younes, E.G.; Sadika, H.; Bouchra, O. Pathogenicity and biological control of Bayoud disease by Trichoderma longibrachiatum and Artemisia herba-alba essential oil. J. Appl. Pharm. Sci., 2018, 8, 161-167.
[http://dx.doi.org/10.7324/JAPS.2018.8423]
[74]
da Silva Bomfim, N.; Nakassugi, L.P.; Faggion Pinheiro Oliveira, J.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Nerilo, S.B.; Mallmann, C.A.; Alves Abreu Filho, B.; Machinski, M., Jr Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem., 2015, 166, 330-336.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.019] [PMID: 25053064]
[75]
Abouamama, S.; Anis, B.; Ryme, T.; Sadika, H.; Younes, E.G.; Morad, C.; Rahma, M.; Elamin, B.C.M. In Vitro Study of Biocontrol Potential of Rhizospheric Microorganisms Against Fusarium oxysporum f.sp. Albedinis. Pak. J. Phytopathol., 2022, 34(1), 27-37.
[http://dx.doi.org/10.33866/phytopathol.034.01.0738]
[76]
Yang, V.W.; Clausen, C.A. Inhibitory effect of essential oils on decay fungi and mold growth on wood. American Wood Protect. Assoc., 2007, 103, 6-8.
[77]
Zyani, M.; Mortabit, D.; El Abed, S.; Remmal, A.; Koraichi, S.I. Antifungal activity of Five Plant Essential Oils against wood decay fungi isolated from an old house at the Medina of Fez. Int. Res. J. Microbiol., 2011, 2, 104-108.
[78]
Giordani, R.; Hadef, Y.; Kaloustian, J. Compositions and antifungal activities of essential oils of some Algerian aromatic plants. Fitoterapia, 2008, 79(3), 199-203.
[http://dx.doi.org/10.1016/j.fitote.2007.11.004] [PMID: 18164558]
[79]
Soumanou, M.M.; Adjou, E.S. Sweet Fennel (Ocimum gratissimum) Oils.Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, 2015, pp. 765-773.
[http://dx.doi.org/10.1016/B978-0-12-416641-7.00087-0]
[80]
Velluti, A.; Sanchis, V.; Ramos, A.J.; Egido, J.; Marín, S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int. J. Food Microbiol., 2003, 89(2-3), 145-154.
[http://dx.doi.org/10.1016/S0168-1605(03)00116-8] [PMID: 14623380]
[81]
Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 2002, 68(4), 1561-1568.
[http://dx.doi.org/10.1128/AEM.68.4.1561-1568.2002] [PMID: 11916669]
[82]
Sarwar Alam, M.; Kaur, G.; Jabbar, Z.; Javed, K.; Athar, M. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem. Toxicol., 2007, 45(6), 910-920.
[http://dx.doi.org/10.1016/j.fct.2006.11.013] [PMID: 17207565]
[83]
Rypniewski, W.R.; Dambmann, C.; Von Der Osten, C.; Dauter, M.; Wilson, K.S. Structure of inhibited trypsin from Fusarium oxysporum at 1.55 A. Acta Crystallogr D Biol Crystallogr., 1995, 51(Pt 1), 73-85.
[84]
Huo, H.; Gu, Y.; Cao, Y.; Liu, N.; Jia, P.; Kong, W. Antifungal activity of camphor against four phytopathogens of Fusarium n.d. Res.Sq., 2021.
[http://dx.doi.org/10.21203/rs.3.rs-274895/v1]