Current Chinese Science

Author(s): Wenyan Zhang*, Xiaoxia Lin, Hangmin Guan, Yihan Wang, Weidong Tao, Wenjie Tian and Lingyun Hao

DOI: 10.2174/0122102981337917241008212655

DownloadDownload PDF Flyer Cite As
Enhancing Photocatalytic Hydrogen Production Efficiency with Carbon Fibers: A Mini Review

Page: [249 - 259] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Photocatalytic hydrogen evolution represents a promising route for sustainable and clean energy production. Integrating carbon fiber with various photocatalysts has shown significant enhancements in photocatalytic efficiency. This enhancement is primarily due to carbon fibers’ high conductivity, large surface area, and exceptional mechanical stability, which collectively promote electron transfer, charge separation, light absorption, active site enrichment, and improve catalysts’ robustness and resistance to environmental variation. Despite its potential, the use of carbon fiber in this field has been less explored compared to other conductive supports. Aiming to provide insights for future studies, this paper reviews the current advancements in integrating carbon fibers within photocatalytic systems, exploring the underlying mechanisms and future perspectives to boost hydrogen evolution efficiency and sustainability further.

Keywords: Photocatalytic hydrogen evolution, carbon fiber, energy production, environmental variation, evolution efficiency, sustainability.

Graphical Abstract

[1]
Gupta, A.; Likozar, B.; Jana, R.; Chanu, W.C.; Singh, M.K. A review of hydrogen production processes by photocatalytic water splitting – From atomistic catalysis design to optimal reactor engineering. Int. J. Hydrogen Energy, 2022, 47(78), 33282-33307.
[http://dx.doi.org/10.1016/j.ijhydene.2022.07.210]
[2]
Kosco, J.; Gonzalez-Carrero, S.; Howells, C.T.; Fei, T.; Dong, Y.; Sougrat, R.; Harrison, G.T.; Firdaus, Y.; Sheelamanthula, R.; Purushothaman, B.; Moruzzi, F.; Xu, W.; Zhao, L.; Basu, A.; De Wolf, S.; Anthopoulos, T.D.; Durrant, J.R.; McCulloch, I. Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nat. Energy, 2022, 7(4), 340-351.
[http://dx.doi.org/10.1038/s41560-022-00990-2]
[3]
Zhang, L.; Mohamed, H.H.; Dillert, R.; Bahnemann, D. Kinetics and mechanisms of charge transfer processes in photocatalytic systems: A review. J. Photochem. Photobiol. Photochem. Rev., 2012, 13(4), 263-276.
[http://dx.doi.org/10.1016/j.jphotochemrev.2012.07.002]
[4]
Yuan, H.; Qin, H.; Sun, K.; Sun, X.; Lu, J.; Bian, A.; Hou, J.; Lu, C.; Li, C.; Guo, F.; Shi, W. Ultrafast hot electron transfer and trap-state mediated charge separation for boosted photothermal-assisted photocatalytic H2 evolution. Chem. Eng. J., 2024, 494, 153058.
[http://dx.doi.org/10.1016/j.cej.2024.153058]
[5]
Saeedmanesh, A.; Mac Kinnon, M.A.; Brouwer, J. Hydrogen is essential for sustainability. Curr. Opin. Electrochem., 2018, 12, 166-181.
[http://dx.doi.org/10.1016/j.coelec.2018.11.009]
[6]
Pathak, P.K.; Yadav, A.K.; Padmanaban, S. Transition toward emission-free energy systems by 2050: Potential role of hydrogen. Int. J. Hydrogen Energy, 2023, 48(26), 9921-9927.
[http://dx.doi.org/10.1016/j.ijhydene.2022.12.058]
[7]
Shen, Y.; Du, X.; Shi, Y.; Nguetsa Kuate, L.J.; Chen, Z.; Zhu, C.; Tan, L.; Guo, F.; Li, S.; Shi, W. Bound-state electrons synergy over photochromic high-crystalline C3N5 nanosheets in enhancing charge separation for photocatalytic H2 production. Adv. Powder Matenr., 2024, 3(4), 100202.
[http://dx.doi.org/10.1016/j.apmate.2024.100202]
[8]
Qiao, X.Q.; Li, C.; Wang, Z.; Hou, D.; Li, D.S. TiO2–@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance. Chin. J. Catal., 2023, 51, 66-79.
[http://dx.doi.org/10.1016/S1872-2067(23)64488-2]
[9]
Qiu, F.; Han, Z.; Peterson, J.J.; Odoi, M.Y.; Sowers, K.L.; Krauss, T.D. Photocatalytic hydrogen generation by CdSe/CdS nanoparticles. Nano Lett., 2016, 16(9), 5347-5352.
[http://dx.doi.org/10.1021/acs.nanolett.6b01087] [PMID: 27478995]
[10]
Fang, M.; Yang, Z.; Guo, Y.; Xia, X.; Pan, S. Piezoelectric effect achieves efficient carriers’ spatial separation and enhanced photocatalytic H2 evolution of UiO-66-NH2@CdS by transforming charge transfer mechanism. Separ. Purif. Tech., 2024, 328, 125069.
[http://dx.doi.org/10.1016/j.seppur.2023.125069]
[11]
Wang, H.; Jiang, J.; Yu, L.; Peng, J.; Song, Z.; Xiong, Z.; Li, N.; Xiang, K.; Zou, J.; Hsu, J.P.; Zhai, T. Tailoring advanced N‐defective and S‐doped g‐C3N4 for photocatalytic H2 evolution. Small, 2023, 19(28), 2301116.
[http://dx.doi.org/10.1002/smll.202301116] [PMID: 37191326]
[12]
Ge, M.Z.; Li, Q.S.; Cao, C.Y.; Huang, J.Y.; Li, S.H.; Zhang, S.N.; Chen, Z.; Zhang, K.Q.; Al-Deyab, S.S.; Lai, Y.K. One-dimensional TiO2 nanotube photocatalysts for solar water splitting. Adv. Sci., 2017, 4(1), 1600152.
[http://dx.doi.org/10.1002/advs.201600152]
[13]
Zhang, Y.C.; Afzal, N.; Pan, L.; Zhang, X.; Zou, J.J. Structure‐activity relationship of defective metal‐based photocatalysts for water splitting: Experimental and theoretical perspectives. Adv. Sci. (Weinh.), 2019, 6(10), 1900053.
[http://dx.doi.org/10.1002/advs.201900053] [PMID: 31131201]
[14]
Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M.O.; Wang, S.; Jin, W. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review. Catal. Sci. Technol., 2016, 6(19), 7002-7023.
[http://dx.doi.org/10.1039/C6CY01195K]
[15]
Clarizia, L.; Spasiano, D.; Di Somma, I.; Marotta, R.; Andreozzi, R.; Dionysiou, D.D. Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review. Int. J. Hydrogen Energy, 2014, 39(30), 16812-16831.
[http://dx.doi.org/10.1016/j.ijhydene.2014.08.037]
[16]
Ahmed, S.F.; Kumar, P.S.; Ahmed, B.; Mehnaz, T.; Shafiullah, G.M.; Nguyen, V.N.; Duong, X.Q.; Mofijur, M.; Badruddin, I.A.; Kamangar, S. Carbon-based nanomaterials: Characteristics, dimensions, advances and challenges in enhancing photocatalytic hydrogen production. Int. J. Hydrogen Energy, 2024, 52, 424-442.
[http://dx.doi.org/10.1016/j.ijhydene.2023.03.185]
[17]
Li, Z.; Li, K.; Du, P.; Mehmandoust, M.; Karimi, F.; Erk, N. Carbon-based photocatalysts for hydrogen production: A review. Chemosphere, 2022, 308(Pt 1), 135998.
[http://dx.doi.org/10.1016/j.chemosphere.2022.135998] [PMID: 35973496]
[18]
Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev., 2012, 41(2), 782-796.
[http://dx.doi.org/10.1039/C1CS15172J] [PMID: 21853184]
[19]
Kumar, D.; Abraham, J.E.; Varghese, M.; George, J.; Balachandran, M.; Cherusseri, J. Nanocarbon assisted green hydrogen production: Development and recent trends. Int. J. Hydrogen Energy, 2024, 50, 118-141.
[http://dx.doi.org/10.1016/j.ijhydene.2023.07.257]
[20]
Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B, 2019, 243, 556-565.
[http://dx.doi.org/10.1016/j.apcatb.2018.11.011]
[21]
Mishra, A.; Mehta, A.; Basu, S.; Shetti, N.P.; Reddy, K.R.; Aminabhavi, T.M. Graphitic carbon nitride (g–C3N4)–based metal-free photocatalysts for water splitting: A review. Carbon, 2019, 149, 693-721.
[http://dx.doi.org/10.1016/j.carbon.2019.04.104]
[22]
Jose, S.; Rajeev, R.; Thadathil, D.A.; Varghese, A.; Hegde, G. A road map on nanostructured surface tuning strategies of carbon fiber paper electrode: Enhanced electrocatalytic applications. J. Sci. Adv. Mater. Devices, 2022, 7(3), 100460.
[http://dx.doi.org/10.1016/j.jsamd.2022.100460]
[23]
Yap, F.M.; Loh, J.Y.; Ng, S.F.; Ong, W.J. Self‐supported earth‐abundant carbon‐based substrates in electrocatalysis landscape: Unleashing the potentials toward paving the way for water splitting and alcohol oxidation. Adv. Energy Mater., 2024, 14(16), 2303614.
[http://dx.doi.org/10.1002/aenm.202303614]
[24]
Huang, Y.; Li, M.; Liang, T.; Zhou, Y.; Guan, P.; Zhou, L.; Hu, L.; Wan, T.; Chu, D. Structural optimization and electrocatalytic hydrogen production performance of carbon-based composites: A mini-review. Carbon Trends, 2024, 15, 100363.
[http://dx.doi.org/10.1016/j.cartre.2024.100363]
[25]
Yu, P.; Ma, J.; Zhang, R.; Zhang, J.Z.; Botte, G.G. Novel Pd–Co electrocatalyst supported on carbon fibers with enhanced electrocatalytic activity for coal electrolysis to produce hydrogen. ACS Appl. Energy Mater., 2018, 1(2), 267-272.
[http://dx.doi.org/10.1021/acsaem.7b00085]
[26]
Wu, Y.; Sun, Z.; Wang, Y.; Yin, L.; He, Z.; Zhang, Z.; Hayat, M.D.; Zang, Q.; Lian, J. Cyclic voltammetric deposition of binder-free Ni-Se film on Ni foams as efficient bifunctional electrocatalyst for boosting overall urea-water electrolysis. J. Alloys Compd., 2023, 937, 168460.
[http://dx.doi.org/10.1016/j.jallcom.2022.168460]
[27]
Wu, Y.; Zhang, Y.; Wang, Y.; He, Z.; Gu, Z.; You, S. Potentiostatic electrodeposited of Ni–Fe–Sn on Ni foam served as an excellent electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2021, 46(53), 26930-26939.
[http://dx.doi.org/10.1016/j.ijhydene.2021.05.189]
[28]
You, S.; Wu, Y.; Wang, Y.; He, Z.; Yin, L.; Zhang, Y.; Sun, Z.; Zhang, Z. Pulse-electrodeposited Ni–Fe–Sn films supported on Ni foam as an excellent bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy, 2022, 47(68), 29315-29326.
[http://dx.doi.org/10.1016/j.ijhydene.2022.06.265]
[29]
Xu, Y.; Li, S.; Chen, M.; Zhang, J.; Rosei, F. Carbon-based nanostructures for emerging photocatalysis: CO2 reduction, N2 fixation, and organic conversion. Trends Chem., 2022, 4(11), 984-1004.
[http://dx.doi.org/10.1016/j.trechm.2022.08.005]
[30]
Sun, N.; Si, X.; He, L.; Zhang, J.; Sun, Y. Strategies for enhancing the photocatalytic activity of semiconductors. Int. J. Hydrogen Energy, 2024, 58, 1249-1265.
[http://dx.doi.org/10.1016/j.ijhydene.2024.01.319]
[31]
Nguyen, T.L.; Pham, T.H.; Myung, Y.; Jung, S.H.; Tran, M.H.; Mapari, M.G.; Van Le, Q.; Nguyen, M.V.; Chu, T.T.H.; Kim, T. Enhanced photocatalytic activity in water splitting for hydrogen generation by using TiO2 coated carbon fiber with high reusability. Int. J. Hydrogen Energy, 2022, 47(98), 41621-41630.
[http://dx.doi.org/10.1016/j.ijhydene.2022.06.025]
[32]
Chung, K.H.; Jeong, S.; Kim, B.J.; An, K.H.; Park, Y.K.; Jung, S.C. Enhancement of photocatalytic hydrogen production by liquid phase plasma irradiation on metal-loaded TiO2/carbon nanofiber photocatalysts. Int. J. Hydrogen Energy, 2018, 43(24), 11422-11429.
[http://dx.doi.org/10.1016/j.ijhydene.2018.03.190]
[33]
Gong, S.; Fan, J.; Cecen, V.; Huang, C.; Min, Y.; Xu, Q.; Li, H. Noble-metal and cocatalyst free W2N/C/TiO photocatalysts for efficient photocatalytic overall water splitting in visible and near-infrared light regions. Chem. Eng. J., 2021, 405, 126913.
[http://dx.doi.org/10.1016/j.cej.2020.126913]
[34]
Zhang, X.; Chen, Y.; Xiao, Y.; Zhou, W.; Tian, G.; Fu, H. Enhanced charge transfer and separation of hierarchical hydrogenated TiO2 nanothorns/carbon nanofibers composites decorated by NiS quantum dots for remarkable photocatalytic H2 production activity. Nanoscale, 2018, 10(8), 4041-4050.
[http://dx.doi.org/10.1039/C7NR09415A] [PMID: 29431829]
[35]
Qi, X.; Zhu, Y.; Song, L.; Peng, G.; Qu, W.; Xiong, J. Photocatalytic degradation of PET coupled to green hydrogen generation using flexible Ni2P/TiO2/C nanofiber film catalysts. Appl. Catal. A Gen., 2023, 656, 119130.
[http://dx.doi.org/10.1016/j.apcata.2023.119130]
[36]
Yu, Z.; Meng, J.; Li, Y.; Li, Y. Efficient photocatalytic hydrogen production from water over a CuO and carbon fiber comodified TiO2 nanocomposite photocatalyst. Int. J. Hydrogen Energy, 2013, 38(36), 16649-16655.
[http://dx.doi.org/10.1016/j.ijhydene.2013.07.056]
[37]
Yousef, A.; Brooks, R.M.; El-Halwany, M.M. EL-Newehy, M.H.; Al-Deyab, S.S.; Barakat, N.A.M. Cu0/S-doped TiO2 nanoparticles-decorated carbon nanofibers as novel and efficient photocatalyst for hydrogen generation from ammonia borane. Ceram. Int., 2016, 42(1), 1507-1512.
[http://dx.doi.org/10.1016/j.ceramint.2015.09.097]
[38]
Chang, C.J.; Kao, Y.C.; Lin, K.S.; Chen, C.Y.; Kang, C.W.; Yang, T.H. Carbon fiber cloth@BiOBr/CuO as immobilized membrane-shaped photocatalysts with enhanced photocatalytic H2 production activity. J. Taiwan Inst. Chem. Eng., 2023, 149, 104998.
[http://dx.doi.org/10.1016/j.jtice.2023.104998]
[39]
Qu, W.; Qi, X.; Peng, G.; Wang, M.; Song, L.; Du, P.; Xiong, J. An efficient and recyclable Ni2 P–Co2 P/ZrO2/C nanofiber photocatalyst for the conversion of plastic waste into H2 and valuable chemicals. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2023, 11(41), 14359-14370.
[http://dx.doi.org/10.1039/D3TC02702C]
[40]
Zhang, J.; Yu, W.; Xiong, Y.; Zhu, J.; Zhang, Y. Construction of carbon nitride/zeolitic imidazolate framework-67 heterojunctions on carbon fiber cloth as the photocatalyst for various pollutants removal and hydrogen production. J. Colloid Interface Sci., 2024, 656, 389-398.
[http://dx.doi.org/10.1016/j.jcis.2023.11.070] [PMID: 38000251]
[41]
Lei, L.; Fan, H.; Jia, Y.; Wu, X.; Zhong, Q.; Wang, W. Ultrafast charge-transfer at interfaces between 2D graphitic carbon nitride thin film and carbon fiber towards enhanced photocatalytic hydrogen evolution. Appl. Surf. Sci., 2022, 606, 154938.
[http://dx.doi.org/10.1016/j.apsusc.2022.154938]
[42]
Liu, X.; Xu, S.; Chi, H.; Xu, T.; Guo, Y.; Yuan, Y.; Yang, B. Ultrafine 1D graphene interlayer in g-C3N4/graphene/recycled carbon fiber heterostructure for enhanced photocatalytic hydrogen generation. Chem. Eng. J., 2019, 359, 1352-1359.
[http://dx.doi.org/10.1016/j.cej.2018.11.043]
[43]
Yang, S.; Wang, K.; Yu, H.; Huang, Y.; Guo, P.; Ye, C.; Wen, H.; Zhang, G.; Luo, D.; Jiang, F.; Zhang, L. Carbon fibers derived from spent cigarette filters for supporting ZnIn2S4/g-C3N4 heterojunction toward enhanced photocatalytic hydrogen evolution. Mater. Sci. Eng. B, 2023, 288, 116214.
[http://dx.doi.org/10.1016/j.mseb.2022.116214]
[44]
He, R.; Liang, H.; Li, C.; Bai, J. Enhanced photocatalytic hydrogen production over Co3O4@g-C3N4 p-n junction adhering on one-dimensional carbon fiber. Colloids Surf. A Physicochem. Eng. Asp., 2020, 586, 124200.
[http://dx.doi.org/10.1016/j.colsurfa.2019.124200]