Current Chemical Biology

Author(s): Amina Hammoudi, Amina Tabet Zatla, Imane Rihab Mami, Joelle Perard and Mohamed El Amine Dib*

DOI: 10.2174/0122127968313911241007040045

DownloadDownload PDF Flyer Cite As
Hemisynthesis, Anti-Inflammatory, and In-silico Alpha-Amylase Inhibition of Novel Carlina Oxide Analogs

Page: [249 - 258] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Numerous natural products have been successfully developed for clinical use in the treatment of human diseases in almost every therapeutic area.

Objective: This work aimed to synthesize some new analogs of Carlina oxide by functionalizing the fifth position of the furan by different acyl groups using the Friedel-Crafts acylation approach. The synthetic analogs and carlina oxide were then assessed for their in-vitro anti-inflammatory activity and in-silico alpha-amylase inhibition effect.

Methods: The new analogs were synthesized at room temperature using different anhydrides with the presence of boron trifluoride diethyl etherate (BF3-Et2O) as an acid catalyst. A protein denaturation assay was performed to evaluate the anti-inflammatory activity, while the in-silico study was conducted using the Molecular Operating Environment (MOE) with different types of alphaamylase sources, such as human salivary pancreatic alpha-amylase and Aspergillus oryzae alphaamylase (PDB: 1Q4N, 5EMY, 7P4W respectively).

Results: A total of four analogs of carlina oxide were obtained in yields of 60-7% and then identified with 1H and 13C NMR analysis. Additionally, analog 1 exhibited a better anti-inflammatory effect with an IC50 of 0.280 mg/mL. However, the in-silico study showed that all the synthetic analogs have different interactions with human salivary alpha-amylase (1Q4N) and other interactions with 5EMY and 7P4W.

Conclusion: The new analogs of Carlina oxide have the potential to serve as an alternative agent for alpha-amylase inhibition, contributing to the reduction of postprandial hyperglycemia.

Keywords: Carlina oxide, Friedel-Crafts acylation, anti-inflammatory activity, diabetes, postprandial hyperglycemia, alphaamylase inhibition.

Graphical Abstract

[1]
Cruvinel, W.M.; Mesquita, D., Jr; Araújo, J.A.P.; Catelan, T.T.T.; de Souza, A.W.; da Silva, N.P.; Andrade, L.E.C. Immune system - part I. Fundamentals of innate immunity with emphasis on molecular and cellular mechanisms of inflammatory response. Rev. Bras. Reumatol., 2010, 50(4), 434-461.
[http://dx.doi.org/10.1590/S0482-50042010000400008] [PMID: 21125178]
[2]
Gautam, R.; Jachak, S.M. Recent developments in anti‐inflammatory natural products. Med. Res. Rev., 2009, 29(5), 767-820.
[http://dx.doi.org/10.1002/med.20156] [PMID: 19378317]
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod., 2007, 70(3), 461-477.
[http://dx.doi.org/10.1021/np068054v] [PMID: 17309302]
[4]
Yuan, G.; Wahlqvist, M.L.; He, G.; Yang, M.; Li, D. Natural products and anti-inflammatory activity. Asia Pac. J. Clin. Nutr., 2006, 15(2), 143-152.
[PMID: 16672197]
[5]
Arif, T.; Bhosale, J.D.; Kumar, N.; Mandal, T.K.; Bendre, R.S.; Lavekar, G.S.; Dabur, R. Natural products – antifungal agents derived from plants. J. Asian Nat. Prod. Res., 2009, 11(7), 621-638.
[http://dx.doi.org/10.1080/10286020902942350] [PMID: 20183299]
[6]
Surguchov, A.; Bernal, L.; Surguchev, A.A. Phytochemicals as regulators of genes involved in synucleinopathies. Biomolecules, 2021, 11(5), 624.
[http://dx.doi.org/10.3390/biom11050624] [PMID: 33922207]
[7]
Haffner, S.M. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr. Rev., 1998, 19(5), 583-592.
[http://dx.doi.org/10.1210/edrv.19.5.0343] [PMID: 9793758]
[8]
Sundarram, A.; Murthy, T.P.K. α-amylase production and applications: a review. AEM, 2014, 2(4), 166-175.
[9]
Puls, W.; Keup, U.; Krause, H.P.; Thomas, G.; Hoffmeister, F. Glucosidase inhibition. Naturwissenschaften, 1977, 64(10), 536-537.
[http://dx.doi.org/10.1007/BF00483562] [PMID: 927538]
[10]
Puls, W.; Keup, U. Metabolie studies with an amylase inhibitor in acute starch loading tests in rats and men and its influence on the amylase content of the pancreas. In: Recent advances in obesity research; Howard, A., Ed.; Newman Publishing Co.: London, 1975; pp. 391-393.
[11]
Bishoff, H. Pharmacological properties of the novel glucosidase inhibitors BAY m 1099 (miglitol) and BAY o 1248. Diabetes Res. Clin. Pract., 1985, 1, S53.
[12]
Hays, N.P.; Galassetti, P.R.; Coker, R.H. Prevention and treatment of type 2 diabetes: Current role of lifestyle, natural product, and pharmacological interventions. Pharmacol. Ther., 2008, 118(2), 181-191.
[http://dx.doi.org/10.1016/j.pharmthera.2008.02.003] [PMID: 18423879]
[13]
Nahas, R.; Moher, M. Complementary and alternative medicine for the treatment of type 2 diabetes. Can. Fam. Physician, 2009, 55(6), 591-596.
[PMID: 19509199]
[14]
Chang, C.L.; Lin, Y.; Bartolome, A.P.; Chen, Y.C.; Chiu, S.C.; Yang, W.C. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. J. Evid. Based Complementary Altern. Med, 2013.
[http://dx.doi.org/10.1155/2013/378657]
[15]
El-Abhar, H.S.; Schaalan, M.F. Phytotherapy in diabetes: Review on potential mechanistic perspectives. World J. Diabetes, 2014, 5(2), 176-197.
[http://dx.doi.org/10.4239/wjd.v5.i2.176] [PMID: 24748931]
[16]
Eddouks, M.; Bidi, A.; El Bouhali, B.; Hajji, L.; Zeggwagh, N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol., 2014, 66(9), 1197-1214.
[http://dx.doi.org/10.1111/jphp.12243] [PMID: 24730446]
[17]
Davies, J. SECTION 3 The Advent of Modern Microbiology-In Praise of Antibiotics. ASM, 1999, 65(5), 304-310.
[18]
Semmler, F.W. Zusammensetzung des ätherischen Oels der Eberwurzel (Carlina acaulis L.). Ber. Dtsch. Chem. Ges., 1906, 39(1), 726-731.
[http://dx.doi.org/10.1002/cber.190603901108]
[19]
Gilman, H.; Ess, P.R.; Burtner, R.R. The constitution of Carlina-oxide. J. Am. Chem. Soc., 1933, 55(8), 3461-3463.
[http://dx.doi.org/10.1021/ja01335a075]
[20]
Djordjevic, S.; Petrovic, S.; Ristic, M.; Djokovic, D. Composition of Carlina acanthifolia root essential oil. Chem. Nat. Compd., 2005, 41(4), 410-412.
[http://dx.doi.org/10.1007/s10600-005-0163-2]
[21]
Mejdoub, K.; Mami, I.R.; Belabbes, R.; Dib, M.E.A.; DJabou, N.; Tabti, B.; Benyelles, N.G.; Costa, J.; Muselli, A. DJabou, N.; Tabti, B.; Benyelles, N. G.; Costa, J.; Muselli, A. Chemical variability of Atractylis gummifera essential oils at three developmental stages and investigation of their antioxidant, antifungal and insecticidal activities. Curr. Bioact. Compd., 2020, 16(4), 489-497.
[http://dx.doi.org/10.2174/1573407215666190126152112]
[22]
Mami, I.R.; Belabbes, R.; Dib, M.A.; Tabti, B.; Costa, J.; Muselli, A. Biological activities of Carlina oxide isolated from the roots of Carthamus caeruleus. J. Nat. Prod., 2020, 10(2), 145-152.
[23]
Achiri, R.; Benhamidat, L.; Mami, I.R.; Dib, M.E.A.; Aissaoui, N.; Cherif, C.Z.; Cherif, H.Z.; Muselli, A. Chemical Composition and Antioxidant, Anti-inflammatory and Antimicrobial Activities of the Essential Oil and its Major Component (Carlina oxide) of Carlina hispanica Roots from Western Algeria. J. Essent. Oil-Bear. Plants, 2021, 24(5), 1113-1124.
[http://dx.doi.org/10.1080/0972060X.2021.2005692]
[24]
Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol., 2011, 20(3), 169-173.
[http://dx.doi.org/10.1111/j.2042-7158.1968.tb09718.x] [PMID: 4385045]
[25]
Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed., 2012, 2(1), S178-S180.
[http://dx.doi.org/10.1016/S2221-1691(12)60154-3]
[26]
Deutsch, J.; Trunschke, A.; Müller, D.; Quaschning, V.; Kemnitz, E.; Lieske, H. Different acylating agents in the synthesis of aromatic ketones on sulfated zirconia. Catal. Lett., 2003, 88(1/2), 9-15.
[http://dx.doi.org/10.1023/A:1023576713551]
[27]
Desai, D.S.; Yadav, G.D. Friedel-crafts acylation of furan using chromium-exchanged dodecatungstophosphoric acid: effect of support, mechanism and kinetic modelling. Clean Technol. Environ. Policy, 2021, 23(8), 2429-2441.
[http://dx.doi.org/10.1007/s10098-021-02162-4]
[28]
Mami, I.R.; Amina, T.Z.; Pérard, J.; Arrar, Z.; Dib, M.E.A. Hemisyntheses and In-silico Study of New Analogues of Carlina Oxide from Carthamus Caeruleus Roots. Comb. Chem. High Throughput Screen., 2021, 24(9), 1503-1513.
[http://dx.doi.org/10.2174/1386207323999201103214141] [PMID: 33155891]
[29]
Spinozzi, E.; Ferrati, M.; Baldassarri, C.; Maggi, F.; Pavela, R.; Benelli, G.; Aguzzi, C.; Zeppa, L.; Cappellacci, L.; Palmieri, A.; Petrelli, R. Synthesis of Carlina Oxide Analogues and Evaluation of Their Insecticidal Efficacy and Cytotoxicity. J. Nat. Prod., 2023, 86(5), 1307-1316.
[http://dx.doi.org/10.1021/acs.jnatprod.3c00137] [PMID: 37172063]
[30]
Kumar, R.; Prakash, O.; Pant, A.K.; Isidorov, V.A.; Mathela, C.S. Chemical composition, antioxidant and myorelaxant activity of essential oils of Globba sessiliflora Sims. J. Essent. Oil Res., 2012, 24(4), 385-391.
[http://dx.doi.org/10.1080/10412905.2012.692915]
[31]
Owen, M.R. Effects of pivalic acid on the growth and metabolism of Escherichia coli. Microbiology, 2001, 147(2), 419-426.
[32]
Canani, R.B.; Costanzo, M.D.; Leone, L.; Pedata, M.; Meli, R.; Calignano, A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol., 2011, 17(12), 1519-1528.
[http://dx.doi.org/10.3748/wjg.v17.i12.1519] [PMID: 21472114]
[33]
Schrör, K. Acetylsalicylic acid. Toxicity and Drug Safety: Section 3.2.2.2 Mode of ASPIRIN Action; WILEY-VCH Verlag GmbH & Co. KGaA Weinheim, 2009, pp. 180-181.
[34]
Uraz, S.; Tahan, G.; Aytekin, H.; Tahan, V. N-acetylcysteine expresses powerful anti-inflammatory and antioxidant activities resulting in complete improvement of acetic acid-induced colitis in rats. Scand. J. Clin. Lab. Invest., 2013, 73(1), 61-66.
[http://dx.doi.org/10.3109/00365513.2012.734859] [PMID: 23110331]
[35]
Askari, M.; Faryabi, R.; Mozaffari, H.; Darooghegi Mofrad, M. The effects of N-Acetylcysteine on serum level of inflammatory biomarkers in adults. Findings from a systematic review and meta-analysis of randomized clinical trials. Cytokine, 2020, 135, 155239.
[http://dx.doi.org/10.1016/j.cyto.2020.155239] [PMID: 32799012]
[36]
Zakowski, J.J.; Bruns, D.E. Biochemistry of human alpha amylase isoenzymes. CRC Crit. Rev. Clin. Lab. Sci., 1985, 21(4), 283-322.
[http://dx.doi.org/10.3109/10408368509165786] [PMID: 2578342]
[37]
Agarwal, P.; Gupta, R. Alpha-amylase inhibition can treat diabetes mellitus. Res. Rev. J. Med. Health Sci, 2016, 5(4), 1-8.
[38]
Hernández, M.S.; Rodríguez, M.R.; Guerra, N.P.; Rosés, R.P. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J. Food Eng., 2006, 73(1), 93-100.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.01.009]