Current Alzheimer Research

Author(s): Gaetano Scianatico, Valerio Manippa*, Domenico Zaca, Jorge Jovicich, Benedetta Tafuri, Davide Rivolta and Giancarlo Logroscino

DOI: 10.2174/0115672050330903240919074725

DownloadDownload PDF Flyer Cite As
Correlations between Cerebrospinal Fluid Biomarkers and Gray Matter Atrophy in Alzheimer's and Behavioural Variant Frontotemporal Dementia

Page: [371 - 383] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Distinguishing between frontotemporal dementia (FTD) and Alzheimer’s disease (AD) in their early stages remains a significant clinical challenge. Cerebrospinal fluid (CSF) biomarkers (total Tau, phosphorylated Tau, and beta-amyloid) are promising candidates for identifying early differences between these conditions. This study investigates the relationship between grey matter density and CSF markers in the behavioural variant of frontotemporal dementia (bvFTD) and Alzheimer’s disease (AD).

Method: CSF and 3D T1-weighted magnetic resonance (MR) images were acquired from 14 bvFTD patients, 15 AD patients, and 13 cognitively normal (CN) matched subjects. The CSF markers and their relative ratios (total Tau/beta-amyloid, phosphorylated Tau/beta-amyloid) were compared across the three groups. Voxel-based morphometry (VBM) was performed to characterize the anatomical changes in bvFTD and AD patients compared to CN subjects. Grey matter density maps were obtained by automatic segmentation of 3.0 Tesla 3D T1-Weighted MR Images, and their correlation with CSF markers and relative ratios was investigated.

Results: Results demonstrated that, as compared to CN subjects, AD patients are characterised by higher CSF total Tau levels and lower beta-amyloid levels; however, beta-amyloid and relative ratios discriminated AD from bvFTD. In addition, AD and bvFTD patients showed different patterns of atrophy, with AD exhibiting more central (temporal areas) and bvFTD more anterior (frontal areas) atrophy. A correlation was found between grey matter density maps and CSF marker concentrations in the AD group, with total Tau and phosphorylated Tau levels showing a high association with low grey matter density in the left superior temporal gyrus.

Conclusion: Overall, while bvFTD lacks a CSF marker profile, CSF beta-amyloid levels are useful for differentiating AD from bvFTD. Furthermore, MR structural imaging can contribute significantly to distinguishing between the two pathologies.

Keywords: Frontotemporal dementia, Alzheimer’s disease, cerebrospinal fluid biomarkers, grey matter density, voxel-based morphometry, MR structural imaging.

[1]
Garre-Olmo J, Genís Batlle D, del Mar Fernández M, et al. Incidence and subtypes of early-onset dementia in a geographically defined general population. Neurology 2010; 75(14): 1249-55.
[http://dx.doi.org/10.1212/WNL.0b013e3181f5d4c4] [PMID: 20810999]
[2]
Garre-Olmo J. Epidemiology of Alzheimer’s disease and other dementias. Rev Neurol 2018; 66(11): 377-86.
[PMID: 29790571]
[3]
Ratnavalli E, Brayne C, Dawson K, Hodges JR. The prevalence of frontotemporal dementia. Neurology 2002; 58(11): 1615-21.
[http://dx.doi.org/10.1212/WNL.58.11.1615] [PMID: 12058088]
[4]
Logroscino G, Piccininni M, Graff C, et al. Incidence of syndromes associated with frontotemporal lobar degeneration in 9 european countries. JAMA Neurol 2023; 80(3): 279-86.
[http://dx.doi.org/10.1001/jamaneurol.2022.5128] [PMID: 36716024]
[5]
Josephs KA. Frontotemporal lobar degeneration. Neurol Clin 2007; 25(3): 683-96.
[http://dx.doi.org/10.1016/j.ncl.2007.03.005]
[6]
Rascovsky K, Hodges JR, Knopman D, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 2011; 134(9): 2456-77.
[http://dx.doi.org/10.1093/brain/awr179] [PMID: 21810890]
[7]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[8]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[9]
Meyer S, Mueller K, Stuke K, et al. Predicting behavioral variant frontotemporal dementia with pattern classification in multi-center structural MRI data. Neuroimage Clin 2017; 14: 656-62.
[http://dx.doi.org/10.1016/j.nicl.2017.02.001] [PMID: 28348957]
[10]
Iannopollo E, Garcia K. Enhanced detection of cortical atrophy in Alzheimer’s disease using structural MRI with anatomically constrained longitudinal registration. Hum Brain Mapp 2021; 42(11): 3576-92.
[http://dx.doi.org/10.1002/hbm.25455] [PMID: 33988265]
[11]
Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009; 62(1): 42-52.
[http://dx.doi.org/10.1016/j.neuron.2009.03.024] [PMID: 19376066]
[12]
Looi JCL, Lindberg O, Zandbelt BB, et al. Caudate nucleus volumes in frontotemporal lobar degeneration: Differential atrophy in subtypes. AJNR Am J Neuroradiol 2008; 29(8): 1537-43.
[http://dx.doi.org/10.3174/ajnr.A1168] [PMID: 18782907]
[13]
Looi JCL, Svensson L, Lindberg O, et al. Putaminal volume in frontotemporal lobar degeneration and Alzheimer disease: Differential volumes in dementia subtypes and controls. AJNR Am J Neuroradiol 2009; 30(8): 1552-60.
[http://dx.doi.org/10.3174/ajnr.A1640] [PMID: 19497964]
[14]
Gordon E, Rohrer JD, Kim LG, et al. Measuring disease progression in frontotemporal lobar degeneration. Neurology 2010; 74(8): 666-73.
[http://dx.doi.org/10.1212/WNL.0b013e3181d1a879] [PMID: 20177120]
[15]
Lu PH, Mendez MF, Lee GJ, et al. Patterns of brain atrophy in clinical variants of frontotemporal lobar degeneration. Dement Geriatr Cogn Disord 2013; 35(1-2): 34-50.
[http://dx.doi.org/10.1159/000345523] [PMID: 23306166]
[16]
Reas ET, Shadrin A, Frei O, et al. Improved multimodal prediction of progression from MCI to Alzheimer’s disease combining genetics with quantitative brain MRI and cognitive measures. Alzheimers Dement 2023; 19(11): 5151-8.
[http://dx.doi.org/10.1002/alz.13112] [PMID: 37132098]
[17]
Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: Epidemiology, pathophysiology, diagnosis and management. CNS Drugs 2010; 24(5): 375-98.
[http://dx.doi.org/10.2165/11533100-000000000-00000] [PMID: 20369906]
[18]
Forman MS, Farmer J, Johnson JK, et al. Frontotemporal dementia: Clinicopathological correlations. Ann Neurol 2006; 59(6): 952-62.
[http://dx.doi.org/10.1002/ana.20873] [PMID: 16718704]
[19]
Coyle-Gilchrist ITS, Dick KM, Patterson K, et al. Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 2016; 86(18): 1736-43.
[http://dx.doi.org/10.1212/WNL.0000000000002638] [PMID: 27037234]
[20]
Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76(11): 1006-14.
[http://dx.doi.org/10.1212/WNL.0b013e31821103e6] [PMID: 21325651]
[21]
Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol 2016; 15(7): 673-84.
[http://dx.doi.org/10.1016/S1474-4422(16)00070-3] [PMID: 27068280]
[22]
Paterson RW, Slattery CF, Poole T, et al. Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: Clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Res Ther 2018; 10(1): 32.
[http://dx.doi.org/10.1186/s13195-018-0361-3] [PMID: 29558979]
[23]
Oeckl P, Steinacker P, Feneberg E, Otto M. Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: Current status and future perspectives. Biochim Biophys Acta BBA - Proteins Proteomics 2015; 1854(7): 757-68.
[24]
Oeckl P, Steinacker P, Feneberg E, Otto M. Neurochemical biomarkers in the diagnosis of frontotemporal lobar degeneration: An update. J Neurochem 2016; 138(S1) (Suppl. 1): 184-92.
[http://dx.doi.org/10.1111/jnc.13669] [PMID: 27186717]
[25]
Vergallo A, Carlesi C, Pagni C, et al. A single center study: Aβ42/p-Tau181 CSF ratio to discriminate AD from FTD in clinical setting. Neurol Sci 2017; 38(10): 1791-7.
[http://dx.doi.org/10.1007/s10072-017-3053-z] [PMID: 28726050]
[26]
Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain 2009; 132(Pt 4): 1067-77.
[PMID: 19251758]
[27]
Chou YY, Leporé N, Avedissian C, et al. Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls. Neuroimage 2009; 46(2): 394-410.
[http://dx.doi.org/10.1016/j.neuroimage.2009.02.015] [PMID: 19236926]
[28]
Fagan AM, Head D, Shah AR, et al. Decreased cerebrospinal fluid Aβ 42 correlates with brain atrophy in cognitively normal elderly. Ann Neurol 2009; 65(2): 176-83.
[http://dx.doi.org/10.1002/ana.21559] [PMID: 19260027]
[29]
Contador J, Pérez-Millán A, Tort-Merino A, et al. Longitudinal brain atrophy and CSF biomarkers in early-onset Alzheimer’s disease. Neuroimage Clin 2021; 32: 102804.
[http://dx.doi.org/10.1016/j.nicl.2021.102804] [PMID: 34474317]
[30]
Miralbell J, Spulber G, Hooshmand B, et al. Grey matter and cognitive patterns in cognitive impaired subjects using CSF biomarker cut-offs. J Alzheimers Dis 2012; 29(4): 741-9.
[http://dx.doi.org/10.3233/JAD-2012-111553] [PMID: 22330819]
[31]
Grossman M, Farmer J, Leight S, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol 2005; 57(5): 721-9.
[http://dx.doi.org/10.1002/ana.20477] [PMID: 15852395]
[32]
Teunissen CE, Elias N, Koel-Simmelink MJA, et al. Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement 2016; 2(1): 86-94.
[http://dx.doi.org/10.1016/j.dadm.2015.12.004] [PMID: 27239539]
[33]
Magni E, Binetti G, Bianchetti A, Rozzini R, Trabucchi M. Mini-mental state examination: A normative study in Italian elderly population. Eur J Neurol 1996; 3(3): 198-202.
[http://dx.doi.org/10.1111/j.1468-1331.1996.tb00423.x] [PMID: 21284770]
[34]
Appollonio I, Leone M, Isella V, et al. The frontal assessment battery (FAB): Normative values in an Italian population sample. Neurol Sci 2005; 26(2): 108-16.
[http://dx.doi.org/10.1007/s10072-005-0443-4] [PMID: 15995827]
[35]
Caltagirone C, Gainotti G, Carlesimo GA, Parnetti L, Fadda L, Gallassi R. Battery for the assessment of Mental Deterioration (part I): Description of a neuropsychological diagnostic instrument. Arch Psychol Neurol Psychiatry 1995; 56(4): 461-70.
[36]
Italian standardization and classification of Neuropsychological tests. The Italian Group on the Neuropsychological Study of Aging. Ital J Neurol Sci 1987; Suppl. 8: 1-120.
[37]
Mondini S, Mapelli D. Brief Neuropsychological Exam. Raffaello Cortina Publisher 2003.
[38]
Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Una versione abbreviata del test di Stroop: dati normativi nella popolazione italiana. Riv Neurol 2002; 12: 111-5.
[39]
Esame Neuropsicologico per l’Afasia: E.N.P.A. - Rita Capasso, Gabriele Miceli - Google Libri. Available from: https://books.google.it/books/about/Esame_Neuropsicologico_per_l_Afasia.html?hl=it&id=4tzVIzJi6uwC&redir_esc=y
[40]
D’Agostino L. Calibration of naming tests for aphasia on normal subjects. Ist Clin Neurol Univ 1985.
[41]
Caffarra P, Vezzadini G, Dieci F, Zonato F, Venneri A. Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurol Sci 2002; 22(6): 443-7.
[http://dx.doi.org/10.1007/s100720200003] [PMID: 11976975]
[42]
Warrington EK. Visual object and space perception battery. Zenodo 1991.
[43]
Galeoto G, Sansoni J, Scuccimarri M, et al. A psychometric properties evaluation of the italian version of the geriatric depression scale. Depress Res Treat 2018; 2018: 1-7.
[http://dx.doi.org/10.1155/2018/1797536] [PMID: 29686898]
[44]
Starkstein SE, Mayberg HS, Preziosi TJ, Andrezejewski P, Leiguarda R, Robinson RG. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 1992; 4(2): 134-9.
[http://dx.doi.org/10.1176/jnp.4.2.134] [PMID: 1627973]
[45]
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308-14.
[http://dx.doi.org/10.1212/WNL.44.12.2308] [PMID: 7991117]
[46]
Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. JAMA 1963; 185(12): 914-9.
[http://dx.doi.org/10.1001/jama.1963.03060120024016] [PMID: 14044222]
[47]
Lawton MP, Brody EM. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969; 9(3 Part 1): 179-86.
[http://dx.doi.org/10.1093/geront/9.3_Part_1.179] [PMID: 5349366]
[48]
Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. Neuroimage 2011; 55(3): 954-67.
[http://dx.doi.org/10.1016/j.neuroimage.2010.12.049] [PMID: 21216294]
[49]
Gaser C, Dahnke R, Thompson PM, Kurth F, Luders E. CAT: A computational anatomy toolbox for the analysis of structural MRI data. Gigascience 2024; 13: giae049.
[http://dx.doi.org/10.1093/gigascience/giae049] [PMID: 39102518]
[50]
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002; 15(1): 273-89.
[http://dx.doi.org/10.1006/nimg.2001.0978] [PMID: 11771995]
[51]
Magalhães TNC, Casseb RF, Gerbelli CLB, et al. Whole-brain DTI parameters associated with tau protein and hippocampal volume in Alzheimer’s disease. Brain Behav 2023; 13(2): e2863.
[http://dx.doi.org/10.1002/brb3.2863] [PMID: 36601694]
[52]
Aamodt WW, Waligorska T, Shen J, et al. Neurofilament light chain as a biomarker for cognitive decline in parkinson disease. Mov Disord 2021; 36(12): 2945-50.
[http://dx.doi.org/10.1002/mds.28779] [PMID: 34480363]
[53]
Zacà D, Hasson U, Minati L, Jovicich J. Method for retrospective estimation of natural head movement during structural MRI. J Magn Reson Imaging 2018; 48(4): 927-37.
[http://dx.doi.org/10.1002/jmri.25959] [PMID: 29393987]
[54]
Seppälä TT, Nerg O, Koivisto AM, et al. CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 2012; 78(20): 1568-75.
[http://dx.doi.org/10.1212/WNL.0b013e3182563bd0] [PMID: 22517093]
[55]
Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 2009; 65(4): 403-13.
[http://dx.doi.org/10.1002/ana.21610] [PMID: 19296504]
[56]
Reijn TSM, Rikkert MO, van Geel WJA, de Jong D, Verbeek MM. Diagnostic accuracy of ELISA and xMAP technology for analysis of amyloid β(42) and tau proteins. Clin Chem 2007; 53(5): 859-65.
[http://dx.doi.org/10.1373/clinchem.2006.081679] [PMID: 17395712]
[57]
Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008; 70(19_part_2): 1827-35.
[http://dx.doi.org/10.1212/01.wnl.0000311445.21321.fc] [PMID: 18458217]
[58]
Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 2004; 1(2): 213-25.
[http://dx.doi.org/10.1602/neurorx.1.2.213] [PMID: 15717022]
[59]
Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ 42 in humans. Ann Neurol 2006; 59(3): 512-9.
[http://dx.doi.org/10.1002/ana.20730] [PMID: 16372280]
[60]
Buerger K, Ewers M, Pirttilä T, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 2006; 129(11): 3035-41.
[http://dx.doi.org/10.1093/brain/awl269] [PMID: 17012293]
[61]
Riemenschneider M, Wagenpfeil S, Diehl J, et al. Tau and Aβ42 protein in CSF of patients with frontotemporal degeneration. Neurology 2002; 58(11): 1622-8.
[http://dx.doi.org/10.1212/WNL.58.11.1622] [PMID: 12058089]
[62]
Du A-T, Schuff N, Kramer JH, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 2007; 130(Pt 4): 1159-66.
[PMID: 17353226]
[63]
Muñoz-Ruiz MÁ, Hartikainen P, Koikkalainen J, et al. Structural MRI in frontotemporal dementia: Comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PLoS One 2012; 7(12): e52531.
[http://dx.doi.org/10.1371/journal.pone.0052531] [PMID: 23285078]
[64]
Susianti NA, Prodjohardjono A, Vidyanti AN, et al. The impact of medial temporal and parietal atrophy on cognitive function in dementia. Sci Rep 2024; 14(1): 5281.
[http://dx.doi.org/10.1038/s41598-024-56023-3] [PMID: 38438548]
[65]
Matsuda H. Voxel-based morphometry of brain MRI in normal aging and alzheimer’s disease. Aging Dis 2013; 4(1): 29-37.
[PMID: 23423504]
[66]
Connor JR, Tucker P, Johnson M, Snyder B. Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer’s disease. Neurosci Lett 1993; 159(1-2): 88-90.
[http://dx.doi.org/10.1016/0304-3940(93)90805-U] [PMID: 8264985]
[67]
Watson CT, Roussos P, Garg P, et al. Genome-wide DNA methylation profiling in the superior temporal gyrus reveals epigenetic signatures associated with Alzheimer’s disease. Genome Med 2016; 8(1): 5.
[http://dx.doi.org/10.1186/s13073-015-0258-8] [PMID: 26803900]
[68]
Smith AR, Smith RG, Condliffe D, et al. Increased DNA methylation near TREM2 is consistently seen in the superior temporal gyrus in Alzheimer’s disease brain. Neurobiol Aging 2016; 47: 35-40.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.008] [PMID: 27522519]
[69]
Wood OWG, Walby J, Yeung JH, et al. Alzheimer’s disease-associated region-specific decrease of vesicular glutamate transporter immunoreactivity in the medial temporal lobe and superior temporal gyrus. Neuroscience 2024; 546: 75-87.
[http://dx.doi.org/10.1016/j.neuroscience.2024.03.027] [PMID: 38552733]
[70]
Bloudek LM, Spackman DE, Blankenburg M, Sullivan SD. Review and meta-analysis of biomarkers and diagnostic imaging in Alzheimer’s disease. J Alzheimers Dis 2011; 26(4): 627-45.
[http://dx.doi.org/10.3233/JAD-2011-110458] [PMID: 21694448]
[71]
Woodward M, Jacova C, Black SE, Kertesz A, Mackenzie IR, Feldman H. Differentiating the frontal variant of Alzheimer’s disease. Int J Geriatr Psychiatry 2010; 25(7): 732-8.
[http://dx.doi.org/10.1002/gps.2415] [PMID: 19823987]
[72]
Ntymenou S, Tsantzali I, Kalamatianos T, et al. Blood biomarkers in frontotemporal dementia: Review and meta-analysis. Brain Sci 2021; 11(2): 244.
[http://dx.doi.org/10.3390/brainsci11020244] [PMID: 33672008]
[73]
Swift IJ, Sogorb-Esteve A, Heller C, et al. Fluid biomarkers in frontotemporal dementia: Past, present and future. J Neurol Neurosurg Psychiatry 2021; 92(2): 204-15.
[http://dx.doi.org/10.1136/jnnp-2020-323520] [PMID: 33188134]
[74]
Manippa V, Palmisano A, Filardi M, et al. An update on the use of gamma (multi)sensory stimulation for Alzheimer’s disease treatment. Front Aging Neurosci 2022; 14: 1095081.
[http://dx.doi.org/10.3389/fnagi.2022.1095081] [PMID: 36589536]
[75]
Manippa V, Palmisano A, Nitsche MA, et al. Cognitive and neuropathophysiological outcomes of gamma-tACS in dementia: A systematic review. Neuropsychol Rev 2024; 34(1): 338-61.
[http://dx.doi.org/10.1007/s11065-023-09589-0] [PMID: 36877327]
[76]
Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[77]
Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol 2020; 57(7): 3075-88.
[http://dx.doi.org/10.1007/s12035-020-01945-y] [PMID: 32462551]
[78]
Singh M, Agarwal V, Pancham P, et al. A comprehensive review and androgen deprivation therapy and its impact on alzheimer’s disease risk in older men with prostate cancer. Degener Neurol Neuromuscul Dis 2024; 14: 33-46.
[http://dx.doi.org/10.2147/DNND.S445130] [PMID: 38774717]
[79]
Lizio R, Lacidogna G, Gesualdo L, Ferri R, Soricelli A, Babiloni C. Two weeks of a computerized cognitive training may produce beneficial effects in Alzheimer’s disease patients. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). Bari, Italy, 2019, pp. 1276–1279.
[http://dx.doi.org/10.1109/SMC.2019.8914416]