Current Chemical Biology

Author(s): Meriem Aziez, Noureddine Bribi*, Mohamed Sofiane Merakeb, Riad Ferhat and Safia Affenai

DOI: 10.2174/0122127968320045240927120032

DownloadDownload PDF Flyer Cite As
Intestinal Anti-Inflammatory and Antioxidant Potential of Arthrospira platensis Aqueous Extract on DNBS-Induced Colitis in BALB/c Mice

Page: [238 - 248] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: The most common Inflammatory Bowel Diseases (IBD) affecting the gastrointestinal system are Crohn's disease and ulcerative colitis. However, the usual therapies for them are associated with a multitude of side effects. The blue-green microalgae Arthrospira platensis is known for its safety profile, nutritional, and medicinal properties in the treatment of different inflammatory and gastrointestinal disorders.

Objective: The objective of this study was to investigate the potential intestinal anti-inflammatory effects of the aqueous extract derived from Arthrospira platensis (AAP) in a mouse model of DNBS-induced colitis.

Methods: GC-MS and FTIR-ATR were used to determine the different types of chemical compounds found in the AAP extract. BALB/c mice that received DNBS intrarectally were treated with three doses (50, 100 and 200 mg/kg) of AAP for three days. The inflammatory status was assessed daily using a Disease Activity Index (DAI). Mice were sacrificed on the third day, and the extent of colonic damage was evaluated through both macroscopic and histological examinations. Finally, biochemical assays of different markers (MDA, NO, and GSH) were performed.

Results: The GC-MS analysis revealed the presence of eleven bioactive compounds, including 2- thiophenecarboxylic acid, 2-biphenyl ester, palmitic acid, 2-linoleoyl glycerol, ethyl isoallocholate, and methyl palmitate. In addition, FTIR spectroscopy revealed the presence of amino, hydroxyl, and glucosidic groups. The treatment of colitic mice with AAP decreased the severity of colitis, as demonstrated by the improvement in the clinical score and the reduction of colonic tissue damage, as well as the modulation of the local biochemical marker levels.

Conclusion: The AAP effectively improves DNBS-induced colitis, but its short treatment duration and focus on acute colitis highlight the need for further research on long-term and chronic effects.

Keywords: Inflammatory bowel diseases, Arthrospira platensis, inflammation, DNBS, glutathione, Crohn’s disease, ulcerative colitis.

Graphical Abstract

[1]
Zhang, Y.Z.; Li, Y-Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol., 2014, 20(1), 91-99.
[http://dx.doi.org/10.3748/wjg.v20.i1.91] [PMID: 24415861]
[2]
Guan, Q. A Comprehensive Review and Update on the Pathogenesis of Inflammatory Bowel Disease. J. Immunol. Res., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/7247238] [PMID: 31886308]
[3]
Ardizzone, A.; Filippone, A.; Mannino, D.; Scuderi, S.A.; Casili, G.; Lanza, M.; Cucinotta, L.; Campolo, M.; Esposito, E. Ulva pertusa, a Marine Green Alga, Attenuates DNBS-Induced Colitis Damage via NF-κB/Nrf2/SIRT1 Signaling Pathways. J. Clin. Med., 2022, 11(15), 4301.
[http://dx.doi.org/10.3390/jcm11154301] [PMID: 35893393]
[4]
Loddo, I.; Romano, C. Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis. Front. Immunol., 2015, 6, 551.
[http://dx.doi.org/10.3389/fimmu.2015.00551] [PMID: 26579126]
[5]
Bribi, N.; Rodríguez-Nogales, A.; Vezza, T.; Algieri, F.; Rodriguez-Cabezas, M.E.; Garrido-Mesa, J.; Gálvez, J. Intestinal anti-inflammatory activity of the total alkaloid fraction from Fumaria capreolata in the DSS model of colitis in mice. Bioorg. Med. Chem. Lett., 2020, 30(18), 127414.
[http://dx.doi.org/10.1016/j.bmcl.2020.127414] [PMID: 32717615]
[6]
McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease.StatPearls; StatPearls Publishing: Treasure Island, FL, 2022.
[7]
Singh, N.; Bernstein, C.N. Environmental risk factors for inflammatory bowel disease. United European Gastroenterol. J., 2022, 10(10), 1047-1053.
[PMID: 36262056]
[8]
Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. (Lausanne), 2021, 8, 765474.
[http://dx.doi.org/10.3389/fmed.2021.765474] [PMID: 34988090]
[9]
Curkovic, I.; Egbring, M.; Kullak-Ublick, G.A. Risks of inflammatory bowel disease treatment with glucocorticosteroids and aminosalicylates. Dig. Dis., 2013, 31(3-4), 368-373.
[http://dx.doi.org/10.1159/000354699] [PMID: 24246990]
[10]
D’Haens, G. Systematic review: second‐generation vs. conventional corticosteroids for induction of remission in ulcerative colitis. Aliment. Pharmacol. Ther., 2016, 44(10), 1018-1029.
[http://dx.doi.org/10.1111/apt.13803] [PMID: 27650488]
[11]
Baumgart, D.C.; Sandborn, W.J. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet, 2007, 369(9573), 1641-1657.
[http://dx.doi.org/10.1016/S0140-6736(07)60751-X] [PMID: 17499606]
[12]
Zenlea, T.; Peppercorn, M.A. Immunosuppressive therapies for inflammatory bowel disease. World J. Gastroenterol., 2014, 20(12), 3146-3152.
[http://dx.doi.org/10.3748/wjg.v20.i12.3146] [PMID: 24696600]
[13]
Zhou, Y.; Wang, D.; Yan, W. Treatment Effects of Natural Products on Inflammatory Bowel Disease In Vivo and Their Mechanisms: Based on Animal Experiments. Nutrients, 2023, 15(4), 1031.
[http://dx.doi.org/10.3390/nu15041031] [PMID: 36839389]
[14]
Arora, A.; Sharma, N.; Sharma, A. Role of Fruit-Derived Natural Polysaccharide in Ulcerative Colitis., http://www.eurekaselect.com
[http://dx.doi.org/10.2174/1573401319666230816151001]
[15]
Sharma, S.; Sharma, N.; Sharma, A.; Kurmi, B.D.; Khanna, K.; Karwasra, R.; Singh, A.K.; Chaudhary, A. Amelioration of experimental colitis by a site-specific novel plant polysaccharide (Opuntia ficusindica) based macroparticles contains probiotic biomass and mesalazine. J. Drug Deliv. Sci. Technol., 2023, 86, 104763.
[http://dx.doi.org/10.1016/j.jddst.2023.104763]
[16]
Sinetova, M.A.; Kupriyanova, E.V.; Los, D.A. Spirulina/Arthrospira/Limnospira—Three Names of the Single Organism. Foods, 2024, 13(17), 2762.
[http://dx.doi.org/10.3390/foods13172762]
[17]
Dillon, J.C.; Phuc, A.P.; Dubacq, J.P. Nutritional value of the alga Spirulina. World Rev. Nutr. Diet., 1995, 77, 32-46.
[http://dx.doi.org/10.1159/000424464] [PMID: 7732699]
[18]
Hutadilok-Towatana, N.; Reanmongkol, W.; Panichayupakaranant, P. Evaluation of the toxicity of Arthrospira (Spirulina) platensis extract. J. Appl. Phycol., 2010, 22(5), 599-605.
[http://dx.doi.org/10.1007/s10811-009-9499-5]
[19]
Jung, C.H.G.; Braune, S.; Waldeck, P.; Küpper, J.H.; Petrick, I.; Jung, F. Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor. Life (Basel), 2021, 11(6), 536.
[http://dx.doi.org/10.3390/life11060536] [PMID: 34207508]
[20]
Cuffaro, D.; Digiacomo, M.; Macchia, M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients, 2023, 15(23), 4966.
[http://dx.doi.org/10.3390/nu15234966] [PMID: 38068824]
[21]
Gentscheva, G.; Nikolova, K.; Panayotova, V.; Peycheva, K.; Makedonski, L.; Slavov, P.; Radusheva, P.; Petrova, P.; Yotkovska, I. Application of Arthrospira platensis for Medicinal Purposes and the Food Industry: A Review of the Literature. Life (Basel), 2023, 13(3), 845.
[http://dx.doi.org/10.3390/life13030845] [PMID: 36984000]
[22]
Piovan, A.; Filippini, R.; Argentini, C.; Moro, S.; Giusti, P.; Zusso, M. The Effect of C-Phycocyanin on Microglia Activation Is Mediated by Toll-like Receptor 4. Int. J. Mol. Sci., 2022, 23(3), 1440.
[http://dx.doi.org/10.3390/ijms23031440] [PMID: 35163363]
[23]
Li, Y. The Bioactivities of Phycocyanobilin from Spirulina. J. Immunol. Res., 2022, 2022, 4008991.
[PMID: 35726224]
[24]
Grover, P.; Bhatnagar, A.; Kumari, N.; Narayan Bhatt, A.; Kumar Nishad, D.; Purkayastha, J. C-Phycocyanin-a novel protein from Spirulina platensis-In vivo toxicity, antioxidant and immunomodulatory studies. Saudi J. Biol. Sci., 2021, 28(3), 1853-1859.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.037] [PMID: 33732072]
[25]
Jensen, G.S.; Drapeau, C.; Lenninger, M.; Benson, K.F. Clinical safety of a high dose of phycocyanin-enriched aqueous extract from Arthrospira (Spirulina) platensis : Results from a randomized, double-blind, placebo-controlled study with a focus on anticoagulant activity and platelet activation. J. Med. Food, 2016, 19(7), 645-653.
[http://dx.doi.org/10.1089/jmf.2015.0143] [PMID: 27362442]
[26]
Bigagli, E.; Cinci, L.; Niccolai, A.; Tredici, M.R.; Biondi, N.; Rodolfi, L.; Lodovici, M.; D’Ambrosio, M.; Mori, G.; Luceri, C. Safety evaluations and lipid-lowering activity of an Arthrospira platensis enriched diet: A 1-month study in rats. Food Res. Int., 2017, 102, 380-386.
[http://dx.doi.org/10.1016/j.foodres.2017.09.011] [PMID: 29195962]
[27]
Abdel-Daim, M.M.; Farouk, S.M.; Madkour, F.F.; Azab, S.S. Anti-inflammatory and immunomodulatory effects of Spirulina platensis in comparison to Dunaliella salina in acetic acid-induced rat experimental colitis. Immunopharmacol. Immunotoxicol., 2015, 37(2), 126-139.
[http://dx.doi.org/10.3109/08923973.2014.998368] [PMID: 25567297]
[28]
Coskun, Z.K.; Kerem, M.; Gurbuz, N.; Omeroglu, S.; Pasaoglu, H.; Demirtas, C.; Lortlar, N.; Salman, B.; Pasaoglu, O.T.; Turgut, H.B. The study of biochemical and histopathological effects of spirulina in rats with TNBS-induced colitis. Bratisl. Lek Listy, 2011, 112(5), 235-243.
[PMID: 21682075]
[29]
Garcia, F.A.O.; Sales-Campos, H.; Yuen, V.G.; Machado, J.R.; Viana, G.S.B.; Oliveira, C.J.F.; McNeill, J.H. Arthrospira Spirulina platensis attenuates dextran sulfate sodium-induced colitis in mice by suppressing key pro-inflammatory cytokines. Korean J. Gastroenterol., 2020, 76(3), 150-158.
[http://dx.doi.org/10.4166/kjg.2020.76.3.150]
[30]
Morsy, M.A.; Gupta, S.; Nair, A.B.; Venugopala, K.N.; Greish, K.; El-Daly, M. Protective effect of Spirulina platensis extract against dextran-sulfate-sodium-induced ulcerative colitis in rats. Nutrients, 2019, 11(10), 2309.
[http://dx.doi.org/10.3390/nu11102309] [PMID: 31569451]
[31]
Sb, D. Phytochemical screening and antibacterial activity of crude extracts of spirulina species isolated from lonar lake. Int. J. Res. Pharm. Pharm. Sci., 2018, 3, 43-47.
[32]
Nirmal, S.A.; Dhikale, R.S.; Girme, A.S.; Pal, S.C.; Mandal, S.C. Potential of the plant Thespesia populnea in the treatment of ulcerative colitis. Pharm. Biol., 2015, 53(9), 1379-1385.
[http://dx.doi.org/10.3109/13880209.2014.982302] [PMID: 25858438]
[33]
Algieri, F.; Rodriguez-Nogales, A.; Garrido-Mesa, N.; Zorrilla, P.; Burkard, N.; Pischel, I.; Sievers, H.; Benedek, B.; Feistel, B.; Walbroel, B.; Rodriguez-Cabezas, M.E.; Galvez, J. Intestinal anti-inflammatory activity of the Serpylli herba extract in experimental models of rodent colitis. J. Crohn’s Colitis, 2014, 8(8), 775-788.
[http://dx.doi.org/10.1016/j.crohns.2013.12.012] [PMID: 24411672]
[34]
Salunke, A.; Upmanyu, N. Formulation, development and evaluation of budesonide oral nano-sponges using DOE Approach: In Vivo Evidences. Adv. Pharm. Bull., 2021, 11(2), 286-294.
[PMID: 33880350]
[35]
Ansari, M.N.; Rehman, N.U.; Karim, A.; Soliman, G.A.; Ganaie, M.A.; Raish, M.; Hamad, A.M. Role of oxidative stress and inflammatory cytokines (TNF-α and IL-6) in acetic acid-induced ulcerative colitis in rats: Ameliorated by Otostegia fruticosa. Life (Basel), 2021, 11(3), 195.
[http://dx.doi.org/10.3390/life11030195] [PMID: 33802553]
[36]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[37]
Liu, L.; Liu, Y.; Cui, J.; Liu, H.; Liu, Y-B.; Qiao, W-L.; Sun, H.; Yan, C-D. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World J. Gastroenterol., 2013, 19(48), 9439-9446.
[http://dx.doi.org/10.3748/wjg.v19.i48.9439] [PMID: 24409074]
[38]
Sun, J.; Zhang, X.; Broderick, M.; Fein, H. Measurement of nitric oxide production in biological systems by using griess reaction assay. Sensors, 2003, 3(8), 276-284.
[http://dx.doi.org/10.3390/s30800276]
[39]
Daachi, F.; Adi-Bessalem, S.; Megdad-Lamraoui, A.; Laraba-Djebari, F. Immune-toxicity effects of scorpion venom on the hypothalamic pituitary adrenal axis during rest and activity phases in a rodent model. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2020, 235, 108787.
[http://dx.doi.org/10.1016/j.cbpc.2020.108787] [PMID: 32380264]
[40]
Merakeb, M.S.; Bribi, N.; Ferhat, R.; Aziez, M.; Yanat, B. Alkaloids extract from linum usitatissimum attenuates 12-O-Tetradecanoylphorbol-13-Acetate (TPA)-induced inflammation and oxidative stress in mouse skin. Antiinflamm. Antiallergy Agents Med. Chem., 2022, 22, 1-1.
[41]
Jollow, D.J.; Mitchell, J.R.; Zampaglione, N.; Gillette, J.R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology, 1974, 11(3), 151-169.
[http://dx.doi.org/10.1159/000136485] [PMID: 4831804]
[42]
Sheela, D.; Uthayakumari, F. GC-MS analysis of bioactive constituents from coastal sand dune taxon – Sesuvium portulacastrum (L.). Biosci. Discov., 2013, 4(1), 47-53.
[43]
Arsana, I.N.; Juliasih, N.; Ayu Sauca Sunia Widyantari, A.; Suriani, N.; Manto, A. GC-MS analysis of the active compound in ethanol extracts of white pepper (Piper nigrum L.) and pharmacological effects. Cellular, Molecul. Biomed. Rep., 2022, 2(3), 151-161.
[http://dx.doi.org/10.55705/cmbr.2022.351720.1051]
[44]
Sukhikh, S.; Prosekov, A.; Ivanova, S.; Maslennikov, P.; Andreeva, A.; Budenkova, E.; Kashirskikh, E.; Tcibulnikova, A.; Zemliakova, E.; Samusev, I.; Babich, O. Identification of metabolites with antibacterial activities by analyzing the FTIR spectra of microalgae. Life, 2022, 12(9), 1395.
[http://dx.doi.org/10.3390/life12091395] [PMID: 36143431]
[45]
Elain, A.; Nkounkou, C.; Le Fellic, M.; Donnart, K. Green extraction of polysaccharides from Arthrospira platensis using high pressure homogenization. J. Appl. Phycol., 2020, 32(3), 1719-1727.
[http://dx.doi.org/10.1007/s10811-020-02127-y]
[46]
Pedrosa, M.; Ribeiro, R.S.; Guerra-Rodríguez, S.; Rodríguez-Chueca, J.; Rodríguez, E.; Silva, A.M.T.; Ðolic, M.; Rita Lado Ribeiro, A. Spirulina-based carbon bio-sorbent for the efficient removal of metoprolol, diclofenac and other micropollutants from wastewater. Environ. Nanotechnol. Monit. Manag., 2022, 18, 100720.
[http://dx.doi.org/10.1016/j.enmm.2022.100720]
[47]
Anwar, B.; Khairunnisa, T.; Sunarya, Y. Corrosion inhibition of A516 carbon steel in 0.5 M HCl solution using Arthrospira platensis extract as green inhibitor. Int. J. Corros. Scale Inhib., 2020, 9, 244-256.
[48]
Ertani, A.; Nardi, S.; Francioso, O.; Sanchez-Cortes, S.; Foggia, M.D.; Schiavon, M. Effects of two protein hydrolysates obtained from chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. Front. Plant Sci., 2019, 10, 954.
[http://dx.doi.org/10.3389/fpls.2019.00954] [PMID: 31404240]
[49]
Kumar, N.; Banerjee, C.; Kumar, N.; Jagadevan, S. A novel non-starch based cationic polymer as flocculant for harvesting microalgae. Bioresour. Technol., 2019, 271, 383-390.
[http://dx.doi.org/10.1016/j.biortech.2018.09.073] [PMID: 30296745]
[50]
El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green synthesis of zinc oxide nanoparticles (zno-nps) using Arthrospira platensis (Class: Cyanophyceae) and evaluation of their biomedical activities. Nanomaterials, 2021, 11(1), 95.
[http://dx.doi.org/10.3390/nano11010095] [PMID: 33406606]
[51]
Wéra, O.; Lancellotti, P.; Oury, C. The dual role of neutrophils in inflammatory bowel diseases. J. Clin. Med., 2016, 5(12), 118.
[http://dx.doi.org/10.3390/jcm5120118] [PMID: 27999328]
[52]
Halliwell, B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med., 1991, 91(3), S14-S22.
[http://dx.doi.org/10.1016/0002-9343(91)90279-7] [PMID: 1928205]
[53]
Gaschler, M.M.; Stockwell, B.R. Lipid peroxidation in cell death. Biochem. Biophys. Res. Commun., 2017, 482(3), 419-425.
[http://dx.doi.org/10.1016/j.bbrc.2016.10.086] [PMID: 28212725]
[54]
Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, 43(2), 109-142.
[PMID: 1852778]
[55]
Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 2007, 15(6), 252-259.
[http://dx.doi.org/10.1007/s10787-007-0013-x] [PMID: 18236016]
[56]
Shang, F.; Lu, M.; Dudek, E.; Reddan, J.; Taylor, A.; Vitamin, C.; Vitamin, E. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic. Biol. Med., 2003, 34(5), 521-530.
[http://dx.doi.org/10.1016/S0891-5849(02)01304-7] [PMID: 12614841]
[57]
Yeh, S.L.; Shih, Y.M.; Lin, M.T. Glutamine and its antioxidative potentials in diabetes. In: Diabetes, 2nd ed; Preedy, V.R., Ed.; Academic Press, 2020; pp. 255-264.
[http://dx.doi.org/10.1016/B978-0-12-815776-3.00025-5]
[58]
Mehta, S.J.; Silver, A.R.; Lindsay, J.O. Review article: strategies for the management of chronic unremitting ulcerative colitis. Aliment. Pharmacol. Ther., 2013, 38(2), 77-97.
[http://dx.doi.org/10.1111/apt.12345] [PMID: 23718288]
[59]
Bribi, N.; Merakeb, M.S.; Boudaoud-Ouahmed, H. Intestinal anti-inflammatory effects of Linum usitatissimum alkaloid on experimental ulcerative colitis in BALB/c Mice. Curr. Bioact. Compd., 2023, 19(8), e170423215930.
[http://dx.doi.org/10.2174/1573407219666230417112912]
[60]
Higashiyama, M.; Hokari, R. New and emerging treatments for inflammatory bowel disease. Digestion, 2023, 104(1), 74-81.
[http://dx.doi.org/10.1159/000527422] [PMID: 36366823]
[61]
Morampudi, V.; Bhinder, G.; Wu, X.; Dai, C.; Sham, H.P.; Vallance, B.A.; Jacobson, K. DNBS/TNBS colitis models: providing insights into inflammatory bowel disease and effects of dietary fat. J. Vis. Exp., 2014, 2014(84), e51297.
[PMID: 24637969]
[62]
Antoniou, E.; Margonis, G.A.; Angelou, A.; Pikouli, A.; Argiri, P.; Karavokyros, I.; Papalois, A.; Pikoulis, E. The TNBS-induced colitis animal model: An overview. Ann. Med. Surg., 2016, 11, 9-15.
[http://dx.doi.org/10.1016/j.amsu.2016.07.019] [PMID: 27656280]
[63]
Chidrawar, V.; Alsuwayt, B. Defining the role of CFTR channel blocker and ClC-2 activator in DNBS induced gastrointestinal inflammation. Saudi Pharm. J., 2021, 29(4), 291-304.
[http://dx.doi.org/10.1016/j.jsps.2021.02.005] [PMID: 33994824]
[64]
Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Caputi, A.P.; Riley, D.P.; Salvemini, D. Protective effects of M40403, a superoxide dismutase mimetic, in a rodent model of colitis. Eur. J. Pharmacol., 2001, 432(1), 79-89.
[http://dx.doi.org/10.1016/S0014-2999(01)01427-3] [PMID: 11734191]
[65]
Ramonaite, R.; Skieceviciene, J.; Kiudelis, G.; Jonaitis, L.; Tamelis, A.; Cizas, P.; Borutaite, V.; Kupcinskas, L. Influence of NADPH oxidase on inflammatory response in primary intestinal epithelial cells in patients with ulcerative colitis. BMC Gastroenterol., 2013, 13(1), 159.
[http://dx.doi.org/10.1186/1471-230X-13-159] [PMID: 24229374]
[66]
Guo, W.; Zhu, S.; Feng, G.; Wu, L.; Feng, Y.; Guo, T.; Yang, Y.; Wu, H.; Zeng, M. Microalgae aqueous extracts exert intestinal protective effects in Caco-2 cells and dextran sodium sulphate-induced mouse colitis. Food Funct., 2020, 11(1), 1098-1109.
[http://dx.doi.org/10.1039/C9FO01028A] [PMID: 31825424]
[67]
Johnson, T.O.; Odoh, K.D.; Nwonuma, C.O.; Akinsanmi, A.O.; Adegboyega, A.E. Biochemical evaluation and molecular docking assessment of the anti-inflammatory potential of Phyllanthus nivosus leaf against ulcerative colitis. Heliyon, 2020, 6(5), e03893.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03893] [PMID: 32426537]