Nanoscience & Nanotechnology-Asia

Author(s): Babita Gupta, Rishabha Malviya*, Sonali Sundram and Bhupinder Singh

DOI: 10.2174/0122106812329611240913161126

DownloadDownload PDF Flyer Cite As
Nanoparticulate Herbal Formulation for the Management of Fungal Infection

Article ID: e22106812329611 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Fungal infections have been more common during the past few years as a result of an increase in the population of immunocompromised people, including those with cancer, HIV/AIDS, and organ transplant recipients. It has been reported that fungal infection is brought on by different pathogens. The main focus of this review is the use of nanosized plant components to stop fungal infections for the pharmaceutical industry and research projects. According to research about 40 million people have fungal infections. Echinocandins, griseofulvin, azoles, allylamines, and flucytosine are only a few antifungal medications used in clinical settings to treat fungal infections. Skin infections caused by fungi are among the most prevalent dermatological issues of today. Fungal infections at the skin's surface or under the skin's surface may harm the skin, keratinous tissues, and mucous membranes. Therefore, there is a high need for producing an antifungal agent that may act selectively on new targets while having minor side effects and can belong to a variety of structural classes. Natural goods offer limitless prospects for innovative medicine development due to their typically unrivaled chemical variety, whether in the form of pure phyto-compounds or standardized plant extracts. Plants have been an excellent source of medicine since the beginning of time. When compared to synthetically produced medications, phytochemicals from various plant species have been versicolor as a more potent source of therapy. Novel cell targets and antifungal chemicals, as well as new methods for the delivery of drugs based on nanotechnology, are all currently being studied.

Keywords: Herbal medicine, fungal infection, phytochemicals, pityriasis versicolor, nanotechnology, malassezia folliculitis.

Graphical Abstract

[1]
Epstein, J.B. Antifungal therapy in oropharyngeal mycotic infections. Oral Surg. Oral Med. Oral Pathol., 1990, 69(1), 32-41.
[http://dx.doi.org/10.1016/0030-4220(90)90265-T] [PMID: 2404226]
[2]
Dreizen, S. Oral candidiasis. Am. J. Med., 1984, 77(4D), 28-33.
[PMID: 6496525]
[3]
Budtz-Jörgensen, E. Etiology, pathogenesis, therapy, and prophylaxis of oral yeast infections. Acta Odontol. Scand., 1990, 48(1), 61-69.
[http://dx.doi.org/10.3109/00016359009012735] [PMID: 2181812]
[4]
Groll, A.; Shah, P.; Mentzel, C.; Schneider, M.; Justnuebling, G.; Huebner, K. Trends in the postmortem epidemiology of invasive fungal infections at a University Hospital. J. Infect., 1996, 33(1), 23-32.
[http://dx.doi.org/10.1016/S0163-4453(96)92700-0] [PMID: 8842991]
[5]
Denning, D.W.; Evans, E.G.V.; Kibbler, C.C.; Richardson, M.D.; Roberts, M.M.; Rogers, T.R.; Warnock, D.W.; Warren, R.E. Guidelines for the investigation of invasive fungal infections in haematological malignancy and solid organ transplantation. Eur. J. Clin. Microbiol. Infect. Dis., 1997, 16(6), 424-436.
[http://dx.doi.org/10.1007/BF02471906] [PMID: 9248745]
[6]
Kaushik, K.; Agarwal, S.H. The role of herbal antifungal agents for the management of fungal diseases: A systematic review. Asian J. Pharm. Clin. Res., 2019, 12(7), 34-40.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i7.33831]
[7]
Sathyan, G.; Ritschel, W.A.; Hussain, A.S. Transdermal delivery of tacrine: I. Identification of a suitable delivery vehicle. Int. J. Pharm., 1995, 114(1), 75-83.
[http://dx.doi.org/10.1016/0378-5173(94)00214-P]
[8]
Güngör, S. New Formulation Strategies in Topical Antifungal Therapy. J. Cosmet. Dermatol. Sci. Appl., 2013, 3(1A), 56-65.
[9]
Gonda, A.; Zhao, N.; Shah, J.V.; Calvelli, H.R.; Kantamneni, H.; Francis, N.L.; Ganapathy, V. Engineering tumor-targeting nanoparticles as vehicles for precision nanomedicine. Med One, 2019, 4, 4.
[PMID: 31592196]
[10]
Özçelik, B.; Aslan, M.; Orhan, I.; Karaoglu, T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol. Res., 2005, 160(2), 159-164.
[http://dx.doi.org/10.1016/j.micres.2004.11.002] [PMID: 15881833]
[11]
Kumar, Mishra Medicinal Plants Having Antifungal Properties. Medicinal Plants - Use in Prevention and Treatment of Diseases; InTechOpen: London, 2020.
[12]
Canavan, T.N.; Elewski, B.E. Identifying signs of tinea pedis: A key to understanding clinical variables. J. Drugs Dermatol., 2015, 14(10), s42-s47.
[PMID: 26461834]
[13]
Hay, R.J.; Adriaans, B.M. Rooks Textbook of Dermatology, 8th ed; Wiley: Hoboken, New Jersey, 2010.
[14]
Borman, A.M.; Campbell, C.K.; Fraser, M.; Johnson, E.M. Analysis of the dermatophyte species isolated in the British Isles between 1980 and 2005 and review of worldwide dermatophyte trends over the last three decades. Med Microbiol., 2006, 44, 1e11.
[15]
Mignon, B.; Tabart, J.; Baldo, A. Immunization and dermatophytes. Curr. Opin. Infect. Dis., 2008, 21(2), 134-140.
[http://dx.doi.org/10.1097/QCO.0b013e3282f55de6]
[16]
Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; Abraham, J.; Ackerman, I.; Aggarwal, R.; Ahn, S.Y.; Ali, M.K.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Bahalim, A.N.; Barker-Collo, S.; Barrero, L.H.; Bartels, D.H.; Basáñez, M-G.; Baxter, A.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bernabé, E.; Bhalla, K.; Bhandari, B.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Black, J.A.; Blencowe, H.; Blore, J.D.; Blyth, F.; Bolliger, I.; Bonaventure, A.; Boufous, S.; Bourne, R.; Boussinesq, M.; Braithwaite, T.; Brayne, C.; Bridgett, L.; Brooker, S.; Brooks, P.; Brugha, T.S.; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Buckle, G.; Budke, C.M.; Burch, M.; Burney, P.; Burstein, R.; Calabria, B.; Campbell, B.; Canter, C.E.; Carabin, H.; Carapetis, J.; Carmona, L.; Cella, C.; Charlson, F.; Chen, H.; Cheng, A.T-A.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahiya, M.; Dahodwala, N.; Damsere-Derry, J.; Danaei, G.; Davis, A.; De Leo, D.; Degenhardt, L.; Dellavalle, R.; Delossantos, A.; Denenberg, J.; Derrett, S.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dherani, M.; Diaz-Torne, C.; Dolk, H.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Edmond, K.; Elbaz, A.; Ali, S.E.; Erskine, H.; Erwin, P.J.; Espindola, P.; Ewoigbokhan, S.E.; Farzadfar, F.; Feigin, V.; Felson, D.T.; Ferrari, A.; Ferri, C.P.; Fèvre, E.M.; Finucane, M.M.; Flaxman, S.; Flood, L.; Foreman, K.; Forouzanfar, M.H.; Fowkes, F.G.R.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabbe, B.J.; Gabriel, S.E.; Gakidou, E.; Ganatra, H.A.; Garcia, B.; Gaspari, F.; Gillum, R.F.; Gmel, G.; Gosselin, R.; Grainger, R.; Groeger, J.; Guillemin, F.; Gunnell, D.; Gupta, R.; Haagsma, J.; Hagan, H.; Halasa, Y.A.; Hall, W.; Haring, D.; Haro, J.M.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Higashi, H.; Hill, C.; Hoen, B.; Hoffman, H.; Hotez, P.J.; Hoy, D.; Huang, J.J.; Ibeanusi, S.E.; Jacobsen, K.H.; James, S.L.; Jarvis, D.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Jonas, J.B.; Karthikeyan, G.; Kassebaum, N.; Kawakami, N.; Keren, A.; Khoo, J-P.; King, C.H.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lalloo, R.; Laslett, L.L.; Lathlean, T.; Leasher, J.L.; Lee, Y.Y.; Leigh, J.; Lim, S.S.; Limb, E.; Lin, J.K.; Lipnick, M.; Lipshultz, S.E.; Liu, W.; Loane, M.; Ohno, S.L.; Lyons, R.; Ma, J.; Mabweijano, J.; MacIntyre, M.F.; Malekzadeh, R.; Mallinger, L.; Manivannan, S.; Marcenes, W.; March, L.; Margolis, D.J.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGill, N.; McGrath, J.; Medina-Mora, M.E.; Meltzer, M.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Meyer, A-C.; Miglioli, V.; Miller, M.; Miller, T.R.; Mitchell, P.B.; Mocumbi, A.O.; Moffitt, T.E.; Mokdad, A.A.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moran, A.; Morawska, L.; Mori, R.; Murdoch, M.E.; Mwaniki, M.K.; Naidoo, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nelson, P.K.; Nelson, R.G.; Nevitt, M.C.; Newton, C.R.; Nolte, S.; Norman, P.; Norman, R.; O’Donnell, M.; O’Hanlon, S.; Olives, C.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Page, A.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Patten, S.B.; Pearce, N.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Pesudovs, K.; Phillips, D.; Phillips, M.R.; Pierce, K.; Pion, S.; Polanczyk, G.V.; Polinder, S.; Pope, C.A., III; Popova, S.; Porrini, E.; Pourmalek, F.; Prince, M.; Pullan, R.L.; Ramaiah, K.D.; Ranganathan, D.; Razavi, H.; Regan, M.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Richardson, K.; Rivara, F.P.; Roberts, T.; Robinson, C.; De Leòn, F.R.; Ronfani, L.; Room, R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Saha, S.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Schwebel, D.C.; Scott, J.G.; Segui-Gomez, M.; Shahraz, S.; Shepard, D.S.; Shin, H.; Shivakoti, R.; Silberberg, D.; Singh, D.; Singh, G.M.; Singh, J.A.; Singleton, J.; Sleet, D.A.; Sliwa, K.; Smith, E.; Smith, J.L.; Stapelberg, N.J.C.; Steer, A.; Steiner, T.; Stolk, W.A.; Stovner, L.J.; Sudfeld, C.; Syed, S.; Tamburlini, G.; Tavakkoli, M.; Taylor, H.R.; Taylor, J.A.; Taylor, W.J.; Thomas, B.; Thomson, W.M.; Thurston, G.D.; Tleyjeh, I.M.; Tonelli, M.; Towbin, J.A.; Truelsen, T.; Tsilimbaris, M.K.; Ubeda, C.; Undurraga, E.A.; van der Werf, M.J.; van Os, J.; Vavilala, M.S.; Venketasubramanian, N.; Wang, M.; Wang, W.; Watt, K.; Weatherall, D.J.; Weinstock, M.A.; Weintraub, R.; Weisskopf, M.G.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, S.R.M.; Witt, E.; Wolfe, F.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Zaidi, A.K.M.; Zheng, Z-J.; Zonies, D.; Lopez, A.D.; Murray, C.J.L. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2163-2196.
[http://dx.doi.org/10.1016/S0140-6736(12)61729-2] [PMID: 23245607]
[17]
Braun-Falco, O.; Plewig, G.; Wolff, H.H.; Winkelmann, R.K. Dermatology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013, p. 11.
[18]
Arnold, H.L.; Odom, R.; William, J. Andrews’ Diseases of the Skin, 8th ed; W.B. Saunders: Philadelphia, 1990.
[19]
Semel, J.D.; Goldin, H. Association of athlete’s foot with cellulitis of the lower extremities: Diagnostic value of bacterial cultures of ipsilateral interdigital space samples. Clin. Infect. Dis., 1996, 23(5), 1162-1164.
[http://dx.doi.org/10.1093/clinids/23.5.1162] [PMID: 8922818]
[20]
Kobayashi, G.S. Disease Mechanisms of Fungi.Medical Microbiology; University of Texas Medical Branch at Galveston: Galveston, Texas, 1996.
[21]
Velegraki, A.; Cafarchia, C.; Gaitanis, G.; Iatta, R.; Boekhout, T. Malassezia infections in humans and animals: Pathophysiology, detection, and treatment. PLoS Pathog., 2015, 11(1), e1004523.
[http://dx.doi.org/10.1371/journal.ppat.1004523] [PMID: 25569140]
[22]
Pfaller, M.A.; Jones, R.N.; Messer, S.A.; Edmond, M.B.; Wenzel, R.P. National surveillance of nosocomial bloodstream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE Program. SCOPE Participant Group. Surveillance and Control of Pathogens of Epidemiologic. Diagn. Microbiol. Infect. Dis., 1998, 31, 327-332.
[http://dx.doi.org/10.1016/S0732-8893(97)00240-X] [PMID: 9597393]
[23]
Pfaller, M.A.; Jones, R.N.; Messer, S.A.; Edmond, M.B.; Wenzel, R.P. National surveillance of nosocomial bloodstream infection due to species of Candida other than Candida albicans: Frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn. Microbiol. Infect. Dis., 1998, 30(2), 121-129.
[http://dx.doi.org/10.1016/S0732-8893(97)00192-2] [PMID: 9554180]
[24]
Bodey, G.P.; Buckley, M.; Sathe, Y.S.; Freireich, E.J. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med., 1966, 64(2), 328-340.
[http://dx.doi.org/10.7326/0003-4819-64-2-328] [PMID: 5216294]
[25]
Murtaza, G.; Mukhtar, M.; Sarfraz, A. A review: Antifungal potentials of medicinal plants. J. Biores. Manag., 2015, 2(2), 4.
[http://dx.doi.org/10.35691/JBM.5102.0018]
[26]
Jelen, G.; Tennstedt, D. Contact dermatitis from topical imidazole antifungals: 15 new cases. Contact Dermat., 1989, 21(1), 6-11.
[http://dx.doi.org/10.1111/j.1600-0536.1989.tb04677.x] [PMID: 2530045]
[27]
Dorn, M.; Scherwitz, C.; Lentze, I.; Plewig, G. In-vitro -Testung und klinische Prüfung. MMW Munch. Med. Wochenschr., 1975, 117(16), 687-692.
[PMID: 805931]
[28]
Kotrekhova, L.P. The effective use of isoconazole nitrate and diflucortolone valerate cream in the treatment of inguino‐femoral skin fold mycosis. Mycoses, 2008, 51(s4)(Suppl. 4), 29-31.
[http://dx.doi.org/10.1111/j.1439-0507.2008.01612.x] [PMID: 18783562]
[29]
Gupta, A.K.; Daigle, D.; Foley, K.A. Drug safety assessment of oral formulations of ketoconazole. Expert Opin. Drug Saf., 2015, 14(2), 325-334.
[http://dx.doi.org/10.1517/14740338.2015.983071] [PMID: 25409549]
[30]
DeFelice, R.; Johnson, D.G.; Galgiani, J.N. Gynecomastia with ketoconazole. Antimicrob. Agents Chemother., 1981, 19(6), 1073-1074.
[http://dx.doi.org/10.1128/AAC.19.6.1073] [PMID: 6267997]
[31]
Heykants, J.; Van Peer, A.; Van de Velde, V.; Van Rooy, P.; Meuldermans, W.; Lavrijsen, K.; Woestenborghs, R.; Van Cutsem, J.; Cauwenbergh, G. The clinical pharmacokinetics of itraconazole: An overview. Mycoses, 1989, 32(s1)(Suppl. 1), 67-87.
[http://dx.doi.org/10.1111/j.1439-0507.1989.tb02296.x] [PMID: 2561187]
[32]
Szymański, M.; Chmielewska, S.; Czyżewska, U.; Malinowska, M.; Tylicki, A. Echinocandins – structure, mechanism of action and use in antifungal therapy. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 876-894.
[http://dx.doi.org/10.1080/14756366.2022.2050224] [PMID: 35296203]
[33]
Sigera, L.S.M.; Denning, D.W. Flucytosine and its clinical usage. Ther. Adv. Infect. Dis., 2023, 10, 61387.
[http://dx.doi.org/10.1177/20499361231161387] [PMID: 37051439]
[34]
Peng, D.S.; Lo, C.H.; Tseng, Y.L.; Kuo, S.L.; Chiang, C.P.; Chiang, M.L. Efficacy of oral nystatin treatment for patients with oral mucosal dysesthesia but without objective oral mucosal manifestations and necessity of Candida culture test before oral nystatin treatment. J. Dent. Sci., 2022, 17(4), 1802-1813.
[http://dx.doi.org/10.1016/j.jds.2022.08.005] [PMID: 36299322]
[35]
Moseley, R.H. Antifungal agents. Hepatoxicity of antimicrobials and antifungal agents.Drug-induced liver disease; 3rd ed.; Kaplowitz, N.; DeLeve, L.D., Eds.; Elsevier: Amsterdam, 2013, pp. 470-473.
[http://dx.doi.org/10.1016/B978-0-12-387817-5.00026-1]
[36]
Reinel, D.; Clarke, C. Comparative efficacy and safety of amorolfine nail lacquer 5% in onychomycosis, once-weekly versus twice-weekly. Clin. Exp. Dermatol., 1992, 17(s1)(Suppl. 1), 44-49.
[http://dx.doi.org/10.1111/j.1365-2230.1992.tb00278.x] [PMID: 1458665]
[37]
United States. Environmental Protection Agency. Health Effects Assessment Summary Tables (Heast). 1992. Available From: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=2877
[38]
Practo. Budamate 200 Transcaps. 2028. Available From: https://www.practo.com/medicine-info/budamate-200-transcaps-46251
[39]
Thirup, L.; Johnsen, K.; Torsvik, V.; Spliid, N.H.; Jacobsen, C.S. Effects of fenpropimorph on bacteria and fungi during decomposition of barley roots. Soil Biol. Biochem., 2001, 33(11), 1517-1524.
[http://dx.doi.org/10.1016/S0038-0717(01)00067-0]
[40]
Drew, R.H. Polyenes for prevention and treatment of invasive fungal infections. Antifungal Therapy, 2nd ed; CRC Press: Boca Raton, Florida, 2019.
[http://dx.doi.org/10.1201/9780429402012-10]
[41]
Saunders, J.; Maki, K.; Koski, R.; Nybo, S.E. Tavaborole, efinaconazole, and luliconazole: Three new antimycotic agents for the treatment of dermatophytic fungi. J. Pharm. Pract., 2017, 30(6), 621-630.
[http://dx.doi.org/10.1177/0897190016660487] [PMID: 27488125]
[42]
Subissi, A.; Monti, D.; Togni, G.; Mailland, F. Ciclopirox. Drugs, 2010, 70(16), 2133-2152.
[http://dx.doi.org/10.2165/11538110-000000000-00000] [PMID: 20964457]
[43]
Roy, M.A.; Nugent, F.W.; Aretz, H.T. Micronodular cirrhosis after thiabendazole. Dig. Dis. Sci., 1989, 34(6), 938-941.
[http://dx.doi.org/10.1007/BF01540282] [PMID: 2721325]
[44]
Ferreira, M.R.A.; Santiago, R.R.; Langassner, S.M.Z.; Palazzo de Mello, J.C.; Svidzinski, T.I.E.; Soares, L.A.L. Antifungal activity of medicinal plants from Northeastern Brazil. J. Med. Plants Res., 2013, 7(40), 3008-3013.
[http://dx.doi.org/10.5897/JMPR2013.5035]
[45]
Koroishi, A.M.; Foss, S.R.; Cortez, D.A.G.; Ueda-Nakamura, T.; Nakamura, C.V.; Dias Filho, B.P. In vitro antifungal activity of extracts and neolignans from Piper regnellii against dermatophytes. J. Ethnopharmacol., 2008, 117(2), 270-277.
[http://dx.doi.org/10.1016/j.jep.2008.01.039] [PMID: 18394835]
[46]
Manojlovic, N.T.; Solujic, S.; Sukdolak, S.; Milosev, M. Antifungal activity of Rubia tinctorum, Rhamnus frangula and Caloplaca cerina. Fitoterapia, 2005, 76(2), 244-246.
[http://dx.doi.org/10.1016/j.fitote.2004.12.002] [PMID: 15752641]
[47]
Dabur, R.; Chhillar, A.K.; Yadav, V.; Kamal, P.K.; Gupta, J.; Sharma, G.L. In vitro antifungal activity of 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, a dihydropyrrole derivative. J. Med. Microbiol., 2005, 54(6), 549-552.
[http://dx.doi.org/10.1099/jmm.0.45968-0] [PMID: 15888463]
[48]
Endo, K.; Kanno, E.; Oshima, Y. Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry, 1990, 29(3), 797-799.
[http://dx.doi.org/10.1016/0031-9422(90)80021-8]
[49]
Kim, K.Y.; Davidson, P.M.; Chung, H.J. Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J. Food Prot., 2001, 64(8), 1255-1260.
[http://dx.doi.org/10.4315/0362-028X-64.8.1255] [PMID: 11510672]
[50]
Ingham, J.L.; Tahara, S.; Harborne, J.B. Fungitoxic isoflavones from Lupinus albus and other Lupinus species. Z. Naturforsch. C J. Biosci., 1983, 38(3-4), 194-200.
[http://dx.doi.org/10.1515/znc-1983-3-407]
[51]
Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S. Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol., 2001, 76(1), 93-98.
[http://dx.doi.org/10.1016/S0378-8741(01)00214-8] [PMID: 11378288]
[52]
Kobayashi, K.; Nishino, C.; Tomita, H.; Fukushima, M. Antifungal activity of pisiferic acid derivatives against the rice blast fungus. Phytochemistry, 1987, 26(12), 3175-3179.
[http://dx.doi.org/10.1016/S0031-9422(00)82465-6]
[53]
Ito, T.; Kumazawa, K. Antifungal substances from mechanically damaged cherry leaves (Prumus yedoensis matsumura). Biosci. Biotechnol. Biochem., 1992, 56(10), 1655.
[http://dx.doi.org/10.1271/bbb.56.1655]
[54]
Jain, N.; Valli, K.S.; Devi, V.K. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev., 2010, 4(7), 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[55]
López-Bascón, M.A.; De Castro, M.L. Soxhlet extraction. Liquid-Phase Extraction: Handbooks in Separation Science; Elsevier: Amsterdam, 2020.
[http://dx.doi.org/10.1016/B978-0-12-816911-7.00011-6]
[56]
Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control, 2018, 89(89), 1-11.
[http://dx.doi.org/10.1016/j.foodcont.2018.01.018]
[57]
Beyatricks, K.J.; Kumar, K.S.; Suchitra, D.; Jainab, N.H.; Anita, A. Recent microsphere formulations and its applications in herbal drugs-a review. Int J Pharm Dev Technol, 2014, 4(01), 58-62.
[58]
Chakraborty, K.; Shivakumar, A.; Ramachandran, S. Nano-technology in herbal medicines: A review. Int. J. Herb. Med., 2016, 4(3), 21-27.
[http://dx.doi.org/10.22271/flora.2016.v4.i3.05]
[59]
Indalkar, Y.R.; Pimpodkar, N.V.; Godase, A.S.; Gaikwad, P.S. A compressive review on the study of nanotechnology for herbal drugs. Asian J. Pharmaceut. Res., 2015, 5(4), 203-207.
[http://dx.doi.org/10.5958/2231-5691.2015.00031.3]
[60]
Sharma, A.T.; Mitkare, S.S.; Moon, R.S. Multicomponent herbal therapy: A review. Int. J. Pharm. Sci. Rev. Res., 2011, 6, 185-187.
[61]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[62]
Goyal, A.; Kumar, S.; Nagpal, M.; Singh, I.; Arora, S. Potential of novel drug delivery systems for herbal drugs. Indian J. Pharmaceut. Edu. Res., 2011, 45(3), 225-235.
[63]
Thapa, R.K.; Khan, G.M.; Parajuli-Baral, K.; Thapa, P. Herbal Medicine Incorporated Nanoparticles: Advancements in Herbal Treatment. Asian J. Biomed. Pharmaceu. Sci., 2013, 3(24), 7-14.
[64]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97(97), 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[65]
Lin, C.H.; Chen, C.H.; Lin, Z.C.; Fang, J.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. Yao Wu Shi Pin Fen Xi, 2017, 25(2), 219-234.
[PMID: 28911663]
[66]
Sen, S.; Chakraborty, R. Toward the integration and advancement of herbal medicine: A focus on traditional Indian medicine. Botanics, 2015, 13, 33-44.
[http://dx.doi.org/10.2147/BTAT.S66308]
[67]
Teli, D.; Satasia, R.; Patel, V.; Nair, R.; Khatri, R.; Gala, D.; Balar, P.C.; Patel, K.; Sharma, A.; Vadodariya, P.; Chavda, V.P. Nature meets technology: Harnessing nanotechnology to unleash the power of phytochemicals. Clin. Trad. Med. Pharmacol., 2024, 5(2), 200139.
[http://dx.doi.org/10.1016/j.ctmp.2024.200139]
[68]
Gupta, V.K.; Karar, P.K.; Ramesh, S.; Misra, S.P.; Gupta, A. Nanoparticle formulation for hydrophilic & hydrophobic drugs. Int J Res Pharm Sci, 2010, 1(2), 163-169.
[69]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release, 2012, 161(1), 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036] [PMID: 22564368]
[70]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.N.V.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015] [PMID: 16790290]
[71]
Allémann, E.; Gurny, R.; Doelker, E. Drug-loaded nanoparticles: Preparation methods and drug targeting issues. Eur. J. Pharm. Biopharm., 1993, 39(5), 173-191.
[72]
Brigger, I.; Dubernet, C.; Couvreur, P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev., 2012, 64(64), 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[73]
Gref, R.; Minamitake, Y.; Peracchia, M.T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science, 1994, 263(5153), 1600-1603.
[http://dx.doi.org/10.1126/science.8128245] [PMID: 8128245]
[74]
Sachan, A.K.; Gupta, A. A review on nanotized herbal drugs. Int. J. Pharm. Sci. Res., 2015, 6(3), 961.
[75]
Verma, H.; Prasad, S.B.; Yashwant, S.H. Herbal drug delivery system: A modern era prospective. Int J Current Pharma Rev Res, 2013, 4, 88-101.
[76]
Fréchet, J.M. Dendrimers and supramolecular chemistry. PNAS, 2002, 99(8), 4782-4787.
[77]
Min, K.H.; Park, K.; Kim, Y.S.; Bae, S.M.; Lee, S.; Jo, H.G.; Park, R.W.; Kim, I.S.; Jeong, S.Y.; Kim, K.; Kwon, I.C. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J. Control. Release, 2008, 127(3), 208-218.
[78]
Zeisser-Labouèbe, M.; Lange, N.; Gurny, R.; Delie, F. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int. J. Pharm., 2006, 326(1-2), 174-181.
[http://dx.doi.org/10.1016/j.ijpharm.2006.07.012] [PMID: 16930882]
[79]
Bombardelli, E.; Patri, G.F. Complex compounds of bioflavonoids with phospholipids, their preparation and use, and pharmaceutical and cosmetic compositions containing them. US Patent 5043323A, 1991.
[80]
Bombardelli, E.; Spelta, M. Phospholipid-polyphenol complexes: A new concept in skin care ingredients. Cosmet. Toilet., 1991, 106(3), 69-76.
[81]
Bombardelli, E.; Mustich, G. Bilobalide phospholipide complexes, their applications and formulations containing them. EP Patent 0441279A1, 1991.
[82]
Bhattacharya, S. Phytosomes: Emerging strategy in delivery of herbal drugs and nutraceuticals. Pharm. Times, 2009, 41(3), 9-12.
[83]
Ravi, G.S.; Chandur, V.; Shabaraya, A.R.; Sanjay, K. Phytosomes: An advanced herbal drug delivery system. Int. J. Pharmaceut. Res. Biomed. Sci., 2015, 4(3), 415-432.
[84]
Kareparamban, J.A.; Nikam, P.H.; Jadhav, A.P.; Kadam, V.J. Phytosome: A novel revolution in herbal drugs. IJRPC, 2012, 2(2), 299-310.
[85]
Deshpande, P.K.; Pathak, A.K.; Gothalwal, R. Phytosomes: A noval drug delivery system for phytoconstituents. J. New Biol. Rep., 2014, 3(3), 212-220.
[86]
Pawar, H.A.; Bhangale, B.D. Phytosome as a novel biomedicine: A microencapsulated drug delivery system. J. Bioanal. Biomed., 2015, 5, 7.
[87]
Singh, R.P.; Parpani, S.; Narke, R.; Chavan, R. Phytosome: Recent advance research for novel drug delivery system. Asian J. Pharmaceut. Res. Develop., 2014, 1, 15-29.
[88]
Karpuz, M.; Gunay, M.S.; Ozer, A.Y. Liposomes and phytosomes for phytoconstituents.Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Elsevier: Amsterdam, 2020.
[89]
Alharbi, W.S.; Almughem, F.A.; Almehmady, A.M.; Jarallah, S.J.; Alsharif, W.K.; Alzahrani, N.M.; Alshehri, A.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics, 2021, 13(9), 1475.
[http://dx.doi.org/10.3390/pharmaceutics13091475] [PMID: 34575551]
[90]
Hari Priya, V.M.; Kumaran, A. Recent trends in phytosome nanocarriers for improved bioavailability and uptake of herbal drugs. Ulum-i Daruyi, 2023, 29(3), 298-319.
[http://dx.doi.org/10.34172/PS.2023.6]
[91]
El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Increasing bioavailability of silymarin using a buccal liposomal delivery system: Preparation and experimental design investigation. Int. J. Pharm., 2006, 308(1-2), 140-148.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.006] [PMID: 16356669]
[92]
Elsamaligy, M.; Afifi, N.; Mahmoud, E. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm., 2006, 319(1-2), 121-129.
[http://dx.doi.org/10.1016/j.ijpharm.2006.04.023] [PMID: 16837151]
[93]
Rane, S.; Prabhakar, B. Formulation and evaluation of pH-sensitive, long circulating liposomes for paclitaxel delivery. Int. J. Pharm. Tech. Res., 2009, 1, 914-917.
[94]
Abhinav, M.; Neha, J.; Anne, G.; Bharti, V. Role of novel drug delivery systems in bioavailability enhancement: At a glance. Int. J. Drug Deliv. Technol., 2016, 6(1), 7-26.
[http://dx.doi.org/10.25258/ijddt.v6i1.8884]
[95]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571-120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[96]
Rauf, M.A. Stability and release of bioactives from liposomes. Liposomal Encapsulation in Food Science and Technology; Elsevier: Amsterdam, 2023.
[97]
Natarajan, J.V.; Nugraha, C.; Ng, X.W.; Venkatraman, S. Sustained-release from nanocarriers: A review. J. Control. Release, 2014, 193(193), 122-138.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.029] [PMID: 24862321]
[98]
Rommasi, F.; Esfandiari, N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett., 2021, 16(1), 95.
[http://dx.doi.org/10.1186/s11671-021-03553-8] [PMID: 34032937]
[99]
Pasarin, D.; Ghizdareanu, A.I.; Enascuta, C.E.; Matei, C.B.; Bilbie, C.; Paraschiv-Palada, L.; Veres, P.A. Coating materials to increase the stability of liposomes. Polymers (Basel), 2023, 15(3), 782.
[http://dx.doi.org/10.3390/polym15030782] [PMID: 36772080]
[100]
Ingvarsson, P.T.; Yang, M.; Nielsen, H.M.; Rantanen, J.; Foged, C. Stabilization of liposomes during drying. Expert Opin. Drug Deliv., 2011, 8(3), 375-388.
[http://dx.doi.org/10.1517/17425247.2011.553219] [PMID: 21294603]
[101]
Subhan, M.A.; Yalamarty, S.S.K.; Filipczak, N.; Parveen, F.; Torchilin, V.P. Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers. Med., 2021, 11(6), 571.
[http://dx.doi.org/10.3390/jpm11060571] [PMID: 34207137]
[102]
Jadhav, V.; Bhogale, V. Novel drug delivery system in herbal. Int. J. Pharma Wave., 2015, 1(2), 85-103.
[103]
Yin, Y.M.; Cui, F.D.; Mu, C.F.; Choi, M.K.; Kim, J.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation. J. Control. Release, 2009, 140(2), 86-94.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.015] [PMID: 19709639]
[104]
Pascoa, H.; Diniz, D.G.A.; Florentino, I.F.; Costa, E.A.; Bara, M.T.F. Microemulsion based on Pterodon emarginatus oil and its anti-inflammatory potential. Braz. J. Pharm. Sci., 2015, 51(1), 117-125.
[http://dx.doi.org/10.1590/S1984-82502015000100013]
[105]
Yadav, M.; Bhatia, V.J.; Doshi, G.; Shastri, K. Novel techniques in herbal drug delivery systems. Int. J. Pharm. Sci. Rev. Res., 2014, 28(2), 83-89.
[106]
Ghulaxe, C.; Verma, R. A review on transdermal drug delivery system. Pharma Innov., 2015, 4, 37.
[107]
Mishra, K.K.; Kaur, C.D.; Verma, S.; Sahu, A.K.; Dash, D.K.; Kashyap, P.; Mishra, S.P. Transethosomes and nanoethosomes: Recent approach on transdermal drug delivery system. Nanomedicine (Lond.), 2019, 13(2), 33-54.
[108]
Sachan, R.; Parashar, T.; Singh, V.; Singh, G.; Tyagi, S.; Patel, C.; Gupta, A. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. Int. J. Res. Develop. Pharm. Life Sci., 2013, 2(2), 309-316.