The International Journal of Gastroenterology and Hepatology Diseases

Author(s): Dipthi Shree*, Chinam Niranjan Patra and Biswa Mohan Sahoo

DOI: 10.2174/0126662906317495240827080916

DownloadDownload PDF Flyer Cite As
Emerging Nanoparticle-Based Herbal Drug Delivery Systems for Colon Targeting Therapy

Article ID: e26662906317495 Pages: 29

  • * (Excluding Mailing and Handling)

Abstract

Herbal medications hold a dominant position in the pharmaceutical sector due to their well-established therapeutic effects and extremely low negative effects. Besides, herbal remedies are easily available and highly economical. However, to circumvent the issue of poor bioavailability, the combinatorial strategy of incorporating herbal medicines and nanotechnology is useful. The phytoconstituents molded in novel nanocarriers such as polymeric nanoparticles, polymeric micelles, liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, gold nanoparticles, etc., have been extensively investigated as they are the most promising approach for colon-targeting drug delivery systems. Although plantbased medicines have been developed for decades, there is enormous research interest in the development of an effective plant-derived delivery system for the incorporation of phytoconstituents into various nanomaterials to overcome potential challenges related to solubility, bioavailability, and stability issues. The encapsulation of phytoconstituents in a novel nanocarrier is a promising approach to improving the bioavailability, stability, and therapeutic efficacy of herbal medicines. The herbal nanomedicines are used as a promising tool for targeted delivery to the colon, with potentially effective outcomes for the treatment of colonic diseases, viz., ulcerative colitis, diverticulitis, Crohn's disease, shigellosis, constipation, colonic polyps, colon cancer, etc. This article presents a comprehensive survey of recent findings and patents by innovators working exclusively on nanoparticles for the delivery of phytomedicines for colon targeting.

Keywords: Phytoconstituents, colon targeting, colorectal disorders, therapeutic efficacy, herbal medicine, nanocarriers.

[1]
Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[2]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[3]
Obeid, M.A.; Al Qaraghuli, M.M.; Alsaadi, M.; Alzahrani, A.R.; Niwasabutra, K.; Ferro, V.A. Delivering natural products and biotherapeutics to improve drug efficacy. Ther. Deliv., 2017, 8(11), 947-956.
[http://dx.doi.org/10.4155/tde-2017-0060] [PMID: 29061102]
[4]
Sumithra, S.; Vadivu, R.; Radha, R. Colon targeted drug delivery system and phytoconstituents. RJPT, 2019, 12(7), 3144-3150.
[http://dx.doi.org/10.5958/0974-360X.2019.00530.4]
[5]
Sun, S.; Wang, Y.; Wu, A.; Ding, Z.; Liu, X. Influence factors of the pharmacokinetics of herbal resourced compounds in clinical practice. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/1983780] [PMID: 30949215]
[6]
He, S.M.; Li, C.G.; Liu, J.P.; Chan, E.; Duan, W.; Zhou, S.F. Disposition pathways and pharmacokinetics of herbal medicines in humans. Curr. Med. Chem., 2010, 17(33), 4072-4113.
[http://dx.doi.org/10.2174/092986710793205336] [PMID: 20939821]
[7]
Bonifácio, B.V.; Silva, P.B.D.; Ramos, M.A.D.S.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed., 2014, 9, 1-15.
[PMID: 24363556]
[8]
Ansari, S.H.; Islam, F.; Sameem, M. Influence of nanotechnology on herbal drugs: A Review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[9]
Patil, P; Killedar, S Biosynthesis; Chapter metrics overview, 2021.
[http://dx.doi.org/10.5772/intechopen.96632]
[10]
Philip, A.; Philip, B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med. J., 2010, 25(2), 70-78.
[http://dx.doi.org/10.5001/omj.2010.24] [PMID: 22125706]
[11]
Qureshi, A.M.; Momin, M.; Rathod, S.; Dev, A.; Kute, C. Colon targeted drug delivery system: A review on current approaches. IJPBR, 2013, 1(4), 130-147.
[http://dx.doi.org/10.30750/ijpbr.1.4.24]
[12]
Kumar, S.P.; Prathibha, D.; Parthibarajan, R.; Reichal, C.R. Novel colon-specific drug delivery system: a review. Int. J. Pharm. Pharm. Sci., 2012, 4(1), 22-29.
[13]
Standring, S. The anatomy of large intestine; Springer-link, 2019.
[http://dx.doi.org/10.1007/978-3-030-05240-9_2]
[14]
Terse, P.; Mallya, R. Importance of colon targeted drug delivery systems in herbal medicines. Int. J. Pharm. Sci. Res., 2017, 8(11), 4513-4524.
[15]
Kaser, A.; Zeissig, S.; Blumberg, R.S. Inflammatory bowel disease. Annu. Rev. Immunol., 2010, 28(1), 573-621.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101225] [PMID: 20192811]
[16]
Das, K.M.; Farag, S.A. Current medical therapy of inflammatory bowel disease. World J. Gastroent., 2000, 6(4), 483-489.
[PMID: 11819634]
[17]
Arora, R; Malhotra, P; Sundriyal, S; Yashavanth, HS; Pai, RJ; Baliga, MS Medicinal plants as remedies for gastrointestinal ailments and diseases: A review. Bioactive food as dietary interventions for liver and gastrointestinal disease; Elsevier, 2012.
[http://dx.doi.org/10.1016/B978-0-12-397154-8.00033-6]
[18]
Baliga, M.S.; Joseph, N.; Venkataranganna, M.V.; Saxena, A.; Ponemone, V.; Fayad, R. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: preclinical and clinical observations. Food Funct., 2012, 3(11), 1109-1117.
[http://dx.doi.org/10.1039/c2fo30097d] [PMID: 22833299]
[19]
Isik, F.; Tunali Akbay, T.; Yarat, A.; Genc, Z.; Pisiriciler, R.; Caliskan-Ak, E.; Cetinel, S.; Altıntas, A.; Sener, G. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats. Dig. Dis. Sci., 2011, 56(3), 721-730.
[http://dx.doi.org/10.1007/s10620-010-1333-z] [PMID: 20658190]
[20]
Heidari, B.; Sajjadi, S.E.; Minaiyan, M. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats. Avicenna J. Phytomed., 2016, 6(2), 205-214.
[PMID: 27222834]
[21]
Shayesteh, F.; Haidari, F.; Shayesteh, A.A.; Mohammadi-Asl, J.; Ahmadi-Angali, K. Ginger in patients with active ulcerative colitis: a study protocol for a randomized controlled trial. Trials, 2020, 21(1), 278.
[http://dx.doi.org/10.1186/s13063-020-4193-7] [PMID: 32183895]
[22]
Nikkhah-Bodaghi, M.; Maleki, I.; Agah, S.; Hekmatdoost, A. Zingiber officinale and oxidative stress in patients with ulcerative colitis: A randomized, placebo-controlled, clinical trial. Complement. Ther. Med., 2019, 43(5), 1-6.
[http://dx.doi.org/10.1016/j.ctim.2018.12.021] [PMID: 30935515]
[23]
Gupta, I.; Parihar, A.; Malhotra, P.; Gupta, S.; Lüdtke, R.; Safayhi, H.; Ammon, H.P.T. Effects of gum resin of Boswellia serrata in patients with chronic colitis. Planta Med., 2001, 67(5), 391-395.
[http://dx.doi.org/10.1055/s-2001-15802] [PMID: 11488449]
[24]
Siemoneit, U.; Pergola, C.; Jazzar, B.; Northoff, H.; Skarke, C.; Jauch, J.; Werz, O. On the interference of boswellic acids with 5-lipoxygenase: Mechanistic studies in vitro and pharmacological relevance. Eur. J. Pharmacol., 2009, 606(1-3), 246-254.
[http://dx.doi.org/10.1016/j.ejphar.2009.01.044] [PMID: 19374837]
[25]
Waslyk, A; Bakovic, M Biological activity and therapeutic potential of Quercetin for inflammatory bowel disease. Food Sci. Nutr. Res., 2021, 4(2), 094-117.
[http://dx.doi.org/10.26502/jfsnr.2642-11000065]
[26]
Salaritabar, A.; Darvishi, B.; Hadjiakhoondi, F.; Manayi, A.; Sureda, A.; Nabavi, S.F.; Fitzpatrick, L.R.; Nabavi, S.M.; Bishayee, A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroent., 2017, 23(28), 5097-5114.
[http://dx.doi.org/10.3748/wjg.v23.i28.5097] [PMID: 28811706]
[27]
Sotnikova, R.; Nosalova, V.; Navarova, J. Efficacy of quercetin derivatives in prevention of ulcerative colitis in rats. Interdiscip. Toxicol., 2013, 6(1), 9-12.
[http://dx.doi.org/10.2478/intox-2013-0002] [PMID: 24170973]
[28]
Sun, L.L.; Jiang, H.B.; Liu, B.Y.; Li, W.D.; Du, A.L.; Luo, X.Q.; Li, X.Q. Effects of rhein on intestinal transmission, colonic electromyography and expression of aquaporin-3 by colonic epithelium cells in constipated mice. Int. J. Clin. Exp. Pathol., 2018, 11(2), 614-623.
[PMID: 31938147]
[29]
Gao, C.C.; Li, G.W.; Wang, T.T.; Gao, L.; Wang, F.F.; Shang, H.W.; Yang, Z.J.; Guo, Y.X.; Wang, B.Y.; Xu, J.D. Rhubarb extract relieves constipation by stimulating mucus production in the colon and altering the intestinal flora. Biomed. Pharmacother., 2021, 138, 111479.
[http://dx.doi.org/10.1016/j.biopha.2021.111479] [PMID: 33774313]
[30]
Momin, M.; Pundarikakshudu, K. In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides. J. Pharm. Pharm. Sci., 2004, 7(3), 325-331.
[PMID: 15576012]
[31]
Momin, M.; Pundarikakshudu, K.; Nagori, S.A. Design and development of mixed film of pectin: Ethyl cellulose for colon specific drug delivery of sennosides and Triphala. Indian J. Pharm. Sci., 2008, 70(3), 338-343.
[http://dx.doi.org/10.4103/0250-474X.42998] [PMID: 20046742]
[32]
Li, D.; Zhang, Y.; Liu, K.; Zhao, Y.; Xu, B.; Xu, L.; Tan, L.; Tian, Y.; Li, C.; Zhang, W.; Cao, H.; Zhan, Y.; Hu, T. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth. Lab. Invest., 2017, 97(11), 1343-1353.
[http://dx.doi.org/10.1038/labinvest.2017.71] [PMID: 28759012]
[33]
Zhang, J.; Cao, H.; Zhang, B.; Cao, H.; Xu, X.; Ruan, H.; Yi, T.; Tan, L.; Qu, R.; Song, G.; Wang, B.; Hu, T. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling. J. Cell. Mol. Med., 2013, 17(11), 1484-1493.
[http://dx.doi.org/10.1111/jcmm.12119] [PMID: 24015932]
[34]
Haggar, F.; Boushey, R. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin. Colon Rectal Surg., 2009, 22(4), 191-197.
[http://dx.doi.org/10.1055/s-0029-1242458] [PMID: 21037809]
[35]
Hammond, W.A.; Swaika, A.; Mody, K. Pharmacologic resistance in colorectal cancer: a review. Ther. Adv. Med. Oncol., 2016, 8(1), 57-84.
[http://dx.doi.org/10.1177/1758834015614530] [PMID: 26753006]
[36]
Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M.; Peluso, I.; Ghorat, F.; Bishayee, A.; Kooti, W. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell. Longev., 2019, 2019, 1-51.
[http://dx.doi.org/10.1155/2019/2075614] [PMID: 32377288]
[37]
Saunders, I.T.; Mir, H.; Kapur, N.; Singh, S. Emodin inhibits colon cancer by altering BCL-2 family proteins and cell survival pathways. Cancer Cell Int., 2019, 19(1), 98.
[http://dx.doi.org/10.1186/s12935-019-0820-3] [PMID: 31011292]
[38]
Lin, X.; Wang, G.; Liu, P.; Han, L.; Wang, T.; Chen, K.; Gao, Y. Gallic acid suppresses colon cancer proliferation by inhibiting SRC and EGFR phosphorylation. Exp. Ther. Med., 2021, 21(6), 638.
[http://dx.doi.org/10.3892/etm.2021.10070] [PMID: 33968169]
[39]
Patel, V.B.; Misra, S.; Patel, B.B.; Majumdar, A.P.N. Colorectal cancer: chemopreventive role of curcumin and resveratrol. Nutr. Cancer, 2010, 62(7), 958-967.
[http://dx.doi.org/10.1080/01635581.2010.510259] [PMID: 20924971]
[40]
Prasad, S.; Tyagi, A.K. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[41]
Zhang, R.; Zhao, J.; Xu, J.; Jiao, D.X.; Wang, J.; Gong, Z.Q.; Jia, J.H. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway. Oncol. Lett., 2017, 14(4), 4305-4310.
[http://dx.doi.org/10.3892/ol.2017.6669] [PMID: 28943944]
[42]
Wang, C.Z.; Yuan, C.S. Potential role of ginseng in the treatment of colorectal cancer. Am. J. Chin. Med., 2008, 36(6), 1019-1028.
[http://dx.doi.org/10.1142/S0192415X08006545] [PMID: 19051332]
[43]
Liu, T.; Duo, L.; Duan, P. Ginsenoside Rg3 sensitizes colorectal cancer to radiotherapy through downregulation of proliferative and angiogenic biomarkers. Evid. Based Comp. Alter. Med., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/1580427] [PMID: 29743919]
[44]
Seo, E.Y.; Kim, W.K. Red ginseng extract reduced metastasis of colon cancer cells in vitro and in vivo. J. Ginseng Res., 2011, 35(3), 315-324.
[http://dx.doi.org/10.5142/jgr.2011.35.3.315] [PMID: 23717075]
[45]
de Almeida, G.C.; Oliveira, L.F.S.; Predes, D.; Fokoue, H.H.; Kuster, R.M.; Oliveira, F.L.; Mendes, F.A.; Abreu, J.G. Piperine suppresses the Wnt/β-catenin pathway and has anti-cancer effects on colorectal cancer cells. Sci. Rep., 2020, 10(1), 11681.
[http://dx.doi.org/10.1038/s41598-020-68574-2] [PMID: 32669593]
[46]
Chen, Y.; Wang, X.Q.; Zhang, Q.; Zhu, J.Y.; Li, Y.; Xie, C.F.; Li, X.T.; Wu, J.S.; Geng, S.S.; Zhong, C.Y.; Han, H.Y. Epigallocatechin-3-Gallate inhibits colorectal cancer stem cells by suppressing Wnt/-catenin pathway. Nutrients, 2017, 9(6), 572.
[http://dx.doi.org/10.3390/nu9060572] [PMID: 28587207]
[47]
Coates, E.M.; Popa, G.; Gill, C.I.R.; McCann, M.J.; McDougall, G.J.; Stewart, D.; Rowland, I. Colon-available raspberry polyphenols exhibit anti-cancer effects on in vitro models of colon cancer. J. Carcinog., 2007, 6(1), 4.
[http://dx.doi.org/10.1186/1477-3163-6-4] [PMID: 17442116]
[48]
Olajuyigbe, O.O.; Afolayan, A.J. Pharmacological assessment of the medicinal potential of Acacia mearnsii De Wild.: antimicrobial and toxicity activities. Int. J. Mol. Sci., 2012, 13(4), 4255-4267.
[http://dx.doi.org/10.3390/ijms13044255] [PMID: 22605976]
[49]
Olajuyigbe, O.O.; Afolayan, A.J. In vitro antibacterial and time-kill assessment of crude methanolic stem bark extract of Acacia mearnsii de wild against bacteria in shigellosis. Molecules, 2012, 17(2), 2103-2118.
[http://dx.doi.org/10.3390/molecules17022103] [PMID: 22354188]
[50]
Ju, L.Z.; Ke, F.; Yadav, P.K. Herbal medicine in the treatment of ulcerative colitis. Saudi J. Gastroenterol., 2012, 18(1), 3-10.
[http://dx.doi.org/10.4103/1319-3767.91726] [PMID: 22249085]
[51]
Triantafyllidi, A.; Xanthos, T.; Papalois, A.; Triantafillidis, J.K. Herbal and plant therapy in patients with inflammatory bowel disease. Ann. Gastroenterol., 2015, 28(2), 210-220.
[PMID: 25830661]
[52]
Huntsman, M; Lee, SN; Stylli, J; Stork, C; Shimizu, J Development of a novel drug delivery system to deliver drugs directly to the colonic mucosa, resulting in improved efficacy and reduced systemic exposure for the treatment of ulcerative colitis. Crohn’s Colitis 360, 2021, 3(4), 1-5.
[53]
Newton, A.; Prabakaran, L.; Jayaveera, K. Pectin-HPMC E15LV vs. pH sensitive polymer coating films for delayed drug delivery to colon: A comparison of two dissolution models to assess colonic targeting performance in-vitro. Int. J. Appl. Res. Nat. Prod., 2012, 5, 1-16.
[54]
Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit: a technology evaluation. Expert Opin. Drug Deliv., 2013, 10(1), 131-149.
[http://dx.doi.org/10.1517/17425247.2013.736962] [PMID: 23102011]
[55]
Sharma, N.; Harikumar, S.L. Polymers for colon targeted drug delivery: A review. Int. J. Drug Dev. Res., 2013, 5(1), 21-31.
[56]
Khan, M.Z.I.; Prebeg, Ž.; Kurjaković, N. A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. J. Control. Release, 1999, 58(2), 215-222.
[http://dx.doi.org/10.1016/S0168-3659(98)00151-5] [PMID: 10053194]
[57]
Khan, M.Z.I.; Štedul, H.P.; Kurjaković, N. A pH-dependent colon-targeted oral drug delivery system using methacrylic acid copolymers. II. Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations. Drug Dev. Ind. Pharm., 2000, 26(5), 549-554.
[http://dx.doi.org/10.1081/DDC-100101266] [PMID: 10789067]
[58]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics, 2020, 12(1), 68.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[59]
Gazzaniga, A.; Moutaharrik, S.; Filippin, I.; Foppoli, A.; Palugan, L.; Maroni, A.; Cerea, M. Time-based formulation strategies for colon drug delivery. Pharmaceutics, 2022, 14(12), 2762.
[http://dx.doi.org/10.3390/pharmaceutics14122762] [PMID: 36559256]
[60]
Patel, D.B.; Patel, D.M.; Parikh, B.N.; Prajapati, S.T.; Patel, C.N. A review on time-dependent systems for colonic delivery. J. Glob. Pharma Technol., 2010, 2(1), 65-71.
[61]
Farswan, R; Tangri, P Approaches to pulsatile drug delivery system. Int. j. pharm. res. scholars, 2015, 4(2), 80-95.
[62]
Mathew, P.; Muruganantham, V. Novel approaches to colon targeted drug delivery: An overview. Int. J. Pharm. Sci. Rev. Res., 2020, 63(1), 52-59.
[63]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotech., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[64]
Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol., 2013, 75(3), 588-602.
[http://dx.doi.org/10.1111/j.1365-2125.2012.04425.x] [PMID: 22897361]
[65]
Teja, P.K.; Mithiya, J.; Kate, A.S.; Bairwa, K.; Chauthe, S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine, 2022, 96, 153890.
[http://dx.doi.org/10.1016/j.phymed.2021.153890] [PMID: 35026510]
[66]
Dewi, M.K.; Chaerunisaa, A.Y.; Muhaimin, M.; Joni, I.M. Improved activity of herbal medicines through nanotechnology. Nanomaterials, 2022, 12(22), 4073.
[http://dx.doi.org/10.3390/nano12224073] [PMID: 36432358]
[67]
Bhattacharjee, S.; Mandal, D.P.; Adhikary, A. Nanotechnology: Scopes and various aspects of drug delivery. Nanotech. Biomed., 2022, 1, 1-20.
[http://dx.doi.org/10.1016/B978-0-323-88450-1.00001-6]
[68]
Kyriakoudi, A.; Spanidi, E.; Mourtzinos, I.; Gardikis, K. Innovative delivery systems loaded with plant bioactive ingredients: formulation approaches and applications. Plants, 2021, 10(6), 1238.
[http://dx.doi.org/10.3390/plants10061238] [PMID: 34207139]
[69]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I.; J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmaco., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[70]
Sandhiya, V.; Ubaidulla, U. A review on herbal drug loaded into pharmaceutical carrier techniques and its evaluation process. Fut. J. Pharma. Sci, 2020, 6(1), 51.
[http://dx.doi.org/10.1186/s43094-020-00050-0]
[71]
Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Abdul Samad, N.; Alitheen, N.B. Novel Drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed., 2020, 15, 2439-2483.
[http://dx.doi.org/10.2147/IJN.S227805] [PMID: 32346289]
[72]
McCoubrey, L.E.; Favaron, A.; Awad, A.; Orlu, M.; Gaisford, S.; Basit, A.W. Colonic drug delivery: Formulating the next generation of colon-targeted therapeutics. J. Control. Release, 2023, 353, 1107-1126.
[http://dx.doi.org/10.1016/j.jconrel.2022.12.029] [PMID: 36528195]
[73]
Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett., 2019, 17(2), 849-865.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[74]
Salunkhe, P.; Bhoyar, P.; Gode, A.; Shewale, S.P. Application of nanotechnology to the extraction of herbal components for medicinal uses. Curr. Nanomater., 2020, 5(1), 4-11.
[http://dx.doi.org/10.2174/2405461504666190830094917]
[75]
Chourasia, M.K.; Jain, S.K. Polysaccharides for colon targeted drug delivery. Drug Deliv., 2004, 11(2), 129-148.
[http://dx.doi.org/10.1080/10717540490280778] [PMID: 15200012]
[76]
Agarwal, V.K.; Gupta, A.; Chaturvedi, S.; Khan, F. Polysaccharide: Carrier in colon targeted drug delivery system. MIT. Int. J. Pharm., 2016, 2(2), 1-9.
[77]
Rehman, A.; Tong, Q.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Mushtaq, B.S.; Ashraf, W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci., 2020, 275, 102048.
[http://dx.doi.org/10.1016/j.cis.2019.102048] [PMID: 31757387]
[78]
Rehman, A.; Jafari, S.M.; Tong, Q.; Riaz, T.; Assadpour, E.; Aadil, R.M.; Niazi, S.; Khan, I.M.; Shehzad, Q.; Ali, A.; Khan, S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci., 2020, 284, 102251.
[http://dx.doi.org/10.1016/j.cis.2020.102251] [PMID: 32949812]
[79]
Sabra, R.; Roberts, C.J.; Billa, N. Courier properties of modified citrus pectinate-chitosan nanoparticles in colon delivery of curcumin. Colloid Interface Sci. Commun., 2019, 32, 100192.
[http://dx.doi.org/10.1016/j.colcom.2019.100192]
[80]
Castangia, I.; Nácher, A.; Caddeo, C.; Merino, V.; Díez-Sales, O.; Catalán-Latorre, A.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Therapeutic efficacy of quercetin enzyme-responsive nanovesicles for the treatment of experimental colitis in rats. Acta Biomater., 2015, 13, 216-227.
[http://dx.doi.org/10.1016/j.actbio.2014.11.017] [PMID: 25463498]
[81]
Xiao, B.; Han, M.K.; Viennois, E.; Wang, L.; Zhang, M.; Si, X.; Merlin, D. Hyaluronic acid-functionalized polymeric nanoparticles for colon cancer-targeted combination chemotherapy. Nanoscale, 2015, 7(42), 17745-17755.
[http://dx.doi.org/10.1039/C5NR04831A] [PMID: 26455329]
[82]
Sabra, R.; Billa, N.; Roberts, C.J. Cetuximab-conjugated chitosan-pectinate (modified) composite nanoparticles for targeting colon cancer. Int. J. Pharm., 2019, 572, 118775.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118775] [PMID: 31678385]
[83]
Kamel, K.M.; Khalil, I.A.; Rateb, M.E.; Elgendy, H.; Elhawary, S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-Fluorouracil cytotoxicity for colorectal cancer: extracts standardization, nanoparticles optimization, and cytotoxicity evaluation. J. Agric. Food Chem., 2017, 65(36), 7966-7981.
[http://dx.doi.org/10.1021/acs.jafc.7b03093] [PMID: 28813148]
[84]
Xiao, B.; Si, X.; Han, M.K.; Viennois, E.; Zhang, M.; Merlin, D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(39), 7724-7733.
[http://dx.doi.org/10.1039/C5TB01245G] [PMID: 26617985]
[85]
Guo, X.Y.; Wang, P.; Du, Q.G.; Han, S.; Zhu, S.M.; Lv, Y.F.; Liu, G.S.; Hao, Z.M. Paclitaxel and gemcitabine combinational drug-loaded mucoadhesive delivery system in the treatment of colon cancers. Drug Res. (Stuttg.), 2015, 65(4), 199-204.
[PMID: 24941086]
[86]
Patil, P.; Killedar, S. Formulation and characterization of gallic acid and quercetin chitosan nanoparticles for sustained release in treating colorectal cancer. J. Drug Deliv. Sci. Technol., 2021, 63, 102523.
[http://dx.doi.org/10.1016/j.jddst.2021.102523]
[87]
Chuah, L.H.; Billa, N.; Roberts, C.J.; Burley, J.C.; Manickam, S. Curcumin-containing chitosan nanoparticles as a potential mucoadhesive delivery system to the colon. Pharm. Dev. Technol., 2013, 18(3), 591-599.
[http://dx.doi.org/10.3109/10837450.2011.640688] [PMID: 22149945]
[88]
Su, S.; M Kang, P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837.
[http://dx.doi.org/10.3390/pharmaceutics12090837] [PMID: 32882875]
[89]
Afzal, O.; Altamimi, A.S.A.; Nadeem, M.S.; Alzarea, S.I.; Almalki, W.H.; Tariq, A.; Mubeen, B.; Murtaza, B.N.; Iftikhar, S.; Riaz, N.; Kazmi, I. Nanoparticles in drug delivery: from history to therapeutic applications. Nanomaterials, 2022, 12(24), 4494.
[http://dx.doi.org/10.3390/nano12244494] [PMID: 36558344]
[90]
Pavlitschek, T.; Gretz, M.; Plank, J. Microcapsules prepared from a polycondensate‐based cement dispersant via layer‐by‐layer self‐assembly on melamine‐formaldehyde core templates. J. Appl. Polym. Sci., 2013, 127(5), 3705-3711.
[http://dx.doi.org/10.1002/app.37981]
[91]
Modarres-Gheisari, S.M.M.; Gavagsaz-Ghoachani, R.; Malaki, M.; Safarpour, P.; Zandi, M. Ultrasonic nano-emulsification – A review. Ultrason. Sonochem., 2019, 52, 88-105.
[http://dx.doi.org/10.1016/j.ultsonch.2018.11.005] [PMID: 30482437]
[92]
Ezhilarasi, P.N.; Karthik, P.; Chhanwal, N.; Anandharamakrishnan, C. Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol., 2013, 6(3), 628-647.
[http://dx.doi.org/10.1007/s11947-012-0944-0]
[93]
Qiu, C.; Hu, Y.; Jin, Z.; McClements, D.J.; Qin, Y.; Xu, X.; Wang, J. A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci. Technol., 2019, 92, 138-151.
[http://dx.doi.org/10.1016/j.tifs.2019.08.007]
[94]
Anandharamakrishnan, C. Techniques for nanoencapsulation of food ingredients; Springer, 2014.
[http://dx.doi.org/10.1007/978-1-4614-9387-7]
[95]
Assaad, E.; Wang, Y.J.; Zhu, X.X.; Mateescu, M.A. Polyelectrolyte complex of carboxymethyl starch and chitosan as drug carrier for oral administration. Carbohydr. Polym., 2011, 84(4), 1399-1407.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.048]
[96]
Arpagaus, C.; Collenberg, A.; Rütti, D.; Assadpour, E.; Jafari, S.M. Nano spray drying for encapsulation of pharmaceuticals. Int. J. Pharm., 2018, 546(1-2), 194-214.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.037] [PMID: 29778825]
[97]
Jia, Z.; Dumont, M.J.; Orsat, V. Encapsulation of phenolic compounds present in plants using protein matrices. Food Biosci., 2016, 15, 87-104.
[http://dx.doi.org/10.1016/j.fbio.2016.05.007]
[98]
Liu, C.; Qin, Y.; Li, X.; Sun, Q.; Xiong, L.; Liu, Z. Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature. Int. J. Biol. Macromol., 2016, 84, 354-360.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.040] [PMID: 26708434]
[99]
Maindarkar, S.; Dubbelboer, A.; Meuldijk, J.; Hoogland, H.; Henson, M. Prediction of emulsion drop size distributions in colloid mills. Chem. Eng. Sci., 2014, 118, 114-125.
[http://dx.doi.org/10.1016/j.ces.2014.07.032]
[100]
Yukuyama, M.N.; Kato, E.T.M.; de Araujo, G.L.B.; Löbenberg, R.; Monteiro, L.M.; Lourenço, F.R.; Bou-Chacra, N.A. Olive oil nanoemulsion preparation using high-pressure homogenization and d-phase emulsification – A design space approach. J. Drug Deliv. Sci. Technol., 2019, 49, 622-631.
[http://dx.doi.org/10.1016/j.jddst.2018.12.029]
[101]
Faridi Esfanjani, A.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces, 2016, 146, 532-543.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.053] [PMID: 27419648]
[102]
Ševčíková, P.; Kašpárková, V.; Vltavská, P.; Krejčí, J. On the preparation and characterization of nanoemulsions produced by phase inversion emulsification. Colloids Surf. A Physicochem. Eng. Asp., 2012, 410, 130-135.
[http://dx.doi.org/10.1016/j.colsurfa.2012.06.031]
[103]
Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol., 2012, 5(3), 854-867.
[http://dx.doi.org/10.1007/s11947-011-0683-7]
[104]
Bai, L.; McClements, D.J. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers. J. Colloid Interface Sci., 2016, 466, 206-212.
[http://dx.doi.org/10.1016/j.jcis.2015.12.039] [PMID: 26724703]
[105]
Assadpour, E.; Jafari, S.M. Biopolymer Nanostructures for Food Encapsulation Purposes; Academic Press, 2019.
[106]
Assadpour, E.; Mahdi Jafari, S. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Crit. Rev. Food Sci. Nutr., 2018, 59(19), 1-23.
[PMID: 29883187]
[107]
Acevedo-Guevara, L.; Nieto-Suaza, L.; Sanchez, L.T.; Pinzon, M.I.; Villa, C.C. Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol., 2018, 111, 498-504.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.063] [PMID: 29337095]
[108]
De Leo, V.; Milano, F.; Mancini, E.; Comparelli, R.; Giotta, L.; Nacci, A.; Longobardi, F.; Garbetta, A.; Agostiano, A.; Catucci, L. Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process. Molecules, 2018, 23(4), 739.
[http://dx.doi.org/10.3390/molecules23040739] [PMID: 29570636]
[109]
Sunoqrot, S.; Abujamous, L. PH-sensitive polymeric nanoparticles of quercetin as a potential colon cancer-targeted nanomedicine. J. Drug Deliv. Sci. Technol., 2019, 52, 670-676.
[http://dx.doi.org/10.1016/j.jddst.2019.05.035]
[110]
Ünal, S.; Aktaş, Y.; Benito, J.M.; Bilensoy, E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int. J. Pharm., 2020, 584, 119468.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119468] [PMID: 32470483]
[111]
Pandelidou, M.; Dimas, K.; Georgopoulos, A.; Hatziantoniou, S.; Demetzos, C. Preparation and characterization of lyophilised egg PC liposomes incorporating curcumin and evaluation of its activity against colorectal cancer cell lines. J. Nanosci. Nanotechnol., 2011, 11(2), 1259-1266.
[http://dx.doi.org/10.1166/jnn.2011.3093] [PMID: 21456169]
[112]
Zhang, M.; Xiao, B.; Wang, H.; Han, M.K.; Zhang, Z.; Viennois, E.; Xu, C.; Merlin, D. Edible ginger-derived nano-lipids loaded with Doxorubicin as a novel drug-delivery approach for colon cancer therapy. Mol. Ther., 2016, 24(10), 1783-1796.
[http://dx.doi.org/10.1038/mt.2016.159] [PMID: 27491931]
[113]
Huang, R.F.S.; Wei, Y.J.; Inbaraj, B.S.; Chen, B.H. Inhibition of colon cancer cell growth by nanoemulsion carrying gold nanoparticles and lycopene. Int. J. Nanomed., 2015, 10, 2823-2846.
[PMID: 25914533]
[114]
Minh, L.N.; Anh, T.T.M.; Loc, T.V.; Hue, P.T.K.; Thao, D.T. Production of nanoliposomes with piperine from black pepper (piper nigrum) and its improved growth inhibitory activity on colorectal cancer cells. Vietnam J. Sci. Technol., 2020, 18(4), 671-678.
[115]
Sookkasem, A.; Chatpun, S.; Yuenyongsawad, S.; Wiwattanapatapee, R. Alginate beads for colon specific delivery of self-emulsifying curcumin. J. Drug Deliv. Sci. Technol., 2015, 29, 159-166.
[http://dx.doi.org/10.1016/j.jddst.2015.07.005]
[116]
Pham, D.T.; Saelim, N.; Tiyaboonchai, W. Paclitaxel loaded EDC-crosslinked fibroin nanoparticles: a potential approach for colon cancer treatment. Drug Deliv. Transl. Res., 2020, 10(2), 413-424.
[http://dx.doi.org/10.1007/s13346-019-00682-7] [PMID: 31701488]
[117]
Prajakta, D.; Ratnesh, J.; Chandan, K.; Suresh, S.; Grace, S.; Meera, V.; Vandana, P. Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J. Biomed. Nanotechnol., 2009, 5(5), 445-455.
[http://dx.doi.org/10.1166/jbn.2009.1038] [PMID: 20201417]
[118]
Aisha, A.F.A.; Abdulmajid, A.M.S.; Ismail, Z.; Alrokayan, S.A.; Abu-Salah, K.M. Development of polymeric nanoparticles of Garcinia mangostana xanthones in eudragit RL100/RS100 for anti-colon cancer drug delivery. J. Nanomater., 2015, 2015(7), 1-12.
[http://dx.doi.org/10.1155/2015/701979]
[119]
Moideen, M.M.J.; Karuppaiyan, K.; Kandhasamy, R.; Seetharaman, S. Skimmed milk powder and pectin decorated solid lipid nanoparticle containing soluble curcumin used for the treatment of colorectal cancer. Food Sci. Nutr., 2020, 8(12), 6643-6659.
[PMID: 33312548]
[120]
Yang, X.; Li, Z.; Wang, N.; Li, L.; Song, L.; He, T.; Sun, L.; Wang, Z.; Wu, Q.; Luo, N.; Yi, C.; Gong, C. Curcumin-encapsulated polymeric micelles suppress the development of colon cancer in vitro and in vivo. Sci. Rep., 2015, 5(1), 10322.
[http://dx.doi.org/10.1038/srep10322] [PMID: 25980982]
[121]
Woraphatphadung, T.; Sajomsang, W.; Rojanarata, T.; Ngawhirunpat, T.; Tonglairoum, P.; Opanasopit, P. Development of chitosan-based pH-sensitive polymeric micelles containing curcumin for colon-targeted drug delivery. AAPS PharmSciTech, 2018, 19(3), 991-1000.
[http://dx.doi.org/10.1208/s12249-017-0906-y] [PMID: 29110292]
[122]
Zhang, L.; Zhu, W.; Yang, C.; Guo, H.; Yu, A.; Ji, J.; Gao, Y.; Sun, M.; Zhai, G. A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int. J. Nanomed., 2012, 7, 151-162.
[PMID: 22275831]
[123]
Maja, L.; Željko, K.; Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids, 2020, 165, 104984.
[http://dx.doi.org/10.1016/j.supflu.2020.104984]
[124]
Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: structure, composition, types, and clinical applications. Heliyon, 2022, 8(5), e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[125]
Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 2021, 9, 705886.
[http://dx.doi.org/10.3389/fbioe.2021.705886] [PMID: 34568298]
[126]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[127]
Faridi Esfanjani, A.; Assadpour, E.; Jafari, S.M. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci. Technol., 2018, 76, 56-66.
[http://dx.doi.org/10.1016/j.tifs.2018.04.002]
[128]
Yousefi, M.; Ehsani, A.; Jafari, S.M. Lipid-based nano delivery of antimicrobials to control food-borne bacteria. Adv. Colloid Interface Sci., 2019, 270, 263-277.
[http://dx.doi.org/10.1016/j.cis.2019.07.005] [PMID: 31306852]
[129]
Rafiee, Z. Application of different nanocarriers for encapsulation of curcumin. Crit. Rev. Food Sci. Nutr., 2018, 59(21), 3468-3497.
[PMID: 30001150]
[130]
Kumar, H.M.; Spandana, V. Liposomal encapsulation technology a novel drug delivery system designed for ayurvedic drug preparation. Int. Res. J. Pharm., 2011, 2(10), 4-6.
[131]
Haghighi, M.; Yarmand, M.S.; Emam-Djomeh, Z.; McClements, D.J.; Saboury, A.A.; Rafiee-Tehrani, M. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin. Int. J. Biol. Macromol., 2018, 112, 626-637.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.108] [PMID: 29366892]
[132]
Shishir, M.R.I.; Karim, N.; Gowd, V.; Xie, J.; Zheng, X.; Chen, W. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocoll., 2019, 95, 432-444.
[http://dx.doi.org/10.1016/j.foodhyd.2019.04.059]
[133]
Campos, V.E.B.; Ricci-Júnior, E.; Mansur, C.R.E. Nanoemulsions as delivery systems for lipophilic drugs. J. Nanosci. Nanotechnol., 2012, 12(3), 2881-2890.
[http://dx.doi.org/10.1166/jnn.2012.5690] [PMID: 22755138]
[134]
Sutradhar, K.B.; Amin, M.L. Nanoemulsions: increasing possibilities in drug delivery. Eur. J. Nanomed., 2013, 5(2), 97-110.
[http://dx.doi.org/10.1515/ejnm-2013-0001]
[135]
Jaiswal, M; Dudhe, R; Sharma, PK Nanoemulsion: an advanced mode of drug delivery system Biotech, 2015, 5(2), 123-127.
[136]
Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev. Nutr. Food Sci., 2019, 24(3), 225-234.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[137]
Jafri, SM; Paximada, P; Mandala, L; Assadpour, E; Mehrnia, MA Encapsulation of nanoemulsion; Academic Press, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809436-5.00002-1]
[138]
Rehman, A.; Ahmad, T.; Aadil, R.M.; Spotti, M.J.; Bakry, A.M.; Khan, I.M.; Zhao, L.; Riaz, T.; Tong, Q. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci. Technol., 2019, 90, 35-46.
[http://dx.doi.org/10.1016/j.tifs.2019.05.015]
[139]
Choi, A.Y.; Kim, C.T.; Park, H.Y.; Kim, H.O.; Lee, N.R.; Lee, K.E.; Gwak, H.S. Pharmacokinetic characteristics of capsaicin loaded nanoemulsions fabricated with alginate and chitosan. J. Agric. Food Chem., 2013, 61(9), 2096-2102.
[http://dx.doi.org/10.1021/jf3052708] [PMID: 23414078]
[140]
Uzma, A; Krishna, SA Pharmacosomes and emulsomes: An emerging novel vesicular drug delivery system. Glob. j. anesth. pain med., 2020, 4(3), 287-297.
[141]
Ghode, S.P.; Ghode, P.D. Applications perspectives of emulsomes drug delivery system. Int. J. Med. Phar. Sci., 2020, 10(1), 1-8.
[http://dx.doi.org/10.31782/IJMPS.2020.10101]
[142]
Gill, V.; Nanda, G. Emulsomes: a lipid based drug delivery system. World J. Pharm. Res., 2021, 10(2), 113-129.
[143]
Aldawsari, H.M.; Badr-Eldin, S.M.; Assiri, N.Y.; Alhakamy, N.A.; Privitera, A.; Caraci, F.; Caruso, G. Surface-tailoring of emulsomes for boosting brain delivery of vinpocetine via intranasal route: in vitro optimization and in vivo pharmacokinetic assessment. Drug Deliv., 2022, 29(1), 2671-2684.
[http://dx.doi.org/10.1080/10717544.2022.2110996] [PMID: 35975309]
[144]
Gill, B.; Singh, J.; Sharma, V.; Hari Kumar, S.L. Emulsomes: An emerging vesicular drug delivery system. Asian J. Pharm., 2012, 6(2), 87-94.
[http://dx.doi.org/10.4103/0973-8398.102930]
[145]
Bolat, Z.B.; Islek, Z.; Demir, B.N.; Yilmaz, E.N.; Sahin, F.; Ucisik, M.H. Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front. Bioeng. Biotechnol., 2020, 8, 50.
[http://dx.doi.org/10.3389/fbioe.2020.00050] [PMID: 32117930]
[146]
Mohammadi-Samani, S.; Ghasemiyeh, P. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Res. Pharm. Sci., 2018, 13(4), 288-303.
[http://dx.doi.org/10.4103/1735-5362.235156] [PMID: 30065762]
[147]
Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert. Opin. Ther. Pat., 2020, 30(3), 179-194.
[http://dx.doi.org/10.1080/13543776.2020.1720649]
[148]
Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, 71(4), 349-358.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[149]
Fang, C.L.; Al-Suwayeh, S.A.; Fang, J.Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat. Nanotechnol., 2013, 7(1), 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[150]
Elmowafy, M.; Al-Sanea, M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J., 2021, 29(9), 999-1012.
[http://dx.doi.org/10.1016/j.jsps.2021.07.015] [PMID: 34588846]
[151]
Nasirizadeh, S.; Malaekeh-Nikouei, B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. J. Drug Deliv. Sci. Technol., 2020, 55, 101458.
[http://dx.doi.org/10.1016/j.jddst.2019.101458]
[152]
Liu, Y.; Zhang, H.; Cui, H.; Zhang, F.; Zhao, L.; Liu, Y.; Meng, Q. Combined and targeted drugs delivery system for colorectal cancer treatment: Conatumumab decorated, reactive oxygen species sensitive irinotecan prodrug and quercetin co-loaded nanostructured lipid carriers. Drug Deliv., 2022, 29(1), 342-350.
[http://dx.doi.org/10.1080/10717544.2022.2027573] [PMID: 35049388]
[153]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials, 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[154]
Harika, P.; Deepthi, B.V.P.; Vinitha, B.; Baherji, R.; Ali, J.; Sharma, J.V.C. Herbal Nanoparticles World J. Pharm. Med. Res, 2021, 7(3), 127-130.
[155]
Yadav, D; Suri, S; Choudhary, AA; Sikender, M Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int. J. Pharm. Tech., 2011, 3, 3092-3116.
[156]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[157]
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217-223.
[http://dx.doi.org/10.4103/2278-344X.107832]
[158]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[159]
Andishmand, H.; Tabibiazar, M.; Mohammadifar, M.A.; Hamishehkar, H. Pectin-zinc-chitosan-polyethylene glycol colloidal nano-suspension as a food grade carrier for colon targeted delivery of resveratrol. Int. J. Biol. Macromol., 2017, 97, 16-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.12.087] [PMID: 28064058]
[160]
Agrahari, V.; Meng, J.; Ezoulin, M.J.M.; Youm, I.; Dim, D.C.; Molteni, A.; Hung, W.T.; Christenson, L.K.; Youan, B.B.C. Stimuli-sensitive thiolated hyaluronic acid based nanofibers: synthesis, preclinical safety and in vitro anti-HIV activity. Nanomedicine, 2016, 11(22), 2935-2958.
[http://dx.doi.org/10.2217/nnm-2016-0103] [PMID: 27785967]
[161]
Jafari, S. Nanoencapsulation of Food Bioactive Ingredients; Academic Press, 2017.
[http://dx.doi.org/10.1016/B978-0-12-809740-3.00001-5]
[162]
Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci., 2019, 229, 57-66.
[http://dx.doi.org/10.1016/j.lfs.2019.05.028] [PMID: 31085247]
[163]
Rostami, M.; Ghorbani, M.; Aman mohammadi, M.; Delavar, M.; Tabibiazar, M.; Ramezani, S. Development of resveratrol loaded chitosan-gellan nanofiber as a novel gastrointestinal delivery system. Int. J. Biol. Macromol., 2019, 135, 698-705.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.187] [PMID: 31145955]
[164]
Sarangi, M.; Padhi, S. Novel herbal drug delivery system: An overview. Arch. Med. Health Sci., 2018, 6(1), 171-179.
[http://dx.doi.org/10.4103/amhs.amhs_88_17]
[165]
Cevc, G.; Vierl, U. Nanotechnology and the transdermal routeA state of the art review and critical appraisal. J. Control. Release, 2010, 141(3), 277-299.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.016] [PMID: 19850095]
[166]
Klippstein, R.; Wang, J.T.W.; El-Gogary, R.I.; Bai, J.; Mustafa, F.; Rubio, N.; Bansal, S.; Al-Jamal, W.T.; Al-Jamal, K.T. Passively targeted curcumin-loaded PEGylated PLGA nanocapsules for colon cancer therapy in vivo. Small, 2015, 11(36), 4704-4722.
[http://dx.doi.org/10.1002/smll.201403799] [PMID: 26140363]
[167]
Ramzy, L.; Metwally, A.A.; Nasr, M.; Awad, G.A.S. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci. Rep., 2020, 10(1), 10987.
[http://dx.doi.org/10.1038/s41598-020-67748-2] [PMID: 32620860]
[168]
Simón-Gracia, L.; Hunt, H.; Scodeller, P.; Gaitzsch, J.; Kotamraju, V.R.; Sugahara, K.N.; Tammik, O.; Ruoslahti, E.; Battaglia, G.; Teesalu, T. iRGD peptide conjugation potentiates intraperitoneal tumor delivery of paclitaxel with polymersomes. Biomaterials, 2016, 104, 247-257.
[http://dx.doi.org/10.1016/j.biomaterials.2016.07.023] [PMID: 27472162]
[169]
Alibolandi, M.; Rezvani, R.; Farzad, S.A.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Tetrac-conjugated polymersomes for integrin-targeted delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 532(1), 581-594.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.039] [PMID: 28935257]
[170]
Reimondez-Troitiño, S.; González-Aramundiz, J.V.; Ruiz-Bañobre, J.; López-López, R.; Alonso, M.J.; Csaba, N.; de la Fuente, M. Versatile protamine nanocapsules to restore miR-145 levels and interfere tumor growth in colorectal cancer cells. Eur. J. Pharm. Biopharm., 2019, 142, 449-459.
[http://dx.doi.org/10.1016/j.ejpb.2019.07.016] [PMID: 31326581]
[171]
Priyadarshi, K.; Shirsath, K.; Waghela, N.B.; Sharma, A.; Kumar, A.; Pathak, C. Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells. J. Biomol. Struct. Dyn., 2021, 39(18), 6853-6869.
[http://dx.doi.org/10.1080/07391102.2020.1802344] [PMID: 32752940]
[172]
Alibolandi, M.; Taghdisi, S.M.; Ramezani, P.; Hosseini Shamili, F.; Farzad, S.A.; Abnous, K.; Ramezani, M. Smart AS1411-aptamer conjugated pegylated PAMAM dendrimer for the superior delivery of camptothecin to colon adenocarcinoma in vitro and in vivo. Int. J. Pharm., 2017, 519(1-2), 352-364.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.044] [PMID: 28126548]
[173]
Debele, T.A.; Lee, K.Y.; Hsu, N.Y.; Chiang, Y.T.; Yu, L.Y.; Shen, Y.A.; Lo, C.L. A pH sensitive polymeric micelle for co-delivery of doxorubicin and α-TOS for colon cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(29), 5870-5880.
[http://dx.doi.org/10.1039/C7TB01031A] [PMID: 32264220]
[174]
Xu, G.; Shi, H.; Ren, L.; Gou, H.; Gong, D.; Gao, X.; Huang, N. Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int. J. Nanomed., 2015, 10, 2051-2063.
[PMID: 25844036]
[175]
Zhu, H. Targeted nanoparticles drug for magnetic hyperthermia treatment on malignant tumors. U.S. 20110177153, 2011.
[176]
Dash, A.K.; Trickler, W.J. Mucoadhesive nanoparticles for cancer treatment. U.S. 8242165,, 2012.
[177]
Iyer, K.L.; Evans, C.W.; Clemons, T.D.; Fitzgerald, M.; Dunlop, S.A.; Luzinov, I.; Zdyrko, B. Multifunctional nanoparticles. W.O. 2012075533,, 2012.
[178]
Zhao, Y. Nanoparticles and nanoparticle compositions. W.O. 2011130114,, 2011.
[179]
Soon, J.E.; Yuk, C.K.; Seok, C.Y.; Jong, Y.T.; Hong, A.C.; Tae, K.K.; Hyun, C.Z.; Young, R.J.; Keun, C.B.; Jeong, C.E.; Chul, Y.G. Nanoparticles conjugates with a cetuximab antibody for diag nosis of colon cancer, and a method for preparing the same. K.R. 100830889,, 2008.
[180]
Bayford, R.H.; Roitt, I.M.; Rademacher, T.W.; Demosthenous, A.; Iles, R.K. Detection of cancer. W.O. 2010052503,, 2010.
[181]
Block, C.; Mittmann, K.; Arntz, C. Optimized adhesin fragments and corresponding nanoparticles. U.S. 20110110856,, 2011.
[182]
Liu, W.; Hainfeld, J.F. NM nickel-NTA-gold nanoparticles. U.S. 20120244075,, 2012.
[183]
Amiji, M.M.; Ganta, S.; Tsai, P.-C. Multimodal diagnostic technology for early stage cancer lesions. E.P. 2549925,, 2013.