Current Chemical Biology

Author(s): Amina Hammoudi, Amina Tabet Zatla, Imane Rihab Mami, Nabila Benariba, Radia Brixi-Gormat, Zohra Fekhikher, Hanane Benramdane and Mohammed El Amine Dib*

DOI: 10.2174/0122127968317328240918041222

DownloadDownload PDF Flyer Cite As
In-vitro and In-silico α-amylase Inhibition Activity of Carlina Oxide and Aplotaxene Isolated From the Roots of Carthamus caeruleus and Rhaponticum acaule

Page: [94 - 103] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Numerous natural products have been successfully developed for clinical use in the treatment of human diseases in almost every therapeutic area.

Objectives: This work aimed to assess the in-vitro and in-silico α-amylase inhibition activities of carlina oxide and aplotaxene, isolated from the roots of Carthamus caeruleus and Rhaponticum acaule respectively.

Methods: The essential oil from C. caeruleus roots was obtained using a Clevenger-type apparatus, and the hexanoic extract from the roots of R. acaule was obtained through maceration. Major components of each plant were separated via column chromatography. The in-vitro α-amylase inhibition activity was evaluated using porcine pancreatic α-amylase, while the molecular docking study was conducted using the Molecular Operating Environment (MOE) with three types of α-amylase: human salivary, pancreatic α-amylase and Aspergillus oryzae α-amylase (PDB: 1Q4N, 5EMY, 7P4W respectively).

Results: The in-vitro α-amylase inhibition results for the essential oil, the hexanoic extract, carlina oxide and aplotaxene showed that carlina oxide exhibited significant activity with IC50 of 0.42 mg/mL. However, the in-silico study showed no interaction between aplotaxene and the three α-amylase enzymes, whereas carlina oxide demonstrated one pi-cation interaction with 5EMY with the amino acid TYR 62 at a distance of 4.70 Å and two pi-H interactions with 7P4W with the amino acid LYS 383 at distances of 4.31 and 4 .03 Å.

Conclusion: In conclusion, carlina oxide has the potential to serve as an alternative agent for α- amylase inhibition, contributing to the reduction of postprandial hyperglycemia.

Keywords: Carthamus caeruleus, Rhaponticum acaule, carlina oxide, aplotaxene, postprandial hyperglycemia, α -amylase inhibition, molecular docking.

Graphical Abstract

[1]
Nair, S.S.; Kavrekar, V.; Mishra, A. In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. Eur. J. Exp. Biol., 2013, 3(1), 128-132.
[2]
Liamis, G.; Liberopoulos, E.; Barkas, F.; Elisaf, M. Diabetes mellitus and electrolyte disorders. World J. Clin. Cases, 2014, 2(10), 488-496.
[http://dx.doi.org/10.12998/wjcc.v2.i10.488] [PMID: 25325058]
[3]
Vss, P.; Adapa, D.; Vana, D.R.; Choudhury, A.; Asadullah, J.; Chatterjee, A. Nutritional components relevant to type-2-diabetes: Dietary sources, metabolic functions and glycaemic effects. J. Res. Med. Dent., 2018, 6(5), 52-75.
[4]
Burke, J.P.; Williams, K.; Narayan, K.M.V.; Leibson, C.; Haffner, S.M.; Stern, M.P. A population perspective on diabetes prevention: Whom should we target for preventing weight gain? Diabetes Care, 2003, 26(7), 1999-2004.
[http://dx.doi.org/10.2337/diacare.26.7.1999] [PMID: 12832302]
[5]
Mukhtar, Y.; Galalain, A.; Yunusa, U. A modern overview on diabetes mellitus: A chronic endocrine disorder. Eur J Biol., 2020, 5(2), 1-14.
[http://dx.doi.org/10.47672/ejb.409]
[6]
Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[7]
Nickavar, B.; Abolhasani, L. Bioactivity-guided separation of an a-amylase inhibitor flavonoid from Salvia virgata. Iran. J. Pharm. Res., 2013, 12(1), 57-61.
[PMID: 24250572]
[8]
Ceriello, A. Postprandial hyperglycemia and diabetes complications: Is it time to treat? Diabetes, 2005, 54(1), 1-7.
[http://dx.doi.org/10.2337/diabetes.54.1.1] [PMID: 15616004]
[9]
Bray, G.A.; Greenway, F.L. Current and potential drugs for treatment of obesity. Endocr. Rev., 1999, 20(6), 805-875.
[http://dx.doi.org/10.1210/edrv.20.6.0383] [PMID: 10605627]
[10]
Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bras. Cienc., 2019, 91(Suppl. 3), e20190105.
[http://dx.doi.org/10.1590/0001-3765201920190105] [PMID: 31166478]
[11]
Davies, J. Section 3 the advent of modern microbiology-in praise of antibiotics. ASM, 1999, 65(5), 304-310.
[12]
Singh, S.B.; Pelaez, F. Biodiversity, chemical diversity and drug discovery. Prog. Drug Res., 2008, 65, 141-174.
[13]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[14]
Karima, S.; Farida, S.; Mihoub, Z.M. Antimicrobial activity of an algerian medicinal plant: Carthamus caeruleus L. PHCOG COMMN, 2013, 3(4), 71.
[15]
Ouda, A. N.; Fatiha, M.; Sadia, M.; Zohra, S. F.; Noureddine, D. In vivo anti-inflammatory activity of aqueous extract of Carthamus caeruleus L. rhizome against carrageenan-induced inflammation in mice. Jordan J. Biol., 2021, 14(3)
[16]
Meddour, R.; Meddour-Sahar, O. Medicinal plants and their traditional uses in kabylia (Tizi Oouzou, Algeria). Arab J Med Aromat Plants, 2015, 1(2), 137-151.
[17]
Mami, I.R.; Merad-Boussalah, N.; El Amine Dib, M.; Tabti, B.; Costa, J.; Muselli, A. Chemical variability and antioxidant activities of the essential oils of the aerial parts of Ammoides verticillata and the roots of Carthamus caeruleus and their synergistic effect in combination. Comb. Chem. High Throughput Screen., 2021, 24(1), 71-78.
[PMID: 32504498]
[18]
Toubane, A.; Rezzoug, S.A.; Besombes, C.; Daoud, K. Optimization of accelerated solvent extraction of Carthamus caeruleus L. Evaluation of antioxidant and anti-inflammatory activity of extracts. Ind. Crops Prod., 2017, 97, 620-631.
[http://dx.doi.org/10.1016/j.indcrop.2016.12.002]
[19]
Dahmani, M.; Laoufi, R.; Selama, O.; Arab, K. Gas chromatography coupled to mass spectrometry characterization, anti-inflammatory effect, wound-healing potential, and hair growth-promoting activity of Algerian Carthamus caeruleus L (Asteraceae). Indian J. Pharmacol., 2018, 50(3), 123-129.
[http://dx.doi.org/10.4103/ijp.IJP_65_17] [PMID: 30166749]
[20]
Mami, I.R.; Belabbes, R.; Amine Dib, M.E.; Tabti, B.; Costa, J.; Muselli, A. Biological activities of carlina oxide isolated from the roots of Carthamus caeruleus. J. Nat. Prod., 2020, 10(2), 145-152.
[21]
Benabdesselam, S.; Guechi, E-K.; Izza, H. Antioxidant, antibacterial and anticoagulant activities of the methanolic extract of Rhaponticum caeruleus fruit growing wild in eastern algeria. Pharm. Lett., 2018, 10, 1-10.
[22]
Benyelles, B.; Allali, H.; El Amine Dib, M.; Djabou, N.; Tabti, B.; Costa, J. Essential oil from Rhaponticum acaule L. roots: Comparative study using HS-SPME/GC/GC–MS and hydrodistillation techniques. J. Saudi Chem. Soc., 2014, 18(6), 972-976.
[http://dx.doi.org/10.1016/j.jscs.2011.12.001]
[23]
Mosbah, H.; Chahdoura, H.; Kammoun, J.; Hlila, M.B.; Louati, H.; Hammami, S.; Flamini, G.; Achour, L.; Selmi, B. Rhaponticum acaule (L) DC essential oil: Chemical composition, in vitro antioxidant and enzyme inhibition properties. BMC Complement. Altern. Med., 2018, 18(1), 79.
[http://dx.doi.org/10.1186/s12906-018-2145-5] [PMID: 29506517]
[24]
Ramasubbu, N.; Sundar, K.; Ragunath, C.; Rafi, M.M. Structural studies of a Phe256Trp mutant of human salivary α-amylase: Implications for the role of a conserved water molecule in enzyme activity. Arch. Biochem. Biophys., 2004, 421(1), 115-124.
[http://dx.doi.org/10.1016/j.abb.2003.10.007] [PMID: 14678792]
[25]
Caner, S.; Zhang, X.; Jiang, J.; Chen, H.M.; Nguyen, N.T.; Overkleeft, H.; Brayer, G.D.; Withers, S.G. Glucosyl epi‐cyclophellitol allows mechanism‐based inactivation and structural analysis of human pancreatic α‐amylase. FEBS Lett., 2016, 590(8), 1143-1151.
[http://dx.doi.org/10.1002/1873-3468.12143] [PMID: 27000970]
[26]
Gorrec, F.; Bellini, D. The FUSION protein crystallization screen. J. Appl. Cryst., 2022, 55(2), 310-319.
[http://dx.doi.org/10.1107/S1600576722001765] [PMID: 35497656]
[27]
Tsyrulneva, I.; Alagappan, P.; Liedberg, B. Colorimetric detection of salivary a-amylase using maltose as a noncompetitive inhibitor for polysaccharide cleavage. ACS Sens., 2019, 4(4), 865-873.
[http://dx.doi.org/10.1021/acssensors.8b01343] [PMID: 30895774]
[28]
Yadav, R.; Bhartiya, J.P.; Verma, S.K.; Nandkeoliar, M.K. The evaluation of serum amylase in the patients of type 2 diabetes mellitus, with a possible correlation with the pancreatic functions. J. Clin. Diagn. Res., 2013, 7(7), 1291-1294.
[http://dx.doi.org/10.7860/JCDR/2013/6016.3120] [PMID: 23998048]
[29]
Rines, A.K.; Sharabi, K.; Tavares, C.D.J.; Puigserver, P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat. Rev. Drug Discov., 2016, 15(11), 786-804.
[http://dx.doi.org/10.1038/nrd.2016.151] [PMID: 27516169]
[30]
AL-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules, 2019, 9(9), 430.
[http://dx.doi.org/10.3390/biom9090430] [PMID: 31480505]
[31]
Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]
[32]
Cisneros-Yupanqui, M.; Lante, A.; Mihaylova, D.; Krastanov, A.I.; Rizzi, C. THE A-amylase and A-glucosidase inhibition capacity of grape pomace: A review. Food Bioprocess Technol., 2023, 16(4), 691-703.
[http://dx.doi.org/10.1007/s11947-022-02895-0] [PMID: 36062030]
[33]
Tiwari, V.P.; Dubey, A.; Al-Shehri, M.; Tripathi, I.P. Exploration of human pancreatic alpha-amylase inhibitors from Physalis peruviana for the treatment of type 2 diabetes. J. Biomol. Struct. Dyn., 2024, 42(2), 1031-1046.
[http://dx.doi.org/10.1080/07391102.2023.2243336] [PMID: 37545158]
[34]
Silva, F.M.L.; Donega, M.A.; Cerdeira, A.L.; Corniani, N.; Velini, E.D.; Cantrell, C.L.; Dayan, F.E.; Coelho, M.N.; Shea, K.; Duke, S.O. Roots of the invasive species Carduus nutans L. and C. acanthoides L. produce large amounts of aplotaxene, a possible allelochemical. J. Chem. Ecol., 2014, 40(3), 276-284.
[http://dx.doi.org/10.1007/s10886-014-0390-8] [PMID: 24557607]
[35]
Cerdeira, A.L.; Silva, F.M.L.; Donega, M.A.; Cantrell, C.L.; Shea, K.; Duke, S.O.; Velini, E.D.; Corniani, N. Roots of the invasive species Carduus nutans L. and C. acanthoides L. Produce the phytotoxin aplotaxene, a possible allelochemical. Planta Med., 2013, 79(10), PB2.
[http://dx.doi.org/10.1055/s-0033-1348556]
[36]
Benhamidat, L.; Amine Dib, M.E.; Bensaid, O.; Zatla, A.T.; Keniche, A.; Ouar, I.E.; Nassim, D.; Muselli, A. Chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of Centaurea acaulis essential oils: Study of the combinatorial activities of aplotaxene with reference standards. J. Essent. Oil-Bear. Plants, 2022, 25(1), 126-146.
[http://dx.doi.org/10.1080/0972060X.2022.2046177]
[37]
Semaoui, M.; Dib, M.E.A.; Djabou, N.; Costa, J.; Muselli, A. chemical composition, biological activities and toxicity study of Carduncellus pinnatus essential oil from west algeria. Curr. Bioact. Compd., 2022, 18(3), e020821195186.
[http://dx.doi.org/10.2174/1573407217666210802113423]
[38]
Havlik, J.; Budesinsky, M.; Kloucek, P.; Kokoska, L.; Valterova, I.; Vasickova, S.; Zeleny, V. Norsesquiterpene hydrocarbon, chemical composition and antimicrobial activity of Rhaponticum carthamoides root essential oil. Phytochemistry, 2009, 70(3), 414-418.
[http://dx.doi.org/10.1016/j.phytochem.2008.12.018] [PMID: 19195668]
[39]
Semmler, F.W.; Feldstein, J. On the knowledge of the components of essential oils. (on the components of costus root oil). Ber. Dtsch. Chem. Ges., 1914, 47(3), 2687-2694.
[http://dx.doi.org/10.1002/cber.19140470353]
[40]
Binder, R.G.; Benson, M.; Haddon, W.F.; French, R.C. Aplotaxene derivatives from Cirsium arvense. Phytochemistry, 1992, 31(3), 1033-1034.
[41]
Link, P.; Roth, K.; Sporer, F.; Wink, M. Carlina acaulis exhibits antioxidant activity and counteracts ab toxicity in caenorhabditis elegans. Molecules, 2016, 21(7), 871.
[http://dx.doi.org/10.3390/molecules21070871] [PMID: 27384550]
[42]
Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Cappellacci, L.; Petrelli, R.; Spinozzi, E.; Aguzzi, C.; Zeppa, L.; Ubaldi, M.; Desneux, N.; Canale, A.; Maggi, F.; Benelli, G. Encapsulation of Carlina acaulis essential oil and carlina oxide to develop long-lasting mosquito larvicides: microemulsions versus nanoemulsions. J. Pest Sci., 2021, 94(3), 899-915.
[http://dx.doi.org/10.1007/s10340-020-01327-2]
[43]
Đorđević, S.; Petrović, S.; Dobrić, S.; Milenković, M.; Vučićević, D.; Žižić, S.; Kukić, J. Antimicrobial, anti-inflammatory, anti-ulcer and antioxidant activities of Carlina acanthifolia root essential oil. J. Ethnopharmacol., 2007, 109(3), 458-463.
[http://dx.doi.org/10.1016/j.jep.2006.08.021] [PMID: 17011148]
[44]
Saralieva, E.N.; Petkova, N.T.; Ivanov, I.G.; Aneva, I.Y.; Georgiev, V.G.; Nikolova, K.T. Polyphenolic compounds, triterpenes, carlina oxide, antioxidant activity and carbohydrate profile of different vegetal parts of Carlina vulgaris L., Carlina acanthifolia all. and Carlina Corymbosa L. TROP. J. Nat. Prod. Res., 2023, 7(10), 4242-4248.
[45]
Saralieva, E.; Dincheva, I.; Tumbarski, Y.; Petkova, N.; Vilhelmova-Ilieva, N.; Nikolova, I.; Simeonova, L.; Ivanov, I. Chemical composition, antibacterial, antiviral, antioxidant, and acetylcholinesterase inhibitory properties of essential oils from Carlina acanthifolia all. Roots. J. Essent. Oil-Bear. Plants, 2022, 25(5), 976-986.
[http://dx.doi.org/10.1080/0972060X.2022.2133973]
[46]
Achiri, R.; Benhamidat, L.; Mami, I.R.; Dib, M.E.A.; Aissaoui, N.; Cherif, C.Z.; Cherif, H.Z.; Muselli, A. chemical composition and antioxidant, anti-inflammatory and antimicrobial activities of the essential oil and its major component (Carlina oxide) of Carlina hispanica roots from WESTERN ALGERIA. J. Essent. Oil-Bear. Plants, 2021, 24(5), 1113-1124.
[http://dx.doi.org/10.1080/0972060X.2021.2005692]
[47]
Stojanović-Radić, Z.; Čomić, L.; Radulović, N.; Blagojević, P.; Mihajilov-Krstev, T.; Rajković, J. Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharm. Biol., 2012, 50(8), 933-940.
[http://dx.doi.org/10.3109/13880209.2011.649214] [PMID: 22480199]
[48]
Rohleder, N.; Nater, U.M. Determinants of salivary α-amylase in humans and methodological considerations. Psychoneuroendocrinology, 2009, 34(4), 469-485.
[http://dx.doi.org/10.1016/j.psyneuen.2008.12.004] [PMID: 19155141]
[49]
Yang, Z.M.; Lin, J.; Chen, L.H.; Zhang, M.; Chen, W.W.; Yang, X.R. The roles of AMY1 copies and protein expression in human salivary α-amylase activity. Physiol. Behav., 2015, 138, 173-178.
[http://dx.doi.org/10.1016/j.physbeh.2014.10.037] [PMID: 25446200]
[50]
Grigoleit, J.S.; Kullmann, J.S.; Oberbeck, R.; Schedlowski, M.; Engler, H. Salivary α-amylase response to endotoxin administration in humans. Psychoneuroendocrinology, 2013, 38(9), 1819-1823.
[http://dx.doi.org/10.1016/j.psyneuen.2013.01.003] [PMID: 23394872]
[51]
Arhakis, A.; Karagiannis, V.; Kalfas, S. Salivary alpha-amylase activity and salivary flow rate in young adults. Open Dent. J., 2013, 7(1), 7-15.
[http://dx.doi.org/10.2174/1874210601307010007] [PMID: 23524385]
[52]
Tiwari, S.; Srivastava, R.; Singh, C.; Shukla, K.; Singh, R.; Singh, P.; Singh, R.; Singh, N.; Sharma, R. Amylases: An overview with special reference to alpha amylase. J GLOBAL BIOSCI, 2015, 4(1), 1886-1901.
[53]
Douglas, C.W. Enzymic activity of salivary amylase when bound to the surface of oral streptococci oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary a-amylase starch and glucose oligosaccharides protect salivary-type amylase activity at acid PH. Food Chem., 2019, 15(274), 566-573.
[54]
Freitas, D.; Le Feunteun, S. Oro-gastro-intestinal digestion of starch in white bread, wheat-based and gluten-free pasta: Unveiling the contribution of human salivary α-amylase. Food Chem., 2019, 274(274), 566-573.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.025] [PMID: 30372980]
[55]
Scannapieco, F.A. Salivary alpha-amylase: Role in dental plaque and caries formation. Crit. Rev. Oral Biol. Med., 1993, 4(3-4), 301-307.
[56]
Keller, P.J.; Allan, B.J. The protein composition of human pancreatic juice. J. Biol. Chem., 1967, 242(2), 281-287.
[http://dx.doi.org/10.1016/S0021-9258(19)81461-8] [PMID: 6016613]
[57]
Date, K. Regulatory functions of α-amylase in the small intestine other than starch digestion: α-glucosidase activity, glucose absorption, cell proliferation, and differentiation. In: IN NEW INSIGHTS INTO METABOLIC SYNDROME; INTECHOPEN; , 2020.
[58]
Asanuma-Date, K.; Hirano, Y.; Le, N.; Sano, K.; Kawasaki, N.; Hashii, N.; Hiruta, Y.; Nakayama, K.; Umemura, M.; Ishikawa, K.; Sakagami, H.; Ogawa, H. Functional regulation of sugar assimilation by N-glycan-specific interaction of pancreatic α-amylase with glycoproteins of duodenal brush border membrane. J. Biol. Chem., 2012, 287(27), 23104-23118.
[http://dx.doi.org/10.1074/jbc.M111.314658] [PMID: 22584580]
[59]
Olaokun, O.O.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. Evaluation of the inhibition of carbohydrate hydrolysing enzymes, antioxidant activity and polyphenolic content of extracts of ten African Ficus species (Moraceae) used traditionally to treat diabetes. BMC Complement. Altern. Med., 2013, 13(1), 94.
[http://dx.doi.org/10.1186/1472-6882-13-94] [PMID: 23641947]
[60]
Haguet, Q.; Le Joubioux, F.; Chavanelle, V.; Groult, H.; Schoonjans, N.; Langhi, C.; Michaux, A.; Otero, Y.F.; Boisseau, N.; Peltier, S.L.; Sirvent, P.; Maugard, T. Inhibitory potential of a-amylase, a-glucosidase, and pancreatic lipase by a formulation of five plant extracts: TOTUM-63. Int. J. Mol. Sci., 2023, 24(4), 3652.
[http://dx.doi.org/10.3390/ijms24043652] [PMID: 36835060]
[61]
Hernández, M.S.; Rodríguez, M.R.; Guerra, N.P.; Rosés, R.P. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J. Food Eng., 2006, 73(1), 93-100.
[http://dx.doi.org/10.1016/j.jfoodeng.2005.01.009]
[62]
de Vries, R. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl. Microbiol. Biotechnol., 2003, 61(1), 10-20.
[http://dx.doi.org/10.1007/s00253-002-1171-9] [PMID: 12658510]
[63]
Kazim, A.R.S.; Jiang, Y.; Li, S.; He, X. Aspergillus nidulans amyg functions as an intracellular a-amylase to promote a-glucan synthesis. Microbiol. Spectr., 2021, 9(3), e00644-e21.
[http://dx.doi.org/10.1128/Spectrum.00644-21] [PMID: 34756063]
[64]
Akasaka, N.; Fujiwara, S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids, 2020, 52(2), 181-197.
[http://dx.doi.org/10.1007/s00726-019-02720-7] [PMID: 30915570]
[65]
Ruadrew, S.; Craft, J.; Aidoo, K. Occurrence of toxigenic Aspergillus spp. and aflatoxins in selected food commodities of Asian origin sourced in the West of Scotland. Food Chem. Toxicol., 2013, 55, 653-658.
[http://dx.doi.org/10.1016/j.fct.2013.02.001] [PMID: 23416649]
[66]
Porfirif, M.C.; Milatich, E.J.; Farruggia, B.M.; Romanini, D. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1022, 87-92.
[http://dx.doi.org/10.1016/j.jchromb.2016.04.015] [PMID: 27085017]
[67]
Bhanja Dey, T.; Banerjee, R. Purification, biochemical characterization and application of α-amylase produced by Aspergillus oryzae IFO-30103. Biocatal. Agric. Biotechnol., 2015, 4(1), 83-90.
[http://dx.doi.org/10.1016/j.bcab.2014.10.002]
[68]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Applications to targets and beyond. Br. J. Pharmacol., 2007, 152(1), 21-37.
[http://dx.doi.org/10.1038/sj.bjp.0707306] [PMID: 17549046]
[69]
Aleksandrov, A.; Myllykallio, H. Advances and challenges in drug design against tuberculosis: Application of in silico approaches. Expert Opin. Drug Discov., 2019, 14(1), 35-46.
[http://dx.doi.org/10.1080/17460441.2019.1550482] [PMID: 30477360]
[70]
Ng, K.C.S.; Ngabonziza, J.C.S.; Lempens, P.; de Jong, B.C.; van Leth, F.; Meehan, C.J. Bridging the TB data gap: In silico extraction of rifampicin-resistant tuberculosis diagnostic test results from whole genome sequence data. PeerJ, 2019, 7, e7564.
[http://dx.doi.org/10.7717/peerj.7564] [PMID: 31523514]
[71]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[72]
Aryaeian, N.; Khorshidi Sedehi, S.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran, 2017, 31(1), 886-892.
[http://dx.doi.org/10.14196/mjiri.31.134] [PMID: 29951434]
[73]
Gholam, H.A.; Falah, H.; Sharififar, F.; Mirtaj, A.S. The inhibitory effect of some Iranian plants extracts on the alpha glucosidase. Iran. J. Basic Med. Sci., 2008, 11(1), 1-9.
[74]
Vinholes, J.; Vizzotto, M. Synergisms in alpha-glucosidase inhibition and antioxidant activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts. Pharmacognosy Res., 2017, 9(1), 101-107.
[http://dx.doi.org/10.4103/0974-8490.197797] [PMID: 28250662]
[75]
Manaharan, T.; Teng, L.L.; Appleton, D.; Ming, C.H.; Masilamani, T.; Palanisamy, U.D. Antioxidant and antiglycemic potential of Peltophorum pterocarpum plant parts. Food Chem., 2011, 129(4), 1355-1361.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.041]
[76]
Ogunyemi, O.M.; Gyebi, G.A.; Saheed, A.; Paul, J.; Nwaneri-Chidozie, V.; Olorundare, O.; Adebayo, J.; Koketsu, M.; Aljarba, N.; Alkahtani, S.; Batiha, G.E.S.; Olaiya, C.O. Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Front. Mol. Biosci., 2022, 9, 866719.
[http://dx.doi.org/10.3389/fmolb.2022.866719] [PMID: 36032689]
[77]
Ravi, L. In vitro and in silico alpha-amylase inhibition potential (anti-diabetic activity) of pseuderanthemum bicolor (sims) radik. In Vitro, 2020, 13(12)