Current Pharmaceutical Design

Author(s): Istuti Saraswat and Anjana Goel*

DOI: 10.2174/0113816128348771240925100639

DownloadDownload PDF Flyer Cite As
Herbal Remedies for Hepatic Inflammation: Unravelling Pathways and Mechanisms for Therapeutic Intervention

Page: [128 - 139] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Inflammation is a universal response of mammalian tissue to harm, comprising reactions to injuries, pathogens, and foreign particles. Liver inflammation is commonly associated with hepatocyte necrosis and apoptosis. These forms of liver cell injury initiate a sequence of events independent of the etiological basis for the inflammation and can result in hepatic disorders. It is also common for liver cancer. This review fundamentally focuses on the molecular pathways involved in hepatic inflammation. This review aims to explore the molecular pathways involved in hepatic inflammation, focusing on arachidonic acid, NF-κB, MAPK, PI3K/Akt, and JAK/STAT pathways. It investigates active compounds in herbal plants and their pharmacological characteristics. The review proposes a unique therapeutic blueprint for managing hepatic inflammation and diseases by modifying these pathways with herbal remedies.

Keywords: Anti-inflammatory agents, hepatoprotective effects, immune regulation, molecular pathways, natural compounds, therapeutic targets.

[1]
Gehrke N, Schattenberg JM. Metabolic inflammation-A role for hepatic inflammatory pathways as drivers of comorbidities in nonalcoholic fatty liver disease? Gastroenterology 2020; 158(7): 1929-1947.e6.
[http://dx.doi.org/10.1053/j.gastro.2020.02.020] [PMID: 32068022]
[2]
Gao B, Ahmad MF, Nagy LE, Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J Hepatol 2019; 70(2): 249-59.
[http://dx.doi.org/10.1016/j.jhep.2018.10.023] [PMID: 30658726]
[3]
Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13(3): 267-76.
[http://dx.doi.org/10.1038/cmi.2016.3] [PMID: 27063467]
[4]
Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M. The immunology of hepatocellular carcinoma. Nat Immunol 2018; 19(3): 222-32.
[http://dx.doi.org/10.1038/s41590-018-0044-z] [PMID: 29379119]
[5]
Donne R, Lujambio A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023; 77(5): 1773-96.
[PMID: 35989535]
[6]
Kotsari M, Dimopoulou V, Koskinas J, Armakolas A. Immune system and hepatocellular carcinoma (HCC): New insights into HCC progression. Int J Mol Sci 2023; 24(14): 11471.
[http://dx.doi.org/10.3390/ijms241411471] [PMID: 37511228]
[7]
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2023; 10-1097.
[http://dx.doi.org/10.1097/HEP.0000000000000513] [PMID: 37300379]
[8]
Ioniuc I, Lupu A, Tarnita I, et al. Insights into the management of chronic hepatitis in children-from oxidative stress to antioxidant therapy. Int J Mol Sci 2024; 25(7): 3908.
[http://dx.doi.org/10.3390/ijms25073908] [PMID: 38612717]
[9]
Lee HL, Jang JW, Lee SW, et al. Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci Rep 2019; 9(1): 3260.
[http://dx.doi.org/10.1038/s41598-019-40078-8] [PMID: 30824840]
[10]
Olatunde A, Nigam M, Singh RK, et al. Cancer and diabetes: The interlinking metabolic pathways and repurposing actions of antidiabetic drugs. Cancer Cell Int 2021; 21(1): 499.
[http://dx.doi.org/10.1186/s12935-021-02202-5] [PMID: 34535145]
[11]
Pandey MM, Rastogi S, Rawat AKS. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid Based Complement Alternat Med 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/376327] [PMID: 23864888]
[12]
Yuan H, Ma Q, Ye L, Piao G. Traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[13]
Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 2018; 19(6): 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[14]
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, et al. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020; 9(12): 1309.
[http://dx.doi.org/10.3390/antiox9121309] [PMID: 33371338]
[15]
Muflihah YM, Gollavelli G, Ling YC. Correlation study of antioxidant activity with phenolic and flavonoid compounds in 12 Indonesian indigenous herbs. Antioxidants 2021; 10(10): 1530.
[http://dx.doi.org/10.3390/antiox10101530] [PMID: 34679665]
[16]
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2022; 36(1): 33-52.
[http://dx.doi.org/10.1002/ptr.7275] [PMID: 34532918]
[17]
Porta C, Larghi P, Rimoldi M, et al. Cellular and molecular pathways linking inflammation and cancer. Immunobiology 2009; 214(9-10): 761-77.
[http://dx.doi.org/10.1016/j.imbio.2009.06.014] [PMID: 19616341]
[18]
Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med 2010; 10(4): 369-73.
[http://dx.doi.org/10.2174/156652410791316968] [PMID: 20455855]
[19]
Larionova I, Cherdyntseva N, Liu T, Patysheva M, Rakina M, Kzhyshkowska J. Interaction of tumor-associated macrophages and cancer chemotherapy. OncoImmunology 2019; 8(7): e1596004.
[http://dx.doi.org/10.1080/2162402X.2019.1596004] [PMID: 31143517]
[20]
Arvanitakis K, Koletsa T, Mitroulis I, Germanidis G. Tumor-associated macrophages in hepatocellular carcinoma pathogenesis, prognosis and therapy. Cancers (Basel) 2022; 14(1): 226.
[http://dx.doi.org/10.3390/cancers14010226] [PMID: 35008390]
[21]
Kadatane SP, Satariano M, Massey M, Mongan K, Raina R. The role of inflammation in CKD. Cells 2023; 12(12): 1581.
[http://dx.doi.org/10.3390/cells12121581] [PMID: 37371050]
[22]
Sztolsztener K, Chabowski A, Harasim-Symbor E, Bielawiec P, Konstantynowicz-Nowicka K. Arachidonic acid as an early indicator of inflammation during non-alcoholic fatty liver disease development. Biomolecules 2020; 10(8): 1133.
[http://dx.doi.org/10.3390/biom10081133] [PMID: 32751983]
[23]
Tallima H, El Ridi R. Arachidonic acid: Physiological roles and potential health benefits – A review. J Adv Res 2018; 11: 33-41.
[http://dx.doi.org/10.1016/j.jare.2017.11.004] [PMID: 30034874]
[24]
Wang B, Wu L, Chen J, et al. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021; 6(1): 94.
[http://dx.doi.org/10.1038/s41392-020-00443-w] [PMID: 33637672]
[25]
Patrignani P, Patrono C. Aspirin and cancer. J Am Coll Cardiol 2016; 68(9): 967-76.
[http://dx.doi.org/10.1016/j.jacc.2016.05.083] [PMID: 27561771]
[26]
Sala A, Proschak E, Steinhilber D, Rovati GE. Two-pronged approach to anti-inflammatory therapy through the modulation of the arachidonic acid cascade. Biochem Pharmacol 2018; 158: 161-73.
[http://dx.doi.org/10.1016/j.bcp.2018.10.007] [PMID: 30315753]
[27]
Samuelsson B. Prostaglandins, thromboxanes, and leukotrienes: Formation and biological roles. Harvey Lect 1979-1980; 75: 1-40.
[PMID: 233643]
[28]
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising therapeutic targets for the treatment of rheumatoid arthritis. Front Immunol 2021; 12: 686155.
[http://dx.doi.org/10.3389/fimmu.2021.686155] [PMID: 34305919]
[29]
Yokomizo T, Nakamura M, Shimizu T. Leukotriene receptors as potential therapeutic targets. J Clin Invest 2018; 128(7): 2691-701.
[http://dx.doi.org/10.1172/JCI97946] [PMID: 29757196]
[30]
Rapa SF, Di Iorio BR, Campiglia P, Heidland A, Marzocco S. Inflammation and oxidative stress in chronic kidney disease-The potential therapeutic role of minerals, vitamins, and plant-derived metabolites. Int J Mol Sci 2019; 21(1): 263.
[http://dx.doi.org/10.3390/ijms21010263] [PMID: 31906008]
[31]
Murphy RC, Gijón MA. Biosynthesis and metabolism of leukotrienes. Biochem J 2007; 405(3): 379-95.
[http://dx.doi.org/10.1042/BJ20070289] [PMID: 17623009]
[32]
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: Biochemistry, biology, and roles in disease. Chem Rev 2011; 111(10): 5866-98.
[http://dx.doi.org/10.1021/cr200246d] [PMID: 21936577]
[33]
Tsai MJ, Chang WA, Tsai PH, et al. Montelukast induces apoptosis-inducing factor-mediated cell death of lung cancer cells. Int J Mol Sci 2017; 18(7): 1353.
[http://dx.doi.org/10.3390/ijms18071353] [PMID: 28672809]
[34]
Panigrahy D, Greene ER, Pozzi A, Wang DW, Zeldin DC. EET signaling in cancer. Cancer Metastasis Rev 2011; 30(3-4): 525-40.
[http://dx.doi.org/10.1007/s10555-011-9315-y] [PMID: 22009066]
[35]
Luedde T, Schwabe RF. NF-κB in the liver-linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8(2): 108-18.
[http://dx.doi.org/10.1038/nrgastro.2010.213] [PMID: 21293511]
[36]
Ghosh G, Wang VYF. Origin of the functional distinctiveness of NF-κB/p52. Front Cell Dev Biol 2021; 9: 764164.
[http://dx.doi.org/10.3389/fcell.2021.764164] [PMID: 34888310]
[37]
Dembinski HE, Wismer K, Vargas JD, et al. Functional importance of stripping in NFκB signaling revealed by a stripping-impaired IκBα mutant. Proc Natl Acad Sci USA 2017; 114(8): 1916-21.
[http://dx.doi.org/10.1073/pnas.1610192114] [PMID: 28167786]
[38]
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther 2020; 5(1): 209.
[http://dx.doi.org/10.1038/s41392-020-00312-6] [PMID: 32958760]
[39]
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate immune system activation, inflammation and corneal wound healing. Int J Mol Sci 2022; 23(23): 14933.
[http://dx.doi.org/10.3390/ijms232314933] [PMID: 36499260]
[40]
Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1(4): a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[41]
Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018; 9(6): 7204-18.
[http://dx.doi.org/10.18632/oncotarget.23208] [PMID: 29467962]
[42]
Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S. Constitutively active NF-κB triggers systemic TNFα-dependent inflammation and localized TNFα-independent inflammatory disease. Genes Dev 2010; 24(16): 1709-17.
[http://dx.doi.org/10.1101/gad.1958410] [PMID: 20713516]
[43]
He G, Karin M. NF-κB and STAT3 – key players in liver inflammation and cancer. Cell Res 2011; 21(1): 159-68.
[http://dx.doi.org/10.1038/cr.2010.183] [PMID: 21187858]
[44]
Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: Roles in cell growth, death, and cancer. Pharmacol Rev 2008; 60(3): 261-310.
[http://dx.doi.org/10.1124/pr.107.00106] [PMID: 18922965]
[45]
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol Rev 2012; 92(2): 689-737.
[http://dx.doi.org/10.1152/physrev.00028.2011] [PMID: 22535895]
[46]
Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci 2018; 9: 1387.
[http://dx.doi.org/10.3389/fpls.2018.01387] [PMID: 30349547]
[47]
Li W, Yang GL, Zhu Q, et al. TLR4 promotes liver inflammation by activating the JNK pathway. Eur Rev Med Pharmacol Sci 2019; 23(17): 7655-62.
[PMID: 31539158]
[48]
Wu F, Yang J, Liu J, et al. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6(1): 218.
[http://dx.doi.org/10.1038/s41392-021-00641-0] [PMID: 34108441]
[49]
Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: Mechanisms of drug resistance and sensitivity. Int J Mol Sci 2020; 21(3): 1102.
[http://dx.doi.org/10.3390/ijms21031102] [PMID: 32046099]
[50]
Teng Y, Ross JL, Cowell JK. The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAK-STAT 2014; 3(1): e28086.
[http://dx.doi.org/10.4161/jkst.28086] [PMID: 24778926]
[51]
Thorn M, Guha P, Cunetta M, et al. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther 2016; 23(6): 188-98.
[http://dx.doi.org/10.1038/cgt.2016.19] [PMID: 27199222]
[52]
Liu J, Wang F, Luo F. The role of JAK/STAT pathway in fibrotic diseases: Molecular and cellular mechanisms. Biomolecules 2023; 13(1): 119.
[http://dx.doi.org/10.3390/biom13010119] [PMID: 36671504]
[53]
Hu Q, Bian Q, Rong D, et al. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol 2023; 11: 1110765.
[http://dx.doi.org/10.3389/fbioe.2023.1110765] [PMID: 36911202]
[54]
Morris R, Kershaw NJ, Babon JJ. The molecular details of cytokine signaling via the JAK/STAT pathway. Protein Sci 2018; 27(12): 1984-2009.
[http://dx.doi.org/10.1002/pro.3519] [PMID: 30267440]
[55]
Kondo N, Kuroda T, Kobayashi D. Cytokine networks in the pathogenesis of rheumatoid arthritis. Int J Mol Sci 2021; 22(20): 10922.
[http://dx.doi.org/10.3390/ijms222010922] [PMID: 34681582]
[56]
Asgharian P, Tazekand AP, Hosseini K, et al. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int 2022; 22(1): 257.
[http://dx.doi.org/10.1186/s12935-022-02677-w] [PMID: 35971151]
[57]
Hu X, li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther 2021; 6(1): 402.
[http://dx.doi.org/10.1038/s41392-021-00791-1] [PMID: 34824210]
[58]
Vidal S, Bouzaher YH, El Motiam A, Seoane R, Rivas C. Overview of the regulation of the class IA PI3K/AKT pathway by SUMO. Semin Cell Dev Biol 2022; 132: 51-61.
[http://dx.doi.org/10.1016/j.semcdb.2021.10.012] [PMID: 34753687]
[59]
Manning BD, Toker A. AKT/PKB signaling: Navigating the network. Cell 2017; 169(3): 381-405.
[http://dx.doi.org/10.1016/j.cell.2017.04.001] [PMID: 28431241]
[60]
Yang Y, Jia X, Qu M, et al. Exploring the potential of treating chronic liver disease targeting the PI3K/Akt pathway and polarization mechanism of macrophages. Heliyon 2023; 9(6): e17116.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17116.]
[61]
Chen Y, Wang BC, Xiao Y. PI3K: A potential therapeutic target for cancer. J Cell Physiol 2012; 227(7): 2818-21.
[http://dx.doi.org/10.1002/jcp.23038] [PMID: 21938729]
[62]
Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol 2017; 198(3): 1006-14.
[http://dx.doi.org/10.4049/jimmunol.1601515] [PMID: 28115590]
[63]
Duan T, Du Y, Xing C, Wang HY, Wang RF. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol 2022; 13: 812774.
[http://dx.doi.org/10.3389/fimmu.2022.812774] [PMID: 35309296]
[64]
He X, Li Y, Deng B, et al. The PI3K/Akt signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55(9): e13275.
[http://dx.doi.org/10.1111/cpr.13275] [PMID: 35754255]
[65]
Arcaro A, Guerreiro A. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications. Curr Genomics 2007; 8(5): 271-306.
[http://dx.doi.org/10.2174/138920207782446160] [PMID: 19384426]
[66]
Wu L, Zhang Q, Mo W, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing autophagy via the TGF-β1/Smads and PI3K/Akt pathways. Sci Rep 2017; 7(1): 9289.
[http://dx.doi.org/10.1038/s41598-017-09673-5] [PMID: 28839277]
[67]
Sun X, Zhuo X, Hu Y, Zheng X, Zhao Q. A novel matrine derivative WM622 inhibits hepatocellular carcinoma by inhibiting PI3K/Akt signaling pathways. Mol Cell Biochem 2018; 449(1-2): 47-54.
[http://dx.doi.org/10.1007/s11010-018-3341-9] [PMID: 29532226]
[68]
Saraswat I, Goel A. Cervical cancer therapeutics: An in-depth significance of herbal and chemical approaches of nanoparticles. Anticancer Agents Med Chem 2024; 24(8): 627-36.
[http://dx.doi.org/10.2174/0118715206289468240130051102.]
[69]
Tyagi AK, Prasad S, Majeed M, Aggarwal BB. Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization. Phytomedicine 2017; 34: 171-81.
[http://dx.doi.org/10.1016/j.phymed.2017.08.021] [PMID: 28899500]
[70]
Abdelsalam HM, Samak MA, Alsemeh AE. Synergistic therapeutic effects of Vitis vinifera extract and Silymarin on experimentally induced cardiorenal injury: The pertinent role of Nrf2. Biomed Pharmacother 2019; 110: 37-46.
[http://dx.doi.org/10.1016/j.biopha.2018.11.053] [PMID: 30458346]
[71]
Lee HS, Kwon YJ, Seo EB, et al. Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells. J Ethnopharmacol 2023; 317: 116851.
[http://dx.doi.org/10.1016/j.jep.2023.116851] [PMID: 37385574]
[72]
Marefati N, Ghorani V, Shakeri F, et al. A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharm Biol 2021; 59(1): 285-300.
[http://dx.doi.org/10.1080/13880209.2021.1874028] [PMID: 33645419]
[73]
Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci 2022; 24(1): 340.
[http://dx.doi.org/10.3390/ijms24010340] [PMID: 36613784]
[74]
Chakraborty P, Chatterjee M, Chakraborty A, Padma S, Mukherjee S. Phytochemicals as modulators of toll-like receptors: An immunopharmacological perspective. Medicinal Plants and Antimicrobial Therapies. Singapore: Springer Nature Singapore 2024; pp. 49-83.
[http://dx.doi.org/10.1007/978-981-99-7261-6_3]
[75]
Saller R, Melzer J, Reichling J, Brignoli R, Meier R. An updated systematic review of the pharmacology of silymarin. Forsch Komplementmed 2007; 14(2): 70-80.
[http://dx.doi.org/10.1159/000100581.]
[76]
Navarrete S, Alarcón M, Palomo I. Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-α and IL-1β in LPS-activated macrophages. Molecules 2015; 20(8): 15319-29.
[http://dx.doi.org/10.3390/molecules200815319] [PMID: 26307961]
[77]
Hasan IH, El-Desouky MA, Hozayen WG, Abdelaziz GM. Protective effect of Zingiber officinale against CCl4-induced liver fibrosis is mediated through downregulating the TGF-ß1/Smad3 and NF-κB/IκB pathways. Pharmacology 2016; 97(1-2): 1-9.
[http://dx.doi.org/10.1159/000441229] [PMID: 26551763]
[78]
Mandal SK, Maji AK, Mishra SK, et al. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res 2020; 160: 105085.
[http://dx.doi.org/10.1016/j.phrs.2020.105085] [PMID: 32683037]
[79]
Parra-Perez AM, Pérez-Jiménez A, Gris-Cárdenas I, et al. Involvement of the PI3K/AKT intracellular signaling pathway in the anticancer activity of hydroxytyrosol, a polyphenol from Olea europaea , in hematological cells and implication of HSP60 levels in its anti-inflammatory activity. Int J Mol Sci 2022; 23(13): 7053.
[http://dx.doi.org/10.3390/ijms23137053] [PMID: 35806065]
[80]
Arafa ESA, Refaey MS, Abd El-Ghafar OAM, Hassanein EHM, Sayed AM. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition. Heliyon 2021; 7(11): e08354.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08354] [PMID: 34825082]
[81]
Li Y, He S, Tang J, et al. Andrographolide inhibits inflammatory cytokines secretion in LPS-stimulated RAW264. 7 cells through suppression of NF-κB/MAPK signaling pathway. Evid Based Complement Alternat Med 2017; 2017.
[82]
Ding N, Wei B, Fu X, Wang C, Wu Y. Natural products that target the NLRP3 inflammasome to treat fibrosis. Front Pharmacol 2020; 11: 591393.
[http://dx.doi.org/10.3389/fphar.2020.591393] [PMID: 33390969]
[83]
Zhang X, Wang G, Gurley EC, Zhou H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 2014; 9(9): e107072.
[http://dx.doi.org/10.1371/journal.pone.0107072] [PMID: 25192391]
[84]
Chu LL, Hanh NTY, Quyen ML, Nguyen QH, Lien TTP, Do KV. Compound K Production: Achievements and Perspectives. Life (Basel) 2023; 13(7): 1565.
[http://dx.doi.org/10.3390/life13071565] [PMID: 37511939]
[85]
Chen CY, Peng WH, Tsai KD, Hsu SL. Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 2007; 81(23-24): 1602-14.
[http://dx.doi.org/10.1016/j.lfs.2007.09.028] [PMID: 17977562]
[86]
Zheng KYZ, Zhang ZX, Guo AJY, et al. Salidroside stimulates the accumulation of HIF-1α protein resulted in the induction of EPO expression: A signaling via blocking the degradation pathway in kidney and liver cells. Eur J Pharmacol 2012; 679(1-3): 34-9.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.027] [PMID: 22309741]
[87]
Xiong Y, Wang Y, Xiong Y, Teng L. Protective effect of Salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways. Food Sci Nutr 2021; 9(9): 5060-9.
[http://dx.doi.org/10.1002/fsn3.2459] [PMID: 34532015]
[88]
Lee SE, Jeong SI, Yang H, et al. Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages. J Ethnopharmacol 2012; 139(2): 541-8.
[http://dx.doi.org/10.1016/j.jep.2011.11.046] [PMID: 22155388]
[89]
Sarkar KK, Mitra T, Acharyya RN, Sadhu SK. Phytochemical screening and evaluation of the pharmacological activities of ethanolic extract of Argemone mexicana Linn. aerial parts. Orient Pharm Exp Med 2019; 19(1): 91-106.
[http://dx.doi.org/10.1007/s13596-018-0357-3]
[90]
Xia Y, Yan M, Wang P, et al. Withaferin A in the treatment of liver diseases: Progress and pharmacokinetic insights. Drug Metab Dispos 2022; 50(5): 685-93.
[http://dx.doi.org/10.1124/dmd.121.000455] [PMID: 34903587]
[91]
Buhrmann C, Mobasheri A, Busch F, et al. Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: Role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 2011; 286(32): 28556-66.
[http://dx.doi.org/10.1074/jbc.M111.256180] [PMID: 21669872]
[92]
Farkhondeh T, Folgado SL, Pourbagher-Shahri AM, Ashrafizadeh M, Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother 2020; 127: 110234.
[http://dx.doi.org/10.1016/j.biopha.2020.110234] [PMID: 32559855]
[93]
Wang R, Zhang H, Wang Y, Song F, Yuan Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol 2017; 47: 126-33.
[http://dx.doi.org/10.1016/j.intimp.2017.03.029] [PMID: 28391159]
[94]
Hamed F, McDonagh A, Almaghrabi S, Bakri Y, Messenger A, Tazi-Ahnini R. Epigallocatechin-3 gallate inhibits STAT-1/ JAK2/IRF-1/HLA-DR/HLA-B and reduces CD8 MKG2D lymphocytes of alopecia areata patients. Int J Environ Res Public Health 2018; 15(12): 2882.
[http://dx.doi.org/10.3390/ijerph15122882] [PMID: 30558329]
[95]
Cong L, Xie X, Liu S, Xiang L, Fu X. Genistein promotes M1 macrophage apoptosis and reduces inflammatory response by disrupting miR-21/TIPE2 pathway. Saudi Pharm J 2022; 30(7): 934-45.
[http://dx.doi.org/10.1016/j.jsps.2022.05.009] [PMID: 35903524]
[96]
Altındağ F. Silymarin ameliorates cisplatin-induced nephrotoxicity by downregulating TNF-α and NF-kB and by upregulating IL-10. J Exp Clin Med (Samsun) 2022; 39(1): 216-20.
[http://dx.doi.org/10.52142/omujecm.39.1.42]
[97]
Dong J, Li W, Cheng LM, Wang GG. Lycopene attenuates LPS-induced liver injury by inactivation of NF-κB/COX-2 signaling. Int J Clin Exp Pathol 2019; 12(3): 817-25.
[PMID: 31933889]
[98]
Choi J, Kim KJ, Kim BH, Koh EJ, Seo MJ, Lee BY. 6-Gingerol suppresses adipocyte-derived mediators of inflammation in vitro and in high-fat diet-induced obese zebra fish. Planta Med 2017; 83(3-4): 245-53.
[http://dx.doi.org/10.1055/s-0042-112371.]
[99]
Saraswat I, Goel A, Gupta J. An In-depth review on Argemone mexicana in the management of liver health and liver cancer. Anticancer Agents Med Chem 2024; 24
[http://dx.doi.org/10.2174/0118715206307964240821051756] [PMID: 39225208]
[100]
Hadrich F, Garcia M, Maalej A, et al. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells. Life Sci 2016; 151: 167-73.
[http://dx.doi.org/10.1016/j.lfs.2016.02.027] [PMID: 26872981]
[101]
He K, Yu X, Wang X, et al. Baicalein and Ly294002 induces liver cancer cells apoptosis via regulating phosphatidyl inositol 3-kinase/Akt signaling pathway. J Cancer Res Ther 2018; 14: S519-25.
[http://dx.doi.org/10.4103/0973-1482.235356] [PMID: 29970718]
[102]
Xin C, Quan H, Kim JM, et al. Ginsenoside Rb1 increases macrophage phagocytosis through p38 mitogen-activated protein kinase/Akt pathway. J Ginseng Res 2019; 43(3): 394-401.
[http://dx.doi.org/10.1016/j.jgr.2018.05.003] [PMID: 31308811]
[103]
Naomi R, Bahari H, Ong ZY, et al. Mechanisms of natural extracts of Andrographis paniculata that target lipid-dependent cancer pathways: A view from the signaling pathway. Int J Mol Sci 2022; 23(11): 5972.
[http://dx.doi.org/10.3390/ijms23115972] [PMID: 35682652]
[104]
Usui-Kawanishi F, Kani K, Karasawa T, et al. Isoliquiritigenin inhibits NLRP3 inflammasome activation with CAPS mutations by suppressing caspase-1 activation and mutated NLRP3 aggregation. Genes Cells 2024; 29(5): 423-31.
[http://dx.doi.org/10.1111/gtc.13108] [PMID: 38366709]
[105]
Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 2015; 265(1): 35-52.
[http://dx.doi.org/10.1111/imr.12286] [PMID: 25879282]
[106]
Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK. Regulation of toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: Focus on TLR4 signaling. Front Immunol 2019; 10: 1000.
[http://dx.doi.org/10.3389/fimmu.2019.01000] [PMID: 31134076]
[107]
Zhu L, Yi X, Zhao J, et al. Betulinic acid attenuates dexamethasone-induced oxidative damage through the JNK-P38 MAPK signaling pathway in mice. Biomed Pharmacother 2018; 103: 499-508.
[http://dx.doi.org/10.1016/j.biopha.2018.04.073] [PMID: 29677535]
[108]
Jang S, Kelley KW, Johnson RW. Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 2008; 105(21): 7534-9.
[http://dx.doi.org/10.1073/pnas.0802865105] [PMID: 18490655]
[109]
Yan X, Liu J, Zhu M, et al. Salidroside orchestrates metabolic reprogramming by regulating the Hif-1α signalling pathway in acute mountain sickness. Pharm Biol 2021; 59(1): 1538-48.
[http://dx.doi.org/10.1080/13880209.2021.1992449] [PMID: 34739769]
[110]
Yang GL, Jia LQ, Wu J, et al. Effect of tanshinone IIA on oxidative stress and apoptosis in a rat model of fatty liver. Exp Ther Med 2017; 14(5): 4639-46.
[http://dx.doi.org/10.3892/etm.2017.5162] [PMID: 29201162]
[111]
Lai L, Chen Y, Tian X, et al. Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats. Eur J Pharmacol 2015; 765: 234-41.
[http://dx.doi.org/10.1016/j.ejphar.2015.08.040] [PMID: 26318197]
[112]
Semwal P, Painuli S, Abu-Izneid T, et al. Diosgenin: An updated pharmacological review and therapeutic perspectives. Oxid Med Cell Longev 2022; 2022: 1-17.
[http://dx.doi.org/10.1155/2022/1035441] [PMID: 35677108]
[113]
Dai W, Wang F, He L, et al. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT1. Mol Carcinog 2015; 54(4): 301-11.
[http://dx.doi.org/10.1002/mc.22100] [PMID: 24243709]
[114]
Ahmed OM, Fahim HI, Ahmed HY, et al. The preventive effects and the mechanisms of action of navel orange peel hydroethanolic extract, naringin, and naringenin in N-acetyl-p-aminophenol-induced liver injury in Wistar rats. Oxid Med Cell Longev 2019; 2019: 1-19.
[http://dx.doi.org/10.1155/2019/2745352] [PMID: 31049130]
[115]
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: A promising strategy to augment cancer chemotherapy and immunotherapy. Front Oncol 2022; 12: 834072.
[http://dx.doi.org/10.3389/fonc.2022.834072] [PMID: 35299751]