Current Chinese Science

Author(s): Parth Manvar, Amita Vyas, Dharmesh Katariya, Vijay Khedkar and Ranjan Khunt*

DOI: 10.2174/0122102981332978240909103213

DownloadDownload PDF Flyer Cite As
Quinoline Derivative Green Synthesis: Unveiling Anticancer Potential through Synergistic Insights and Molecular Docking Analysis

Page: [276 - 293] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Aim: Synthesis and characterization of quinoline derivatives as an anticancer agent via green chemistry approach and their molecular docking.

Background: In comparison to classical synthesis, green chemistry is a powerful tool for the more affordable and ecologically benign synthesis of organic molecules, such as quinoline derivatives via an efficient base-mediated/metal-free approach.

Objective: The primary objective of the work presented in this article was to prepare N-(2-(tertbutylamino)- 1-(2-chloro-5,7-dimethylquinolin-3-yl)-2-oxoethyl)-3-methoxy-N-phenylbenzamide derivatives via single-step Multicomponent Reaction. Characterized it, docking it, and their anticancer activities against different cell lines are evaluated.

Methods: In a sealed glass vial, one of the starting materials 2-chloro-5-7-dimethylquinoline-3- carbaldehyde 1 was synthesized by the Vilsmeier-hack reaction. Substituted N-(2-(tertbutylamino)- 1-(2-chloro-5,7-dimethylquinolin-3-yl)-2-oxoethyl)-3-methoxy-N-phenylbenzamide were obtained by the Ugi-Multi Component reaction of 2-chloro-5-7-dimethylquinoline-3- carbaldehyde 1, aniline 2a, 3-methoxybenzoic acid 3 and t-butyl isocyanides 4 were dissolved sequence vise in 2,2,2-trifluoroethanol (TFE) reaction solvent. This method is an efficient basemediated/ metal-free approach to synthesizing quinoline derivatives.

Results: We have successfully synthesized the quinoline derivatives via Ugi-multicomponent reaction via an efficient base-mediated/metal-free approach. The structures of the compounds were confirmed through various spectroscopic techniques. Characterized it, docking it, and their anticancer activities against different cell lines are evaluated.

Conclusion: The reported protocol is advantageous over conventional methods of quinoline derivatives via an efficient base-mediated/metal-free approach. Quinoline derivatives were tested for anticancer efficacy against 9 distinct subpanels of NCI-60 cell lines among which 5d and 5j have been found to be more potent against different cell lines. In order to get mechanistic insights into this antitumor activity, molecular docking analysis against critical target CDK2 was performed to aid in understanding the molecular basis of anticancer activity. The results of binding affinity were in harmony with the anticancer activity providing valuable insights into the various thermodynamic interactions governing the binding affinity. By using the potential of quinoline derivatives via an efficient base-mediated/metal-free approach, more effective and accurate cancer treatments can be designed in the future.

Keywords: Heterocyclic Chemistry, medicinal chemistry, Ugi-4CC condensation, quinoline derivatives, anticancer, NCI-60 cell line, molecular docking.

Graphical Abstract

[1]
Marosi, C.; Köller, M. Challenge of cancer in the elderly. ESMO Open, 2016, 1(3), e000020.
[http://dx.doi.org/10.1136/esmoopen-2015-000020] [PMID: 27843603]
[2]
Gaziano, T.A.; Bitton, A.; Anand, S.; Abrahams-Gessel, S.; Murphy, A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr. Probl. Cardiol., 2010, 35(2), 72-115.
[http://dx.doi.org/10.1016/j.cpcardiol.2009.10.002] [PMID: 20109979]
[3]
Foster, I. Cancer: A cell cycle defect. Radiography, 2008, 14(2), 144-149.
[http://dx.doi.org/10.1016/j.radi.2006.12.001]
[4]
Bertram, J.S. The molecular biology of cancer. Mol. Aspects Med., 2000, 21(6), 167-223.
[http://dx.doi.org/10.1016/S0098-2997(00)00007-8] [PMID: 11173079]
[5]
Belot, A.; Grosclaude, P.; Bossard, N.; Jougla, E.; Benhamou, E.; Delafosse, P.; Guizard, A.V.; Molinié, F.; Danzon, A.; Bara, S.; Bouvier, A.M.; Trétarre, B.; Binder-Foucard, F.; Colonna, M.; Daubisse, L.; Hédelin, G.; Launoy, G.; Le Stang, N.; Maynadié, M.; Monnereau, A.; Troussard, X.; Faivre, J.; Collignon, A.; Janoray, I.; Arveux, P.; Buemi, A.; Raverdy, N.; Schvartz, C.; Bovet, M.; Chérié-Challine, L.; Estève, J.; Remontet, L.; Velten, M. Cancer incidence and mortality in France over the period 1980–2005. Rev. Epidemiol. Sante Publique, 2008, 56(3), 159-175.
[http://dx.doi.org/10.1016/j.respe.2008.03.117] [PMID: 18547762]
[6]
Coley, H.M. Mechanisms and strategies to overcome chemotherapy resistance in metastatic breast cancer. Cancer Treat. Rev., 2008, 34(4), 378-390.
[http://dx.doi.org/10.1016/j.ctrv.2008.01.007] [PMID: 18367336]
[7]
Hatae, A.C.; Roque-Borda, C.A.; Pavan, F.R. Strategies for lipid-based nanocomposites with potential activity against Mycobacterium tuberculosis: Microbial resistance challenge and drug delivery trends. OpenNano, 2023, 13, 100171.
[http://dx.doi.org/10.1016/j.onano.2023.100171]
[8]
Sampath Kumar, H.M.; Herrmann, L.; Tsogoeva, S.B. Structural hybridization as a facile approach to new drug candidates. Bioorg. Med. Chem. Lett., 2020, 30(23), 127514.
[http://dx.doi.org/10.1016/j.bmcl.2020.127514] [PMID: 32860980]
[9]
Vyas, A.K.; Lunagariya, K.S.; Khunt, R.C. Multi-step synthesis of novel pyrazole derivatives as anticancer agents. Polycycl. Aromat. Compd., 2023, 1-14.
[http://dx.doi.org/10.1080/10406638.2023.2278664]
[10]
Filho, E.V.; Pinheiro, E.M.C.; Pinheiro, S.; Greco, S.J. Aminopyrimidines: Recent synthetic procedures and anticancer activities. Tetrahedron, 2021, 92, 132256.
[http://dx.doi.org/10.1016/j.tet.2021.132256]
[11]
Cheke, R.S.; Shinde, S.D.; Ambhore, J.P.; Chaudhari, S.R.; Bari, S.B. Quinazoline: An update on current status against convulsions. J. Mol. Struct., 2022, 1248, 131384.
[http://dx.doi.org/10.1016/j.molstruc.2021.131384]
[12]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[13]
Katariya, D.; Vyas, A.; Khunt, R. A review on facile synthesis of pyrimidine derivatives via multicomponent reactions. SSRN, 2023.
[http://dx.doi.org/10.2139/ssrn.4564996]
[14]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[http://dx.doi.org/10.1016/j.bmc.2009.02.026] [PMID: 19285414]
[15]
O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents, 2010, 35(1), 30-38.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.06.031] [PMID: 19748233]
[16]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23(16), 5098-5119.
[http://dx.doi.org/10.1016/j.bmc.2014.12.018] [PMID: 25593097]
[17]
Keri, R.S.; Patil, S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[18]
Kaur, R.; Kumar, K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem., 2021, 215, 113220.
[http://dx.doi.org/10.1016/j.ejmech.2021.113220] [PMID: 33609889]
[19]
Mukherjee, S.; Pal, M. Quinolines: A new hope against inflammation. Drug Discov. Today, 2013, 18(7-8), 389-398.
[http://dx.doi.org/10.1016/j.drudis.2012.11.003] [PMID: 23159484]
[20]
Jain, S.; Chandra, V.; Kumar, J.P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[21]
Lauria, A.; La Monica, G.; Bono, A.; Martorana, A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur. J. Med. Chem., 2021, 220, 113555.
[http://dx.doi.org/10.1016/j.ejmech.2021.113555] [PMID: 34052677]
[22]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[23]
Tsai, L.H.; Harlow, E.; Meyerson, M. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature, 1991, 353(6340), 174-177.
[http://dx.doi.org/10.1038/353174a0] [PMID: 1653904]
[24]
Bartek, J.; Lukas, C.; Lukas, J. Checking on DNA damage in S phase. Nat. Rev. Mol. Cell Biol., 2004, 5(10), 792-804.
[http://dx.doi.org/10.1038/nrm1493] [PMID: 15459660]
[25]
Caruso, J.A.; Duong, M.T.; Carey, J.P.W.; Hunt, K.K.; Keyomarsi, K. low-molecular-weight cyclin E in human cancer: Cellular consequences and opportunities for targeted therapies. Cancer Res., 2018, 78(19), 5481-5491.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1235] [PMID: 30194068]
[26]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[27]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[28]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]