Current Green Chemistry

Author(s): Sanjay M. Madurkar*, Girdhar Pal Singh, Siddharth Sharma, Ritu Tomar and Renu Rathore

DOI: 10.2174/0122133461329975240915171123

DownloadDownload PDF Flyer Cite As
A Review of Electrochemical Synthesis and Transformations of Small Organic Molecules: Sulfoximines, Isoxazolines, and Benzimidazoles

Page: [85 - 116] Pages: 32

  • * (Excluding Mailing and Handling)

Abstract

In the realm of synthetic organic chemistry, the environmentally friendly manipulation of small organic molecules has gained prominence. One particularly promising approach is electrochemical synthesis, which offers a green and sustainable alternative to using hazardous and toxic redox reagents. By harnessing electric current from renewable sources like sunlight or wind, electrochemical synthesis emerges as a viable replacement for conventional methods. This review article provides a comprehensive exploration of the electrochemical method, delving into its background and applications in synthesizing and transforming various small organic molecules, including sulfoximines, isoxazolines, benzimidazoles, and more. This review aims to shed light on the potential of electrochemical synthesis as a greener and more sustainable way of conducting organic transformations.

Keywords: Electrosynthesis, sulfoximines, isoxazolines, benzimidazoles, green and sustainable, organic transformations.

Graphical Abstract

[1]
Sherbinin, A.; Carr, D.; Cassels, S.; Jiang, L. Population and Environment. Annu. Rev. Environ. Resour., 2007, 32(1), 345-373.
[http://dx.doi.org/10.1146/annurev.energy.32.041306.100243] [PMID: 20011237]
[2]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and practice; Oxford University Press: Oxford, 1998.
[3]
Horváth, I.T. Introduction: Sustainable chemistry. Chem. Rev., 2018, 118(2), 369-371.
[http://dx.doi.org/10.1021/acs.chemrev.7b00721] [PMID: 29361827]
[4]
Yan, M.; Kawamata, Y.; Baran, P.S. Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev., 2017, 117(21), 13230-13319.
[http://dx.doi.org/10.1021/acs.chemrev.7b00397] [PMID: 28991454]
[5]
Horn, E.J.; Rosen, B.R.; Baran, P.S. Synthetic organic electrochemistry: An enabling and innately sustainable method. ACS Cent. Sci., 2016, 2(5), 302-308.
[http://dx.doi.org/10.1021/acscentsci.6b00091] [PMID: 27280164]
[6]
Kärkäs, M.D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev., 2018, 47(15), 5786-5865.
[http://dx.doi.org/10.1039/C7CS00619E] [PMID: 29911724]
[7]
Waldvogel, S.R.; Janza, B. Renaissance of electrosynthetic methods for the construction of complex molecules. Angew. Chem. Int. Ed., 2014, 53(28), 7122-7123.
[http://dx.doi.org/10.1002/anie.201405082] [PMID: 24939665]
[8]
Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel, S.R. Electrifying organic synthesis. Angew. Chem. Int. Ed., 2018, 57(20), 5594-5619. https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201711060
[http://dx.doi.org/10.1002/anie.201711060] [PMID: 29292849]
[9]
Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev., 2008, 108(7), 2265-2299.
[http://dx.doi.org/10.1021/cr0680843] [PMID: 18564879]
[10]
Waldvogel, S.R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C.J. Electrochemical arylation reaction. Chem. Rev., 2018, 118(14), 6706-6765.
[http://dx.doi.org/10.1021/acs.chemrev.8b00233] [PMID: 29963856]
[11]
Pollok, D.; Waldvogel, S.R. Electro-organic synthesis – a 21st century technique. Chem. Sci. (Camb.), 2020, 11(46), 12386-12400.
[http://dx.doi.org/10.1039/D0SC01848A] [PMID: 34123227]
[12]
Kolbe, H. Beobachtungen über die oxydirende Wirkung des Sauerstoffs, wenn derselbe mit Hülfe einer elektrischen Säule entwickelt wird. J. Prakt. Chem., 1847, 41(1), 137-139.
[http://dx.doi.org/10.1002/prac.18470410118]
[13]
Marken, F.; Atobe, M. Modern electrosynthetic methods in organic chemistry; Apple Academic Press Inc.: New Jersey and Canada, 2018.
[http://dx.doi.org/10.1201/9780429434051]
[14]
Francke, R. Recent advances in the electrochemical construction of heterocycles. Beilstein J. Org. Chem., 2014, 10, 2858-2873.
[http://dx.doi.org/10.3762/bjoc.10.303] [PMID: 25550752]
[15]
Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S.R. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed., 2018, 57(21), 6018-6041.
[http://dx.doi.org/10.1002/anie.201712732] [PMID: 29359378]
[16]
Jiang, Y.; Xu, K.; Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev., 2018, 118(9), 4485-4540.
[http://dx.doi.org/10.1021/acs.chemrev.7b00271] [PMID: 29039924]
[17]
Shatskiy, A.; Lundberg, H.; Kärkäs, M.D. Organic electrosynthesis: Applications in complex molecule synthesis. ChemElectroChem, 2019, 6(16), 4067-4092.
[http://dx.doi.org/10.1002/celc.201900435]
[18]
Sbei, N.; Listratova, A.V.; Titov, A.A.; Voskressensky, L.G. Recent advances in electrochemistry for the synthesis of N-heterocycles. Synthesis, 2019, 51(12), 2455-2473.
[http://dx.doi.org/10.1055/s-0037-1611797]
[19]
Zhang, C.; Liu, Y.; Chen, D.; Wan, J-P. Recent advances in electrochemical cascade cyclization reactions. Synthesis, 2023, 55(18), 2911-2925.
[http://dx.doi.org/10.1055/a-2039-1728]
[20]
Volta, A. XVII. On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of natural philosophy in the university of pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K.B. P. R. S. Philos. Trans. R. Soc. Lond., 1800, 90, 403-431.
[http://dx.doi.org/10.1098/rstl.1800.0018]
[21]
Faraday, M. VI. Experimental researches in electricity.-Seventh Series. Philos. Trans. R. Soc. Lond., 1834, 124, 77-122.
[http://dx.doi.org/10.1098/rstl.1834.0008]
[22]
Kolbe, H. Untersuchungen über die elektrolyse organischer verbindungen justus liebigs. Justus Liebigs Ann. Chem., 1849, 69(3), 257-294.
[http://dx.doi.org/10.1002/jlac.18490690302]
[23]
Hickling, A. Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode. Trans. Faraday Soc., 1942, 38, 27-33.
[http://dx.doi.org/10.1039/TF9423800027]
[24]
Randles, J.E.B. A cathode ray polarograph. Part II.—The current-voltage curves. Trans. Faraday Soc., 1948, 44, 327-338.
[http://dx.doi.org/10.1039/TF9484400327]
[25]
Frontana-Uribe, B.A.; Little, R.D.; Ibanez, J.G.; Palma, A.; Vasquez-Medrano, R. Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem., 2010, 12(12), 2099.
[http://dx.doi.org/10.1039/c0gc00382d]
[26]
Schäfer, H.J. Contributions of organic electrosynthesis to green chemistry. C. R. Chim., 2011, 14(7-8), 745-765.
[http://dx.doi.org/10.1016/j.crci.2011.01.002]
[27]
Zhu, C.; Ang, N.W.J.; Meyer, T.H.; Qiu, Y.; Ackermann, L. Organic electrochemistry: Molecular syntheses with potential. ACS Cent. Sci., 2021, 7(3), 415-431.
[http://dx.doi.org/10.1021/acscentsci.0c01532] [PMID: 33791425]
[28]
Simons, J.H. Production of fluorocarbons. J. Electrochem. Soc., 1949, 95(2), 47-67.
[http://dx.doi.org/10.1149/1.2776733]
[29]
Shono, T.; Matsumura, Y.; Tsubata, K. Electroorganic chemistry. 46. A new carbon-carbon bond forming reaction at the. alpha.-position of amines utilizing anodic oxidation as a key step. J. Am. Chem. Soc., 1981, 103(5), 1172-1176.
[http://dx.doi.org/10.1021/ja00395a029]
[30]
Shono, T.; Matsumura, Y.; Tsubata, K. Anodic oxidation of N-carbomethoxypyrrolidine: 2-Methoxy-N-carbomethoxypyrrolidine. Org. Synth., 1985, 63, 206.
[http://dx.doi.org/10.15227/orgsyn.063.0206]
[31]
Yoshida, J.; Murata, T.; Isoe, S. Electrochemical oxidation of organosilicon compounds I. Oxidative cleavage of carbon-silicon bond in allylsilanes and benzylsilanes. Tetrahedron Lett., 1986, 27(29), 3373-3376.
[http://dx.doi.org/10.1016/S0040-4039(00)84799-1]
[32]
Steckhan, E. Indirect electroorganic syntheses-a modern chapter of organic electrochemistry. Angew. Chem. Int. Ed. Engl., 1986, 25(8), 683-701.
[http://dx.doi.org/10.1002/anie.198606831]
[33]
Steckhan, E. Organic syntheses with electrochemically regenerable redox systems. Electrochemistry I; Springer: Cham, 1987.
[http://dx.doi.org/10.1007/3-540-17871-6_11]
[34]
Yoshida, J.; Suga, S. Basic concepts of “cation pool” and “cation flow” methods and their applications in conventional and combinatorial organic synthesis. Chemistry, 2002, 8(12), 2650.
[http://dx.doi.org/10.1002/1521-3765(20020617)8:12<2650::AID-CHEM2650>3.0.CO;2-S] [PMID: 12391641]
[35]
Yoshida, J. Cation Pool Method and Cation Flow Method.>Recent developments in carbocation and onium ion chemistry; American Chemical Society: Washington, D.C, 2007.
[http://dx.doi.org/10.1021/bk-2007-0965.ch010]
[36]
Francke, R.; Little, R.D. Redox catalysis in organic electrosynthesis: Basic principles and recent developments. Chem. Soc. Rev., 2014, 43(8), 2492-2521.
[http://dx.doi.org/10.1039/c3cs60464k] [PMID: 24500279]
[37]
Little, R.D.; Fox, D.P.; Van Hijfte, L.; Dannecker, R.; Sowell, G.; Wolin, R.L.; Moens, L.; Baizer, M.M. Electroreductive cyclization. Ketones and aldehydes tethered to. alpha.beta.-unsaturated esters (nitriles). Fundamental investigations. J. Org. Chem., 1988, 53(10), 2287-2294.
[http://dx.doi.org/10.1021/jo00245a029]
[38]
Little, R.D.; Schwaebe, M.K. Reductive cyclizations at the cathode. Top. Curr. Chem., 1997, 185, 1-48.
[http://dx.doi.org/10.1007/3-540-61454-0_69]
[39]
Gregory Sowell, C.; Wolin, R.L.; Daniel Little, R. Electroreductive cyclization reactions. Stereoselection, creation of quaternary centers in bicyclic frameworks, and a formal total synthesis of quadrone. Tetrahedron Lett., 1990, 31(4), 485-488.
[http://dx.doi.org/10.1016/0040-4039(90)87014-Q]
[40]
Schäfer, H.J. Anodic and cathodic CC-bond formation. Angew. Chem. Int. Ed. Engl., 1981, 20(11), 911-934.
[http://dx.doi.org/10.1002/anie.198109111]
[41]
Lund, H. A century of organic electrochemistry. J. Electrochem. Soc., 2002, 149(4), S21-S33.
[http://dx.doi.org/10.1149/1.1462037]
[42]
Iversen, P.E.; Lund, H. Electrolytic generation of strong bases I. Wittig reaction. Tetrahedron Lett., 1969, 10(40), 3523-3524.
[http://dx.doi.org/10.1016/S0040-4039(01)88438-0]
[43]
Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K.D.; Waldvogel, S.R. Insights into the mechanism of anodic N–N bond formation by dehydrogenative coupling. J. Am. Chem. Soc., 2017, 139(35), 12317-12324.
[http://dx.doi.org/10.1021/jacs.7b07488] [PMID: 28792218]
[44]
Xu, H.C.; Campbell, J.M.; Moeller, K.D. Cyclization reactions of anode-generated amidyl radicals. J. Org. Chem., 2014, 79(1), 379-391.
[http://dx.doi.org/10.1021/jo402623r] [PMID: 24328239]
[45]
Moeller, K.D. Synthetic applications of anodic electrochemistry. Tetrahedron, 2000, 56(49), 9527-9554.
[http://dx.doi.org/10.1016/S0040-4020(00)00840-1]
[46]
Amatore, C.; Cammoun, C.; Jutand, A. Pd(OAc)2/p-benzoquinone-catalyzed anaerobic electrooxidative homocoupling of arylboronic acids, arylboronates and aryltrifluoroborates in DMF and/or water. Eur. J. Org. Chem., 2008, 2008(27), 4567-4570.
[http://dx.doi.org/10.1002/ejoc.200800631]
[47]
Jutand, A. Contribution of electrochemistry to organometallic catalysis. Chem. Rev., 2008, 108(7), 2300-2347.
[http://dx.doi.org/10.1021/cr068072h] [PMID: 18605756]
[48]
Yoshida, J.; Suga, S.; Suzuki, S.; Kinomura, N.; Yamamoto, A.; Fujiwara, K. Direct oxidative carbon-carbon bond formation using the “Cation Pool” method. 1. Generation of iminium cation pools and their reaction with carbon nucleophiles. J. Am. Chem. Soc., 1999, 121(41), 9546-9549.
[http://dx.doi.org/10.1021/ja9920112]
[49]
Samanta, R.C.; Meyer, T.H.; Siewert, I.; Ackermann, L. Renewable resources for sustainable metallaelectro-catalysed C–H activation. Chem. Sci. (Camb.), 2020, 11(33), 8657-8670.
[http://dx.doi.org/10.1039/D0SC03578E] [PMID: 34123124]
[50]
Rosen, B.R.; Werner, E.W.; O’Brien, A.G.; Baran, P.S. Total synthesis of dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc., 2014, 136(15), 5571-5574.
[http://dx.doi.org/10.1021/ja5013323] [PMID: 24697810]
[51]
Harwood, S.J.; Palkowitz, M.D.; Gannett, C.N.; Perez, P.; Yao, Z.; Sun, L.; Abruña, H.D.; Anderson, S.L.; Baran, P.S. Modular terpene synthesis enabled by mild electrochemical couplings. Science, 2022, 375(6582), 745-752.
[http://dx.doi.org/10.1126/science.abn1395] [PMID: 35175791]
[52]
Sauer, G.S.; Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal., 2018, 8(6), 5175-5187.
[http://dx.doi.org/10.1021/acscatal.8b01069]
[53]
Baizer, M.M. Recent developments in organic synthesis by electrolysis. Tetrahedron, 1984, 40(6), 935-969.
[http://dx.doi.org/10.1016/S0040-4020(01)91232-3]
[54]
Baizer, M.M. Electrolytic reductive coupling: I. acrylonitrile. J. Electrochem. Soc., 1964, 111(2), 215.
[http://dx.doi.org/10.1149/1.2426086]
[55]
Leech, M.C.; Lam, K. A practical guide to electrosynthesis. Nat. Rev. Chem., 2022, 6(4), 275-286.
[http://dx.doi.org/10.1038/s41570-022-00372-y] [PMID: 37117870]
[56]
Cardoso, D.S.P.; Šljukić, B.; Santos, D.M.F.; Sequeira, C.A.C. Organic electrosynthesis: From laboratorial practice to industrial applications. Org. Process Res. Dev., 2017, 21(9), 1213-1226.
[http://dx.doi.org/10.1021/acs.oprd.7b00004]
[57]
Kathiresan, M.; Velayutham, D. Ionic liquids as an electrolyte for the electro synthesis of organic compounds. Chem. Commun. (Camb.), 2015, 51(99), 17499-17516.
[http://dx.doi.org/10.1039/C5CC06961K] [PMID: 26442436]
[58]
Zhang, X.; Zhan, J.; Yu, Z.; Deng, J.; Li, M.; Shao, Y. Recent advances in real-time analysis of electrochemical reactions by electrochemical mass spectrometry. Chin. J. Chem., 2023, 41(2), 214-224.
[http://dx.doi.org/10.1002/cjoc.202200523]
[59]
Schroeder, C.M.; León, S.A.; Ohlhorst, K.K.; Leadbeater, N.E. Development and use of a real-time in-situ monitoring tool for electrochemical advanced oxidation processes. Chem. Methods, 2023, 3(10), e202300014.
[http://dx.doi.org/10.1002/cmtd.202300014]
[60]
Bentley, H.R.; McDERMOTT, E.E.; Pace, J.; Whitehead, J.K.; Moran, T. Toxic factor from agonized proteins; methionine as the essential reactant. Nature, 1950, 165(4187), 150-151.
[http://dx.doi.org/10.1038/165150a0] [PMID: 15404893]
[61]
Whitehead, J.K.; Bentley, H.R. 287. Preparation and properties of some aliphatic sulphoximines. J. Chem. Soc., 1952, 1952, 1572.
[http://dx.doi.org/10.1039/jr9520001572]
[62]
Feng, M.; Tang, B.; Liang, S.H.; Jiang, X. Sulfur containing scaffolds in drugs: Synthesis and application in medicinal chemistry. Curr. Top. Med. Chem., 2016, 16(11), 1200-1216.
[http://dx.doi.org/10.2174/1568026615666150915111741] [PMID: 26369815]
[63]
Surur, A.S.; Schulig, L.; Link, A. Interconnection of sulfides and sulfoxides in medicinal chemistry. Arch. Pharm. (Weinheim), 2018, 352(1), 1800248.
[http://dx.doi.org/10.1002/ardp.201800248] [PMID: 30521146]
[64]
Mäder, P.; Kattner, L. Sulfoximines as rising stars in modern drug discovery? Current status and perspective on an emerging functional group in medicinal chemistry. J. Med. Chem., 2020, 63(23), 14243-14275.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00960] [PMID: 32870008]
[65]
Wang, H.; Cheng, Y.; Becker, P.; Raabe, G.; Bolm, C. Synthesis of sulfoximidoyl-containing hypervalent iodine(III) reagents and their use in transition-metal-free sulfoximidations of alkynes. Angew. Chem. Int. Ed., 2016, 55(41), 12655-12658.
[http://dx.doi.org/10.1002/anie.201605743] [PMID: 27444808]
[66]
Noritake, S.; Shibata, N.; Nakamura, S.; Toru, T.; Shiro, M. Fluorinated johnson reagent for transfer-trifluoromethylation to carbon nucleophiles. Eur. J. Org. Chem., 2008, 2008(20), 3465-3468.
[http://dx.doi.org/10.1002/ejoc.200800419]
[67]
Okamura, H.; Bolm, C. Sulfoximines: Synthesis and catalytic applications. Chem. Lett., 2004, 33(5), 482-487.
[http://dx.doi.org/10.1246/cl.2004.482]
[68]
Fareghi-Alamdari, R.; Zekri, N.; Moghadam, A.J.; Farsani, M.R. Green oxidation of sulfides to sulfoxides and sulfones with H2O2 catalyzed by ionic liquid compounds based on Keplerate polyoxometalates. Catal. Commun., 2017, 98, 71-75.
[http://dx.doi.org/10.1016/j.catcom.2017.04.050]
[69]
Luisi, R.; Bull, J.A. Synthesis of sulfoximines and sulfonimidamides using hypervalent iodine mediated NH transfer. Molecules, 2023, 28(3), 1120.
[http://dx.doi.org/10.3390/molecules28031120] [PMID: 36770787]
[70]
Lebel, H.; Piras, H.; Borduy, M. Iron-catalyzed amination of sulfides and sulfoxides with azides in photochemical continuous flow synthesis. ACS Catal., 2016, 6(2), 1109-1112.
[http://dx.doi.org/10.1021/acscatal.5b02495]
[71]
Okamura, H.; Bolm, C. Rhodium-catalyzed imination of sulfoxides and sulfides: Efficient preparation of N-unsubstituted sulfoximines and sulfilimines. Org. Lett., 2004, 6(8), 1305-1307.
[http://dx.doi.org/10.1021/ol049715n] [PMID: 15070323]
[72]
Miao, J.; Richards, N.G.J.; Ge, H. Rhodium-catalyzed direct synthesis of unprotected NH-sulfoximines from sulfoxides. Chem. Commun. (Camb.), 2014, 50(68), 9687-9689.
[http://dx.doi.org/10.1039/C4CC04349A] [PMID: 25016917]
[73]
Takada, H.; Nishibayashi, Y.; Ohe, K.; Uemura, S.; Baird, C.P.; Sparey, T.J.; Taylor, P.C. Catalytic asymmetric sulfimidation. J. Org. Chem., 1997, 62(19), 6512-6518.
[http://dx.doi.org/10.1021/jo970798d]
[74]
Cho, G.Y.; Bolm, C. Silver-catalyzed imination of sulfoxides and sulfides. Org. Lett., 2005, 7(22), 4983-4985.
[http://dx.doi.org/10.1021/ol0519442] [PMID: 16235938]
[75]
Mancheño, O.G.; Dallimore, J.; Plant, A.; Bolm, C. Iron(II) triflate as an efficient catalyst for the imination of sulfoxides. Org. Lett., 2009, 11(11), 2429-2432.
[http://dx.doi.org/10.1021/ol900660x] [PMID: 19473047]
[76]
Amri, N.; Wirth, T. Recent advances in the electrochemical synthesis of organosulfur compounds. Chem. Rec., 2021, 21(9), 2526-2537.
[http://dx.doi.org/10.1002/tcr.202100064] [PMID: 33960607]
[77]
Siu, T.; Yudin, A.K. Electrochemical imination of sulfoxides using N-aminophthalimide. Org. Lett., 2002, 4(11), 1839-1842.
[http://dx.doi.org/10.1021/ol0257530] [PMID: 12027627]
[78]
Amri, N.; Wirth, T. Flow electrosynthesis of sulfoxides, sulfones, and sulfoximines without supporting electrolytes. J. Org. Chem., 2021, 86(22), 15961-15972.
[http://dx.doi.org/10.1021/acs.joc.1c00860] [PMID: 34164983]
[79]
Klein, M.; Troglauer, D.L.; Waldvogel, S.R. Dehydrogenative imination of low-valent sulfur compounds-fast and scalable synthesis of sulfilimines, sulfinamidines, and sulfinimidate esters. JACS Au, 2023, 3(2), 575-583.
[http://dx.doi.org/10.1021/jacsau.2c00663] [PMID: 36873686]
[80]
Klein, M.; Waldvogel, S.R. Anodic dehydrogenative cyanamidation of thioethers: Simple and sustainable synthesis of N-cyanosulfilimines. Angew. Chem. Int. Ed., 2021, 60(43), 23197-23201.
[http://dx.doi.org/10.1002/anie.202109033] [PMID: 34409715]
[81]
Han, M.; Tang, Z.; Li, G.; Wang, Q. Electrochemical oxidation chemoselective sulfimidation of thioether with sulfonamide via catalytic iodobenzene. Tetrahedron Lett., 2022, 102, 153925.
[http://dx.doi.org/10.1016/j.tetlet.2022.153925]
[82]
Kong, X.; Lin, L.; Chen, X.; Chen, Y.; Wang, W.; Xu, B. Electrochemical oxidative syntheses of NH-sulfoximines, NH-sulfonimidamides and dibenzothiazines via anodically generated hypervalent iodine intermediates. ChemSusChem, 2021, 14(16), 3277-3282.
[http://dx.doi.org/10.1002/cssc.202101002] [PMID: 34292660]
[83]
Jiang, Y.M.; Lin, Y.Y.; Zhu, L.; Yu, Y.; Li, Y.; Lin, Y.; Ye, K.Y. A general electrochemical synthesis of sulfonimidoyl fluorides, azides, and acetates. CCS Chemistry, 2024, 6(8), 2021-2030.
[http://dx.doi.org/10.31635/ccschem.023.202303489]
[84]
Kowalczyk, R.; Edmunds, A.J.F.; Hall, R.G.; Bolm, C. Synthesis of CF3-substituted sulfoximines from sulfonimidoyl fluorides. Org. Lett., 2011, 13(4), 768-771.
[http://dx.doi.org/10.1021/ol103030w] [PMID: 21235264]
[85]
Liu, D.; Liu, Z.R.; Ma, C.; Jiao, K.J.; Sun, B.; Wei, L.; Lefranc, J.; Herbert, S.; Mei, T.S. Nickel-catalyzed N-arylation of NH-sulfoximines with aryl halides via paired electrolysis. Angew. Chem. Int. Ed., 2021, 60(17), 9444-9449.
[http://dx.doi.org/10.1002/anie.202016310] [PMID: 33576561]
[86]
Zhu, C.; Kale, A.P.; Yue, H.; Rueping, M. Redox-neutral cross-coupling amination with weak N-nucleophiles: Arylation of anilines, sulfonamides, sulfoximines, carbamates, and imines via nickel electrocatalysis. JACS Au, 2021, 1(7), 1057-1065.
[http://dx.doi.org/10.1021/jacsau.1c00148] [PMID: 34467349]
[87]
Zhou, G.; Zhou, T.; Jiang, A.L.; Qian, P.F.; Li, J.Y.; Jiang, B.Y.; Chen, Z.J.; Shi, B.F. Electrooxidative rhodium(III)/chiral carboxylic acid-catalyzed enantioselective C−H annulation of sulfoximines with alkynes. Angew. Chem. Int. Ed., 2024, 63(15), e202319871.
[http://dx.doi.org/10.1002/anie.202319871] [PMID: 38289019]
[88]
Kong, X.; Tian, Y.; Chen, X.; Chen, Y.; Wang, W. Electrochemical oxidative C(sp3)-H/N-H coupling of diarylmethanes with sulfoximines or benzophenone imine. J. Org. Chem., 2021, 86(19), 13610-13617.
[http://dx.doi.org/10.1021/acs.joc.1c01647] [PMID: 34523935]
[89]
Kang, C.; Li, M.; Huang, W.; Wang, S.; Peng, M.; Zhao, L.; Jiang, G.; Ji, F. Electrochemical N -acylation and N -α-ketoacylation of sulfoximines via the selective decarboxylation and dehydration of α-ketoacids. Green Chem., 2023, 25(21), 8838-8844.
[http://dx.doi.org/10.1039/D3GC02674D]
[90]
Li, M.; Peng, M.; Huang, W.; Zhao, L.; Wang, S.; Kang, C.; Jiang, G.; Ji, F. Electrochemical oxidative carbonylation of NH-sulfoximines. Org. Lett., 2023, 25(41), 7529-7534.
[http://dx.doi.org/10.1021/acs.orglett.3c02800] [PMID: 37819202]
[91]
Alam, T.; Patel, B.K. Electrochemical N-aroylation of sulfoximines using benzoyl hydrazines with H2 generation. Chemistry, 2024, 30(9), e202303444.
[http://dx.doi.org/10.1002/chem.202303444] [PMID: 37990751]
[92]
Huang, W.; Wang, S.; Li, M.; Zhao, L.; Peng, M.; Kang, C.; Jiang, G.; Ji, F. Electrochemical N-acylation of sulfoximine with hydroxamic acid. J. Org. Chem., 2023, 88(24), 17511-17520.
[http://dx.doi.org/10.1021/acs.joc.3c01903] [PMID: 38018775]
[93]
Wan, J.L.; Huang, J.M. Electrochemically enabled sulfoximido-oxygenation of alkenes with NH-sulfoximines and alcohols. Org. Lett., 2022, 24(48), 8914-8919.
[http://dx.doi.org/10.1021/acs.orglett.2c03774] [PMID: 36441567]
[94]
Li, X.; Huang, J.; Xu, L.; Liu, J.; Wei, Y. Electrochemical oxidative dehydrogenative coupling of sulfoximines to construct N-sulfenyl and N-phosphinyl sulfoximines. Adv. Synth. Catal., 2023, 365(24), 4647-4653.
[http://dx.doi.org/10.1002/adsc.202300933]
[95]
Zhang, S.; Hu, M.; Qin, C.; Wang, S.; Ji, F.; Jiang, G. Electrochemical oxidative cross coupling of NH-sulfoximines with disulfides. New J. Chem., 2024, 48(6), 2576-2583.
[http://dx.doi.org/10.1039/D3NJ05205B]
[96]
Yang, J.; Gao, W.; Teng, Y.; Yu, L.; Huang, K.; Li, Q.; Xie, H.; Li, T. Electrochemically driven tandem cyclization reaction of unsaturated sulfoximines with diselenides. Eur. J. Org. Chem., 2024, 27(3), e202300927.
[http://dx.doi.org/10.1002/ejoc.202300927]
[97]
Xiong, Z.; Nie, H.; Zhang, S.; Hu, M.; Qin, C.; Wang, S.; Ji, F.; Jiang, G. Electrochemically driven selective removal of the S═N bond-directing group using cyclohexanone oxime as the mediator. J. Org. Chem., 2023, 88(7), 4334-4344.
[http://dx.doi.org/10.1021/acs.joc.2c02940] [PMID: 36922910]
[98]
Kaur, K.; Kumar, V.; Sharma, A.K.; Gupta, G.K. Isoxazoline containing natural products as anticancer agents: A review. Eur. J. Med. Chem., 2014, 77, 121-133.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.063] [PMID: 24631731]
[99]
Hwang, I.T.; Kim, H.R.; Jeon, D.J.; Hong, K.S.; Song, J.H.; Cho, K.Y. 5-(2,6-difluorobenzyl)oxymethyl-5-methyl-3-(3-methylthiophen-2-yl)- 1,2-isoxazoline as a useful rice herbicide. J. Agric. Food Chem., 2005, 53(22), 8639-8643.
[http://dx.doi.org/10.1021/jf051284f] [PMID: 16248565]
[100]
García-Reynaga, P.; Zhao, C.; Sarpong, R.; Casida, J.E. New GABA/glutamate receptor target for [3H]isoxazoline insecticide. Chem. Res. Toxicol., 2013, 26(4), 514-516.
[http://dx.doi.org/10.1021/tx400055p] [PMID: 23465072]
[101]
Hwang, K.H.; Lim, J.S.; Kim, S.H.; Jeon, M.S.; Lee, D.G.; Chung, K.H.; Koo, S.J.; Kim, J.H. In vivo absorption, distribution, excretion, and metabolism of a new herbicide, methiozolin, in rats following oral administration. J. Agric. Food Chem., 2013, 61(39), 9285-9292.
[http://dx.doi.org/10.1021/jf4025823] [PMID: 24000999]
[102]
Jewett, J.C.; Sletten, E.M.; Bertozzi, C.R. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J. Am. Chem. Soc., 2010, 132(11), 3688-3690.
[http://dx.doi.org/10.1021/ja100014q] [PMID: 20187640]
[103]
Jullien, N.; Makritis, A.; Georgiadis, D.; Beau, F.; Yiotakis, A.; Dive, V. Phosphinic tripeptides as dual angiotensin-converting enzyme C-domain and endothelin-converting enzyme-1 inhibitors. J. Med. Chem., 2010, 53(1), 208-220.
[http://dx.doi.org/10.1021/jm9010803] [PMID: 19899765]
[104]
Castellano, S.; Kuck, D.; Viviano, M.; Yoo, J.; López-Vallejo, F.; Conti, P.; Tamborini, L.; Pinto, A.; Medina-Franco, J.L.; Sbardella, G. Synthesis and biochemical evaluation of δ(2)-isoxazoline derivatives as DNA methyltransferase 1 inhibitors. J. Med. Chem., 2011, 54(21), 7663-7677.
[http://dx.doi.org/10.1021/jm2010404] [PMID: 21958292]
[105]
Poutiainen, P.K.; Palvimo, J.J.; Hinkkanen, A.E.; Valkonen, A.; Väisänen, T.K.; Laatikainen, R.; Pulkkinen, J.T. Discovery of 5-benzyl-3-phenyl-4,5-dihydroisoxazoles and 5-benzyl-3-phenyl-1,4,2-dioxazoles as potent firefly luciferase inhibitors. J. Med. Chem., 2013, 56(3), 1064-1073.
[http://dx.doi.org/10.1021/jm301516q] [PMID: 23286196]
[106]
Kozikowski, A.P.; Stein, P.D. The INOC route to carbocyclics: A formal total synthesis of (.+-.)-sarkomycin. J. Am. Chem. Soc., 1982, 104(14), 4023-4024.
[http://dx.doi.org/10.1021/ja00378a049]
[107]
Arai, M.A.; Arai, T.; Sasai, H. Design and synthesis of the first spiro bis(isoxazoline) derivatives as asymmetric ligands. Org. Lett., 1999, 1(11), 1795-1797.
[http://dx.doi.org/10.1021/ol9902881]
[108]
Arai, M.A.; Kuraishi, M.; Arai, T.; Sasai, H. A new asymmetric Wacker-type cyclization and tandem cyclization promoted by Pd(II)-spiro bis(isoxazoline) catalyst. J. Am. Chem. Soc., 2001, 123(12), 2907-2908.
[http://dx.doi.org/10.1021/ja005920w] [PMID: 11456988]
[109]
Marotta, E.; Micheloni, L.M.; Scardovi, N.; Righi, P. One-pot direct conversion of 2,3-epoxy alcohols into enantiomerically pure 4-hydroxy-4,5-dihydroisoxazole 2-oxides. Org. Lett., 2001, 3(5), 727-729.
[http://dx.doi.org/10.1021/ol0070379] [PMID: 11259047]
[110]
Muthiah, C.; Arai, M.A.; Shinohara, T.; Arai, T.; Takizawa, S.; Sasai, H. Enantioselective synthesis of α-methylene-γ-butyrolactones using chiral Pd(II)-SPRIX catalyst. Tetrahedron Lett., 2003, 44(28), 5201-5204.
[http://dx.doi.org/10.1016/S0040-4039(03)01250-4]
[111]
Fuller, A.A.; Chen, B.; Minter, A.R.; Mapp, A.K. Succinct synthesis of β-amino acids via chiral isoxazolines. J. Am. Chem. Soc., 2005, 127(15), 5376-5383.
[http://dx.doi.org/10.1021/ja0431713] [PMID: 15826175]
[112]
Wakita, K.; Bajracharya, G.B.; Arai, M.A.; Takizawa, S.; Suzuki, T.; Sasai, H. Enantioselective glyoxylate-ene reaction using a novel spiro bis(isoxazoline) ligand in copper catalysis. Tetrahedron Asymmetry, 2007, 18(3), 372-376.
[http://dx.doi.org/10.1016/j.tetasy.2007.02.004]
[113]
Liao, J.; Ouyang, L.; Jin, Q.; Zhang, J.; Luo, R. Recent advances in the oxime-participating synthesis of isoxazolines. Org. Biomol. Chem., 2020, 18(25), 4709-4716.
[http://dx.doi.org/10.1039/D0OB00963F] [PMID: 32525196]
[114]
Prabhakar, K.A.; Nikolaienko, P.; Smirnova, K.; Rueping, M. Intramolecular electrochemical oxybromination of olefins for the synthesis of isoxazolines in batch and continuous flow. Eur. J. Org. Chem., 2021, 2021(24), 3496-3500.
[http://dx.doi.org/10.1002/ejoc.202100640]
[115]
Jiangfei, C.; Shengrong, G.; Yanqin, Y.; Hongyan, H.; Minghao, Y. Method for synthesizing fluorine-cintaining isoxazole derivatives through electrochemical oxidation. CN Patent 115449825A, 2022.
[116]
Mahanty, K.; Saha, S.K.; Halder, A.; De Sarkar, S. Mediator-free electrochemical trifluoromethylation: A cascade approach for the synthesis of trifluoromethylated isoxazolines. Chem. Commun. (Camb.), 2023, 59(30), 4467-4470.
[http://dx.doi.org/10.1039/D3CC00231D] [PMID: 36960582]
[117]
Mallick, S.; Baidya, M.; Mahanty, K.; Maiti, D.; De Sarkar, S. Electrochemical chalcogenation of β,γ-unsaturated amides and oximes to corresponding oxazolines and isoxazolines. Adv. Synth. Catal., 2020, 362(5), 1046-1052.
[http://dx.doi.org/10.1002/adsc.201901262]
[118]
Gao, W.; Li, B.; Zong, L.; Yu, L.; Li, X.; Li, Q.; Zhang, X.; Zhang, S.; Xu, K. Electrochemical tandem cyclization of unsaturated oximes with diselenides: A general approach to seleno isoxazolines derivatives with quaternary carbon center. Eur. J. Org. Chem., 2021, 2021(17), 2431-2435.
[http://dx.doi.org/10.1002/ejoc.202100294]
[119]
Chen, D.; He, T.; Jin, Y.; Huang, S. Electrooxidative dearomatization tospiroisoxazolines: Application to total synthesis of xanthoisoxazoline B. Adv. Synth. Catal., 2022, 364(2), 286-290.
[http://dx.doi.org/10.1002/adsc.202101062]
[120]
Holman, S.D.L.; Wills, A.G.; Fazakerley, N.J.; Poole, D.L.; Coe, D.M.; Berlouis, L.A.; Reid, M. Electrochemical synthesis of isoxazolines: Method and mechanism. Chemistry, 2022, 28(13), e202103728.
[http://dx.doi.org/10.1002/chem.202103728] [PMID: 35076117]
[121]
Hofmann, S.; Winter, J.; Prenzel, T.; de Jesús Gálvez-Vázquez, M.; Waldvogel, S.R. Electrochemical synthesis of isoxazoles and isoxazolines via anodic oxidation of oximes. ChemElectroChem, 2023, 10(22), e202300434.
[http://dx.doi.org/10.1002/celc.202300434]
[122]
Ji, S.; Zhao, L.; Miao, B.; Xue, M.; Pan, T.; Shao, Z.; Zhou, X.; Fu, A.; Zhang, Y. Electrochemical activation of nitromethane to construct isoxazoline aldoximes. Angew. Chem. Int. Ed., 2023, 62(32), e202304434.
[http://dx.doi.org/10.1002/anie.202304434] [PMID: 37340694]
[123]
Xiong, M.; Liang, X.; Gao, Z.; Lei, A.; Pan, Y. Synthesis of isoxazolines and oxazines by electrochemical intermolecular [2+1+ n] annulation: Diazo compounds act as radical acceptors. Org. Lett., 2019, 21(23), 9300-9305.
[http://dx.doi.org/10.1021/acs.orglett.9b03306] [PMID: 31713430]
[124]
Li, M.; Zhang, C.; Zhou, Y.Q.; Liu, Y.; Zhao, N.; Li, X.; Gu, L.J. Electrochemical intramolecular haloheterocyclization reactions using 1,2-dihaloethanes as halogenating reagents. Tetrahedron Lett., 2022, 89, 153602.
[http://dx.doi.org/10.1016/j.tetlet.2021.153602]
[125]
Surov, I.; Lund, H.; Sandström, J.; Darzynkiewicz, E. Electrochemical reduction of isoxazoles and related compounds. Acta. Acta Chem. Scand., 1986, 40b, 831-838.
[http://dx.doi.org/10.3891/acta.chem.scand.40b-0831]
[126]
Lund, H.; Sundholm, A.; Magnéli, A.; Högberg, B.; Kneip, P.; Palmstierna, H. Electroörganic Preparations. VI. Acta Chem. Scand., 1959, 13, 249-267.
[http://dx.doi.org/10.3891/acta.chem.scand.13-0249]
[127]
Caetano, V.F.; Demnitz, F.W.J.; Diniz, F.B.; Mariz, R.M., Jr; Navarro, M., Jr Preparation of β-hydroxyesters from isoxazolines. A selective Ni0bpy-catalyzed electrochemical method. Tetrahedron Lett., 2003, 44(45), 8217-8220.
[http://dx.doi.org/10.1016/j.tetlet.2003.09.081]
[128]
Taylor, R.D.; MacCoss, M.; Lawson, A.D.G. Rings in drugs. J. Med. Chem., 2014, 57(14), 5845-5859.
[http://dx.doi.org/10.1021/jm4017625] [PMID: 24471928]
[129]
Coburn, R.A.; Clark, M.T.; Evans, R.T.; Genco, R.J. Substituted 2-(2-hydroxyphenyl)benzimidazoles as potential agents for the control of periodontal diseases. J. Med. Chem., 1987, 30(1), 205-208.
[http://dx.doi.org/10.1021/jm00384a035] [PMID: 3806595]
[130]
Göker, H.; Tunçbilek, M.; Ayhan, G.; Altanlar, N. Synthesis of some new benzimidazolecarboxamides and evaluation of their antimicrobial activity. Farmaco, 1998, 53(6), 415-420.
[http://dx.doi.org/10.1016/S0014-827X(98)00045-7] [PMID: 9764474]
[131]
Ayhan-Kılcıgil, G.; Tunçbilek, M.; Altanlar, N.; Göker, H. Synthesis and antimicrobial activity of some new benzimidazole carboxylates and carboxamides. Farmaco, 1999, 54(8), 562-565.
[http://dx.doi.org/10.1016/S0014-827X(99)00059-2] [PMID: 10510853]
[132]
Soliman, F.S.G.; Rida, S.M.; Badawy, E-S.A.M.; Kappe, T. Synthesis of substituted 3-hydroxy-1H,5H-pyrido[1,2-a]benzimidazol-1-ones as possible antimicrobial and antineoplastic agents. Arch. Pharm. (Weinheim), 1984, 317(11), 951-958.
[http://dx.doi.org/10.1002/ardp.19843171110] [PMID: 6517676]
[133]
Habib, N.S.; Abdel-Hamid, S.; el-Hawash, M. Synthesis of benzimidazole derivatives as potential antimicrobial agents. Farmaco, 1989, 44(12), 1225-1232.
[PMID: 2699417]
[134]
Abdel-Rahman, A.E.; Mahmoud, A.M.; El-Naggar, G.M.; El-Sherief, H.A. Synthesis and biological activity of some new benzimidazolyl-azetidin-2-ones and -thiazolidin-4-ones. Pharmazie, 1983, 38(9), 589-590.
[PMID: 6647531]
[135]
Khairnar, V.L.; Lockhande, S.R.; Patel, M.R.; Khadse, B.G. Synthesis and antimicrobial evaluation of some new 2-(2-(p-chlorophenyl) benzimidazol-1-yl methyl)-5-substituted amino-[1,3,4]-thiadiazoles. Turkish J. Chem., 2005, 29(2), 153-162.
[136]
Islam, I.; Skibo, E.B.; Dorr, R.T.; Alberts, D.S. Structure-activity studies of antitumor agents based on pyrrolo[1,2-a]benzimidazoles: New reductive alkylating DNA cleaving agents. J. Med. Chem., 1991, 34(10), 2954-2961.
[http://dx.doi.org/10.1021/jm00114a003] [PMID: 1920349]
[137]
Kruse, L.I.; Ladd, D.L.; Harrsch, P.B.; McCabe, F.L.; Mong, S.M.; Faucette, L.; Johnson, R. Synthesis, tubulin binding, antineoplastic evaluation, and structure-activity relationship of oncodazole analogs. J. Med. Chem., 1989, 32(2), 409-417.
[http://dx.doi.org/10.1021/jm00122a020] [PMID: 2913301]
[138]
Habernickel, V.J. Alkyl-5-heterocyclic-benzimidazolyl-carbamate derivatives. Drugs Made Ger., 1992, 35, 97.
[139]
Fukuda, T.; Morimoto, Y.; Iemura, R.; Kawashima, T.; Tsukamoto, G.; Ito, K. Effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl)-benzimida zole difumarate (KB-2413), a new antiallergic, on chemical mediators. Arzneimittelforschung, 1984, 34(7), 801-805.
[PMID: 6149754]
[140]
Fukuda, T.; Saito, T.; Tajima, S.; Shimohara, K.; Ito, K. Antiallergic effect of 1-(2-ethoxyethyl)-2-(4-methyl-1-homopiperazinyl) benzimidaz ole difumarate (KB-2413). Arzneimittelforschung, 1984, 34(7), 805-810.
[PMID: 6208915]
[141]
Nakano, H.; Inoue, T.; Kawasaki, N.; Miyataka, H.; Matsumoto, H.; Taguchi, T.; Inagaki, N.; Nagai, H.; Satoh, T. Synthesis of benzimidazole derivatives as antiallergic agents with 5-lipoxygenase inhibiting action. Chem. Pharm. Bull. (Tokyo), 1999, 47(11), 1573-1578.
[http://dx.doi.org/10.1248/cpb.47.1573] [PMID: 10605056]
[142]
Nakano, H.; Inoue, T.; Kawasaki, N.; Miyataka, H.; Matsumoto, H.; Taguchi, T.; Inagaki, N.; Nagai, H.; Satoh, T. Synthesis and biological activities of novel antiallergic agents with 5-lipoxygenase inhibiting action. Bioorg. Med. Chem., 2000, 8(2), 373-380.
[http://dx.doi.org/10.1016/S0968-0896(99)00291-6] [PMID: 10722160]
[143]
Can-Eke, B.; Orhan, P.M.; Buyukbingol, E.; Iscan, M. A study on the antioxidant capacities of some benzimidazoles in rat tissues. Chem. Biol. Interact., 1998, 113(1), 65-77.
[http://dx.doi.org/10.1016/S0009-2797(98)00020-9] [PMID: 9630848]
[144]
Witkowski, J.T.; Robins, R.K.; Khare, G.P.; Sidwell, R.W. Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides. J. Med. Chem., 1973, 16(8), 935-937.
[http://dx.doi.org/10.1021/jm00266a014] [PMID: 4355593]
[145]
Andreadou, I.; Tasouli, A.; Bofilis, E.; Chrysselis, M.; Rekka, E.; Tsantili-Kakoulidou, A.; Iliodromitis, E.; Siatra, T.; Kremastinos, D.T. Antioxidant activity of novel indole derivatives and protection of the myocardial damage in rabbits. Chem. Pharm. Bull. (Tokyo), 2002, 50(2), 165-168.
[http://dx.doi.org/10.1248/cpb.50.165] [PMID: 11848203]
[146]
Marakos, P.; Papakonstantinou-Garoufalias, S.; Tani, E.; Kourounakis, P.; Athanasiou, G.; Chytyroglou-Lada, A. Synthesis and antifungal and antioxidant properties of some new 5-substituted-4-amino(or aryl)-3-mercapto-4(H)-1,2,4-triazoles. Arzneimittelforschung, 2011, 52(7), 572-577.
[http://dx.doi.org/10.1055/s-0031-1299932] [PMID: 12189782]
[147]
Ridley, H.F.; Spickett, R.G.W.; Timmis, G.M. A new synthesis of benzimidazoles and aza‐analogs. J. Heterocycl. Chem., 1965, 2(4), 453-456.
[http://dx.doi.org/10.1002/jhet.5570020424]
[148]
Heaney, H.; Ley, S.V. N-alkylation of indole and pyrroles in dimethyl sulphoxide. J. Chem. Soc., Perkin Trans. 1, 1973, I, 499-500.
[http://dx.doi.org/10.1039/p19730000499]
[149]
Smith, P.A.S. Organic Reactions; John Wiley & Sons: Hoboken, New Jersey, U.S., 1949.
[150]
Siatra-Papastaikoudi, T.; Tsotinis, A.; Raptopoulou, C.P.; Sambani, C.; Thomou, H. Synthesis of new alkylaminoalkyl thiosemicarbazones of 3-acetylindole and their effect on DNA synthesis and cell proliferation. Eur. J. Med. Chem., 1995, 30(2), 107-114.
[http://dx.doi.org/10.1016/0223-5234(96)88215-8]
[151]
Carvalho, L.C.R.; Fernandes, E.; Marques, M.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chemistry, 2011, 17(45), 12544-12555.
[http://dx.doi.org/10.1002/chem.201101508] [PMID: 21989969]
[152]
Dudd, L.M.; Venardou, E.; Garcia-Verdugo, E.; Licence, P.; Blake, A.J.; Wilson, C.; Poliakoff, M. Synthesis of benzimidazoles in high-temperature water. Green Chem., 2003, 5(2), 187-192.
[http://dx.doi.org/10.1039/b212394k]
[153]
Dandia, A.; Mahawar, D.K.; Sharma, R.; Badgoti, R.S.; Rathore, K.S.; Parewa, V. Graphene oxide‐catalyzed CSp3–H activation of methylarenes in aqueous medium: A unified metal‐free access to amides and benzimidazoles. Appl. Organomet. Chem., 2019, 33(11), e5232.
[http://dx.doi.org/10.1002/aoc.5232]
[154]
Mahesh, D.; Satheesh, V.; Kumar, S.V.; Punniyamurthy, T. Copper(II)-catalyzed oxidative coupling of anilines, methyl arenes, and TMSN3 via C(sp3/sp2)-H functionalization and C–N bond formation. Org. Lett., 2017, 19(24), 6554-6557.
[http://dx.doi.org/10.1021/acs.orglett.7b03264] [PMID: 29166025]
[155]
Lai, Y.L.; Ye, J.S.; Huang, J.M. Electrochemical synthesis of benzazoles from alcohols and o-substituted anilines with a catalytic amount of CoII salt. Chemistry, 2016, 22(15), 5425-5429.
[http://dx.doi.org/10.1002/chem.201505074] [PMID: 26918770]
[156]
Shi, T.T.; Wang, S.Z.; Yang, Z.; Wang, Y.; Liu, C.; He, W.; Fang, Z.; Guo, K. Enzymatic electrochemical continuous flow cascade synthesis of substituted benzimidazoles. React. Chem. Eng., 2021, 6(5), 937-943.
[http://dx.doi.org/10.1039/D1RE00058F]
[157]
Monreal, I.; Torres-Pacheco, L.J.; Oropeza-Guzman, M.T.; Rivero, I.A. In-situ Fe electro-oxidation to improve the synthesis of mono and disubstituted benzimidazoles. Int. J. Electrochem. Sci., 2015, 10(8), 6743-6753.
[http://dx.doi.org/10.1016/S1452-3981(23)06758-5]
[158]
Thadathil, D.A.; M, B.; Varghese, A.; Ghosh, M. Anchored ferrocene based heterogeneous electrocatalyst for the synthesis of benzimidazoles. Electrochim. Acta, 2022, 435, 141399.
[http://dx.doi.org/10.1016/j.electacta.2022.141399]
[159]
Wang, H.B.; Huang, J.M. Decarboxylative coupling of α-keto acids with ortho-phenylenediamines promoted by an electrochemical method in aqueous media. Adv. Synth. Catal., 2016, 358(12), 1975-1981.
[http://dx.doi.org/10.1002/adsc.201501167]
[160]
Dowlati, B.; Nematollahi, D.; Othman, M.R.B. Electrochemical synthesis of benzimidazole derivative using carbon electrode in aqueous medium. Int. J. Electrochem. Sci., 2012, 7(7), 5990-5996.
[http://dx.doi.org/10.1016/S1452-3981(23)19456-9]
[161]
Li, A.; Li, C.; Yang, T.; Yang, Z.; Liu, Y.; Li, L.; Tang, K.; Zhou, C. Electrochemical synthesis of benzo[d]imidazole via intramolecular C(sp3)–H amination. J. Org. Chem., 2023, 88(4), 1928-1935.
[http://dx.doi.org/10.1021/acs.joc.1c01842] [PMID: 34918925]
[162]
Duan, Z.; Zhang, L.; Zhang, W.; Lu, L.; Zeng, L.; Shi, R.; Lei, A. Palladium-catalyzed electro-oxidative C–H amination toward the synthesis of pyrido[1,2-a]benzimidazoles with hydrogen evolution. ACS Catal., 2020, 10(6), 3828-3831.
[http://dx.doi.org/10.1021/acscatal.0c00103]
[163]
Lv, S.; Han, X.; Wang, J.Y.; Zhou, M.; Wu, Y.; Ma, L.; Niu, L.; Gao, W.; Zhou, J.; Hu, W.; Cui, Y.; Chen, J. Tunable Electrochemical C−N versus N−N bond formation of nitrogen-centered radicals enabled by dehydrogenative dearomatization: Biological applications. Angew. Chem. Int. Ed., 2020, 59(28), 11583-11590.
[http://dx.doi.org/10.1002/anie.202001510] [PMID: 32203637]
[164]
Zhao, H.B.; Zhuang, J.L.; Xu, H.C. Electrochemical synthesis of benzimidazoles via dehydrogenative cyclization of amidines. ChemSusChem, 2021, 14(7), 1692-1695.
[http://dx.doi.org/10.1002/cssc.202100254] [PMID: 33605037]
[165]
Zhao, H.B.; Hou, Z.W.; Liu, Z.J.; Zhou, Z.F.; Song, J.; Xu, H.C. Amidinyl radical formation through anodic N-H bond cleavage and its application in aromatic C-H bond functionalization. Angew. Chem. Int. Ed., 2017, 56(2), 587-590.
[http://dx.doi.org/10.1002/anie.201610715] [PMID: 27936308]
[166]
Sokolov, A.A.; Syroeshkin, M.A.; Solkan, V.N.; Shebunina, T.V.; Begunov, R.S.; Mikhal’chenko, L.V.; Leonova, M.Y.; Gultyaib, V.P. Efficient electrochemical synthesis of pyrido[1,2-a]benzimidazoles. Bull. Acad. Sci. USSR, Div. Chem. Sci., 2014, 63(2), 372-380.
[http://dx.doi.org/10.1007/s11172-014-0440-y]
[167]
Dissanayake, D.M.M.M.; Vannucci, A.K. Transition-metal-free and base-free electrosynthesis of 1H-substituted benzimidazoles. ACS Sustain. Chem. Eng., 2018, 6(1), 690-695.
[http://dx.doi.org/10.1021/acssuschemeng.7b03029]
[168]
Capobianco, A.; Caruso, T.; Palombi, L. Electrochemically induced N-alkylation of chiral 2-(methylsulfinyl) 1H-benzimidazole. Synth. Commun., 2015, 45(15), 1783-1791.
[http://dx.doi.org/10.1080/00397911.2015.1044616]
[169]
Zhan, X.; Gao, G.; Liang, Y.; Li, F.; Liu, K.; Fan, W.; Zhang, S.; Li, M.B. Electrochemical four-component aminochlorination tuned by benzimidazoles. Org. Chem. Front., 2023, 10(13), 3353-3360.
[http://dx.doi.org/10.1039/D3QO00692A]
[170]
Sun, C.C.; Xu, K.; Zeng, C.C. Transition metal and base free electrochemical aza-Michael addition of aromatic aza-heterocycles or Ts-protected amines to α,β-unsaturated alkenes mediated by NaI. ACS Sustain. Chem. Eng., 2019, 7(2), 2255-2261.
[http://dx.doi.org/10.1021/acssuschemeng.8b04934]
[171]
Chen, Z.; Li, Z.; Li, S.; Qian, G.; Sun, Y. Electrochemically mediated fluoroalkylation/cyclization of unactivated alkenes: Synthesis of polycyclic benzimidazoles containing a CF3 group. New J. Chem., 2023, 47(24), 11465-11469.
[http://dx.doi.org/10.1039/D3NJ01759A]
[172]
Lv, Y.; Dai, J.Y.; Zhao, Z.X.; Liu, J.; Li, Z.W.; Lu, C.H.; Zhang, Y.F.; Liu, W.D.; Li, J.S. Electrochemical synthesis of 5-trifluoroethyl dihydrobenzimidazo[2,1-a] isoquinolines from pendent unactivated alkenes via radical relay. Tetrahedron Lett., 2023, 119, 154410.
[http://dx.doi.org/10.1016/j.tetlet.2023.154410]
[173]
Zhang, C.; Yu, Z.; Ding, Y.; Shi, Y.; Xie, Y. Metal-free electrochemistry promoted radical cascade cyclization to access CF3 -containing benzimidazo[2,1- a]isoquinolin-6(5 H)-ones. Org. Biomol. Chem., 2023, 21(33), 6715-6718.
[http://dx.doi.org/10.1039/D3OB00854A] [PMID: 37462425]
[174]
Aleksandrov, A.A.; Galkin, T.G.; El’chaninov, M.M.; Popova, O.V. Electrochemical synthesis of new 2-(2′-furyl)benzimidazole derivatives. Chem. Heterocycl. Compd., 2001, 37(8), 1040-1041.
[http://dx.doi.org/10.1023/A:1012708222253]
[175]
Guedouar, R.; Mhiri Kammoun, M.; Derbel, N.; Mbogning Feudjio, W.; Jeanneau, E.; Besbes-Hentati, S. An electrochemical route to a tetracyclic dimer through the anodic oxidation of 3-(4-fluorophenyl)-2-methyl-[1,2a] benzimidazolo-1, 3, 5-triazin-4-thione. J. Electroanal. Chem. (Lausanne), 2023, 943, 117611.
[http://dx.doi.org/10.1016/j.jelechem.2023.117611]