Current Alzheimer Research

Author(s): Nicolai D. Ayasse*, Walter F. Stewart, Richard B. Lipton, David Gomez-Ulloa and M. Chris Runken

DOI: 10.2174/0115672050316936240905064215

DownloadDownload PDF Flyer Cite As
Post-Hoc Assessment of Cognitive Efficacy in Alzheimer’s Disease Using a Latent Growth Mixture Model in AMBAR, a Phase 2B Randomized Controlled Trial

Page: [353 - 365] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Disease progression in Alzheimer’s Dementia (AD) is typically characterized by accelerated cognitive and functional decline, where heterogeneous trajectories can impact the observed treatment response.

Methods: We hypothesized that unobserved heterogeneity could obscure treatment benefits in AD. The effect of unobserved heterogeneity was empirically quantified within the Alzheimer’s Management By Albumin Replacement (AMBAR) phase 2b trial data. The ADAS-Cog 12 cognition endpoint was reanalyzed in a 2-class latent growth mixture model initially fit to the treatment arm. The model with the best fit was then applied across both treatment arms to a larger (n=1000) simulated dataset that was representative of AMBAR trial cognitive data.

Results: Two classes of patients were observed: a stable cognitive trajectory class and a highly variable class. Removal of the latter (n=48, 22%) from the analysis and refitting efficacy models comparing the stable class to full placebo yielded significant treatment efficacy on cognition (p=0.007, Cohen’s D=-0.4). Comparison of the stable class of each arm within the simulated dataset revealed a significant difference in treatment efficacy favoring the simulated stable treatment arm.

Conclusion: This post hoc exploratory analysis suggests that prespecified strategies for addressing unobserved heterogeneity may yield improved effect detection in AD trials. The generalizability of the analytic strategy is limited by latent stratification in only the treatment arm, a requirement given the small placebo arm in AMBAR. This limitation was partially addressed by the simulation modeling.

Keywords: Latent growth mixture model, unobserved heterogeneity, cognition, Alzheimer’s disease, AMBAR, plasma exchange, exploratory analyses.

[1]
Alzheimer’s Association Report: 2021 Alzheimer’s Disease facts and figures. Alzheimer’s Dementia 2021; 17(3): 327-406.
[2]
Montine TJ, Phelps CH, Beach TG, et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 2012; 123(1): 1-11.
[http://dx.doi.org/10.1007/s00401-011-0910-3] [PMID: 22101365]
[3]
Jack CR Jr, Bennett DA, Blennow K, et al. NIA‐AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14(4): 535-62.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[4]
Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 33.
[http://dx.doi.org/10.1038/s41572-021-00269-y] [PMID: 33986301]
[5]
Cummings J. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol Aging 2000; 21(6): 845-61.
[http://dx.doi.org/10.1016/S0197-4580(00)00183-4] [PMID: 11124429]
[6]
Wilkosz PA, Seltman HJ, Devlin B, et al. Trajectories of cognitive decline in Alzheimer’s disease. Int Psychogeriatr 2010; 22(2): 281-90.
[http://dx.doi.org/10.1017/S1041610209991001] [PMID: 19781112]
[7]
Lam B, Masellis M, Freedman M, Stuss DT, Black SE. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res Ther 2013; 5(1): 1.
[http://dx.doi.org/10.1186/alzrt155] [PMID: 23302773]
[8]
MacDonald SWS, Karlsson S, Fratiglioni L, Bäckman L. Trajectories of cognitive decline following dementia onset: what accounts for variation in progression? Dement Geriatr Cogn Disord 2011; 31(3): 202-9.
[http://dx.doi.org/10.1159/000325666] [PMID: 21430384]
[9]
Inoue J, Hoshino R, Nojima H, Ishida W, Okamoto N. Original article: Investigation of responders and non‐responders to long‐term donepezil treatment. Psychogeriatrics 2010; 10(2): 53-61.
[http://dx.doi.org/10.1111/j.1479-8301.2010.00319.x] [PMID: 20738808]
[10]
Putt RVD, Dineen C, Janes D, Series H, McShane R. Effectiveness of acetylcholinesterase inhibitors: diagnosis and severity as predictors of response in routine practice. Int J Geriatr Psychiatry 2006; 21(8): 755-60.
[http://dx.doi.org/10.1002/gps.1557] [PMID: 16906631]
[11]
Van Cauwenberghe C, Van Broeckhoven C, Sleegers K. The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet Med 2016; 18(5): 421-30.
[http://dx.doi.org/10.1038/gim.2015.117] [PMID: 26312828]
[12]
Clark CM, Sheppard L, Fillenbaum GG, et al. Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: a clinical perspective of data from the Consortium to Establish a Registry for Alzheimer’s Disease. Arch Neurol 1999; 56(7): 857-62.
[http://dx.doi.org/10.1001/archneur.56.7.857] [PMID: 10404988]
[13]
Tyas SL, Salazar JC, Snowdon DA, et al. Transitions to mild cognitive impairments, dementia, and death: findings from the Nun Study. Am J Epidemiol 2007; 165(11): 1231-8.
[http://dx.doi.org/10.1093/aje/kwm085] [PMID: 17431012]
[14]
Hall CB, Ying J, Kuo L, et al. Estimation of bivariate measurements having different change points, with application to cognitive ageing. Stat Med 2001; 20(24): 3695-714.
[http://dx.doi.org/10.1002/sim.1113] [PMID: 11782027]
[15]
MacDonald SWS, Stawski RS. Longitudinal changes in response time mean and inconsistency exhibit predictive dissociations for risk of cognitive impairment. Neuropsychology 2020; 34(3): 264-75.
[http://dx.doi.org/10.1037/neu0000608] [PMID: 31789567]
[16]
Dixon RA, Garrett DD, Lentz TL, MacDonald SWS, Strauss E, Hultsch DF. Neurocognitive markers of cognitive impairment: Exploring the roles of speed and inconsistency. Neuropsychology 2007; 21(3): 381-99.
[http://dx.doi.org/10.1037/0894-4105.21.3.381] [PMID: 17484601]
[17]
Cerino ES, Katz MJ, Wang C, et al. Variability in cognitive performance on mobile devices is sensitive to mild cognitive impairment: Results from the einstein aging study. Front Digit Heal 2021; 3: 758031.
[http://dx.doi.org/10.3389/fdgth.2021.758031] [PMID: 34927132]
[18]
Wesseling H, Mair W, Kumar M, et al. Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease. Cell 2020; 183(6): 1699-1713.e13.
[http://dx.doi.org/10.1016/j.cell.2020.10.029] [PMID: 33188775]
[19]
Allard M, Husky M, Catheline G, et al. Mobile technologies in the early detection of cognitive decline. PLoS One 2014; 9(12): e112197-7.
[http://dx.doi.org/10.1371/journal.pone.0112197] [PMID: 25536290]
[20]
Sliwinski MJ. Measurement‐Burst Designs for Social Health Research. Soc Personal Psychol Compass 2008; 2(1): 245-61.
[http://dx.doi.org/10.1111/j.1751-9004.2007.00043.x]
[21]
Park S, Lee S, Jeong KH. Predictors of variation in the cognitive function trajectories among older adults living alone: A growth mixture modeling approach. Healthcare (Basel) 2023; 11(20): 2750.
[http://dx.doi.org/10.3390/healthcare11202750] [PMID: 37893824]
[22]
Min JW. A longitudinal study of cognitive trajectories and its factors for Koreans aged 60 and over: A latent growth mixture model. Int J Geriatr Psychiatry 2018; 33(5): 755-62.
[http://dx.doi.org/10.1002/gps.4855] [PMID: 29363183]
[23]
Jutten RJ, Sikkes SAM, Van der Flier WM, Scheltens P, Visser PJ, Tijms BM. Finding treatment effects in Alzheimer trials in the face of disease progression heterogeneity. Neurology 2021; 96(22): e2673-84.
[http://dx.doi.org/10.1212/WNL.0000000000012022] [PMID: 34550903]
[24]
Levine SZ, Goldberg Y, Yoshida K, et al. Quantifying the heterogeneity of cognitive functioning in Alzheimer’s disease to extend the placebo-treatment dichotomy: Latent class analysis of individual-participant data from five pivotal randomized clinical trials of donepezil. Eur Psychiatry 2021; 64(1): e16.
[http://dx.doi.org/10.1192/j.eurpsy.2021.8] [PMID: 33583479]
[25]
Winkelmann R. Unobserved Heterogeneity. Econometric Analysis of Count Data. Springer Berlin Heidelberg 2008; pp. 127-42.
[http://dx.doi.org/10.1007/978-3-540-78389-3_4]
[26]
Arellano M. Unobserved Heterogeneity. In: Panel Data Econometrics, Advanced Texts in Econometrics. Oxford University Press 2003.
[http://dx.doi.org/10.1093/0199245282.003.0002]
[27]
Zammit AR, Bennett DA, Hall CB, Lipton RB, Katz MJ, Muniz-Terrera G. A latent transition analysis model to assess change in cognitive states over three occasions: results from the rush memory and aging project. J Alzheimers Dis 2020; 73(3): 1063-73.
[http://dx.doi.org/10.3233/JAD-190778] [PMID: 31884467]
[28]
Zammit AR, Hall CB, Lipton RB, Katz MJ, Muniz-Terrera G. Identification of heterogeneous cognitive subgroups in community-dwelling older adults: A latent class analysis of the Einstein Aging Study. J Int Neuropsychol Soc 2018; 24(5): 511-23.
[http://dx.doi.org/10.1017/S135561771700128X] [PMID: 29317003]
[29]
Boada M, Ramos-Fernández E, Guivernau B, et al. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: Rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study. Neurologia 2016; 31(7): 473-81.
[http://dx.doi.org/10.1016/j.nrl.2014.02.003] [PMID: 25023458]
[30]
Boada M, López O, Núñez L, et al. Plasma exchange for Alzheimer’s disease Management by Albumin Replacement (AMBAR) trial: Study design and progress. Alzheimers Dement (N Y) 2019; 5(1): 61-9.
[http://dx.doi.org/10.1016/j.trci.2019.01.001] [PMID: 30859122]
[31]
Boada M, López OL, Olazarán J, et al. A randomized, controlled clinical trial of plasma exchange with albumin replacement for Alzheimer’s disease: Primary results of the AMBAR Study. Alzheimers Dement 2020; 16(10): 1412-25.
[http://dx.doi.org/10.1002/alz.12137] [PMID: 32715623]
[32]
Galasko D, Bennett D, Sano M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimerʼs disease. Alzheimer Dis Assoc Disord 1997; 11: 33-9.
[http://dx.doi.org/10.1097/00002093-199700112-00005] [PMID: 9236950]
[33]
Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141(11): 1356-64.
[http://dx.doi.org/10.1176/ajp.141.11.1356] [PMID: 6496779]
[34]
Costa M, Páez A. Emerging insights into the role of albumin with plasma exchange in Alzheimer’s disease management. Transfus Apheresis Sci 2021; 60(3): 103164.
[http://dx.doi.org/10.1016/j.transci.2021.103164] [PMID: 34083161]
[35]
Berlin KS, Parra GR, Williams NA. An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models. J Pediatr Psychol 2014; 39(2): 188-203.
[http://dx.doi.org/10.1093/jpepsy/jst085] [PMID: 24277770]
[36]
McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease. Neurology 1984; 34(7): 939-44.
[http://dx.doi.org/10.1212/WNL.34.7.939] [PMID: 6610841]
[37]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[38]
Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 1992; 40(9): 922-35.
[http://dx.doi.org/10.1111/j.1532-5415.1992.tb01992.x] [PMID: 1512391]
[39]
Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s disease assessment scale-cognitive subscale (ADAS-Cog): Modifications and responsiveness in pre-dementia populations. A narrative review. J Alzheimers Dis 2018; 63(2): 423-44.
[http://dx.doi.org/10.3233/JAD-170991] [PMID: 29660938]
[40]
Bauer DJ, Curran PJ. Distributional assumptions of growth mixture models: implications for overextraction of latent trajectory classes. Psychol Methods 2003; 8(3): 338-63.
[http://dx.doi.org/10.1037/1082-989X.8.3.338] [PMID: 14596495]
[41]
Proust-Lima C, Philipps V, Liquet B. Estimation of extended mixed models using latent classes and latent processes: The R package lcmm. J Stat Softw 2017; 78(2)
[http://dx.doi.org/10.18637/jss.v078.i02]
[42]
R: a language and environment for statistical computing. 2023. Available from: https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing(accessed on 31-7-2024)
[43]
Biernacki C, Celeux G, Govaert G. Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal 2003; 41(3-4): 561-75.
[http://dx.doi.org/10.1016/S0167-9473(02)00163-9]
[44]
Brooks E. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 2017; 9(2): 378.
[http://dx.doi.org/10.32614/RJ-2017-066]
[45]
Venables WN, Ripley BD. Modern Applied Statistics with S. (4th ed.), Springer 2002.
[http://dx.doi.org/10.1007/978-0-387-21706-2]
[46]
Hughes CP, Berg L, Danziger W, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140(6): 566-72.
[http://dx.doi.org/10.1192/bjp.140.6.566] [PMID: 7104545]
[47]
Zammit AR, Yang J, Buchman AS, et al. Latent cognitive class at enrollment predicts future cognitive trajectories of decline in a community sample of older adults. J Alzheimers Dis 2021; 83(2): 641-52.
[http://dx.doi.org/10.3233/JAD-210484] [PMID: 34334404]
[48]
Zammit AR, Hall CB, Bennett DA, et al. Neuropsychological latent classes at enrollment and postmortem neuropathology. Alzheimers Dement 2019; 15(9): 1195-207.
[http://dx.doi.org/10.1016/j.jalz.2019.05.012] [PMID: 31420203]
[49]
Ezzati A, Zammit AR, Habeck C, Hall CB, Lipton RB, Initiative ADN. Detecting biological heterogeneity patterns in ADNI amnestic mild cognitive impairment based on volumetric MRI. Brain Imaging Behav 2020; 14(5): 1792-804.
[http://dx.doi.org/10.1007/s11682-019-00115-6] [PMID: 31104279]
[50]
Zammit AR, Muniz-Terrera G, Katz MJ, et al. Subtypes based on neuropsychological performance predict incident dementia: Findings from the rush memory and aging project. J Alzheimers Dis 2019; 67(1): 125-35.
[http://dx.doi.org/10.3233/JAD-180737] [PMID: 30507576]
[51]
Zammit AR, Hall CB, Katz MJ, et al. Class-specific incidence of all-cause dementia and Alzheimer’s disease: A latent class approach. J Alzheimers Dis 2018; 66(1): 347-57.
[http://dx.doi.org/10.3233/JAD-180604] [PMID: 30282367]
[52]
Melis RJF, Haaksma ML, Muniz-Terrera G. Understanding and predicting the longitudinal course of dementia. Curr Opin Psychiatry 2019; 32(2): 123-9.
[http://dx.doi.org/10.1097/YCO.0000000000000482] [PMID: 30557268]
[53]
Leoutsakos JMS, Forrester SN, Corcoran CD, et al. Latent classes of course in Alzheimer’s disease and predictors: the Cache County Dementia Progression Study. Int J Geriatr Psychiatry 2015; 30(8): 824-32.
[http://dx.doi.org/10.1002/gps.4221] [PMID: 25363393]
[54]
Ezzati A, Davatzikos C, Wolk DA, Hall CB, Habeck C, Lipton RB. Application of predictive models in boosting power of Alzheimer’s disease clinical trials: A post hoc analysis of phase 3 solanezumab trials. Alzheimers Dement (N Y) 2022; 8(1): e12223.
[http://dx.doi.org/10.1002/trc2.12223] [PMID: 35310531]
[55]
Dodge HH, Zhu J, Harvey D, et al. Biomarker progressions explain higher variability in stage‐specific cognitive decline than baseline values in Alzheimer disease. Alzheimers Dement 2014; 10(6): 690-703.
[http://dx.doi.org/10.1016/j.jalz.2014.04.513] [PMID: 25022534]
[56]
Risacher SL, Anderson WH, Charil A, et al. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology 2017; 89(21): 2176-86.
[http://dx.doi.org/10.1212/WNL.0000000000004670] [PMID: 29070667]
[57]
Palmer K, Bäckman L, Winblad B, Fratiglioni L. Detection of Alzheimer’s disease and dementia in the preclinical phase: population based cohort study. BMJ 2003; 326(7383): 245.
[http://dx.doi.org/10.1136/bmj.326.7383.245] [PMID: 12560271]
[58]
Murray ME, Graff-Radford NR, Ross OA, Petersen RC, Duara R, Dickson DW. Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol 2011; 10(9): 785-96.
[http://dx.doi.org/10.1016/S1474-4422(11)70156-9] [PMID: 21802369]
[59]
US Department of Health and Human Services Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products: Guidance for Industry. Food and Drug Administration 2019.
[60]
Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278(16): 1349-56.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[61]
Uddin MS, Kabir MT, Al Mamun A, Abdel-Daim MM, Barreto GE, Ashraf GM. APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol 2019; 56(4): 2450-65.
[http://dx.doi.org/10.1007/s12035-018-1237-z] [PMID: 30032423]
[62]
Dumurgier J, Schraen S, Gabelle A, et al. Cerebrospinal fluid amyloid-β 42/40 ratio in clinical setting of memory centers: a multicentric study. Alzheimers Res Ther 2015; 7(1): 30.
[http://dx.doi.org/10.1186/s13195-015-0114-5] [PMID: 26034513]
[63]
Haaksma ML, Rizzuto D, Leoutsakos JMS, et al. Predicting Cognitive and functional trajectories in people with late-onset dementia: 2 Population-based studies. J Am Med Dir Assoc 2019; 20(11): 1444-50.
[http://dx.doi.org/10.1016/j.jamda.2019.03.025] [PMID: 31109912]