Current Pharmacogenomics and Personalized Medicine

Author(s): Ashwin Kumar Shukla, Komal Awasthi, Kauser Usman and Monisha Banerjee*

DOI: 10.2174/0118756921327075240909113640

DownloadDownload PDF Flyer Cite As
Pharmacogenetics of Metformin Monotherapy: GSTM1/T1 Polymorphisms and T2DM Risk

Article ID: e18756921327075 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Metformin is a key treatment for type 2 diabetes, often linked to oxidative stress and genetic factors like GSTM1 and GSTT1 variations.

Methods: We studied 150 subjects, examining how their deletion polymorphisms in these genes correlate with Met treatment response. Those with GSTM1/T1 deletions (-/-) had a higher T2DM risk (2.71-fold, P=0.005).

Results: Met responders with GSTM1(16bp) deletions had lower glucose levels compared to non-responders (P<0.0001), and similar trends were observed with GSTT1(54bp) deletions. Responders with both deletions also managed lipids better (P=0.0256; P=0.0151). Non-responders with GSTM1/T1 null genotypes had better HDL management (P=0.007).

Conclusion: These findings suggested that GSTM1 deletion could predict T2DM susceptibility and Met response.

Keywords: Glutathione S-transferase deletion polymorphism, pharmacogenetics, metformin-antidiabetic therapy (Met-ADT), prognostic biomarker, type 2 diabetes mellitus (T2DM), non-communicable diseases.

Graphical Abstract

[1]
International Diabetes Federation IDF Diabetes Atlas. (10th ed.), Brussels, Belgium: International Diabetes Federation 2021.
[2]
World Health Organization. The top 10 causes of death Available from: http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death(accessed on 27-8- 2024)
[3]
Shamsad A, Kushwah AS, Singh R, Banerjee M. Pharmaco-epi-genetic and patho-physiology of gestational diabetes mellitus (GDM): An overview. Health Sci Rev (Oxf) 2023; 7: 100086.
[http://dx.doi.org/10.1016/j.hsr.2023.100086]
[4]
World Health Organization. Diabetes. Available from: https://www.who.int/health-topics/diabetes#tab=tab_1(accessed on 27-8-2024)
[5]
Pradeepa R, Mohan V. Prevalence of type 2 diabetes and its complications in India and economic costs to the nation. Eur J Clin Nutr 2017; 71(7): 816-24.
[http://dx.doi.org/10.1038/ejcn.2017.40] [PMID: 28422124]
[6]
Shukla AK, Shamsad A, Kushwah AS, Singh S, Usman K, Banerjee M. CD36 gene variant rs1761667(G/A) as a biomarker in obese type 2 diabetes mellitus cases. Egypt J Med Hum Genet 2024; 25(1): 9.
[http://dx.doi.org/10.1186/s43042-024-00478-6]
[7]
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15(4): 606-22.
[http://dx.doi.org/10.4239/wjd.v15.i4.606] [PMID: 38680697]
[8]
Mannino GC, Sesti G. Individualized therapy for type 2 diabetes: Clinical implications of pharmacogenetic data. Mol Diagn Ther 2012; 16(5): 285-302.
[http://dx.doi.org/10.1007/s40291-012-0002-7] [PMID: 23018631]
[9]
Standards of Medical Care in Diabetes—2019 Abridged for Primary Care Providers. Clin Diabetes 2019; 37(1): 11-34.
[http://dx.doi.org/10.2337/cd18-0105] [PMID: 30705493]
[10]
Gonzalez-Lopez C, Wojeck BS. Role of metformin in the management of type 2 diabetes: Recent advances. Pol Arch Intern Med 2023; 133(6): 16511.
[http://dx.doi.org/10.20452/pamw.16511]
[11]
Singh S, Usman K, Banerjee M. Pharmacogenetic studies update in type 2 diabetes mellitus. World J Diabetes 2016; 7(15): 302-15.
[http://dx.doi.org/10.4239/wjd.v7.i15.302] [PMID: 27555891]
[12]
Jacobs C, Pearce B, Du Plessis M, Hoosain N, Benjeddou M. Genetic polymorphisms and haplotypes of the organic cation transporter 1 gene (SLC22A1) in the Xhosa population of South Africa. Genet Mol Biol 2014; 37(2): 350-9.
[http://dx.doi.org/10.1590/S1415-47572014005000002] [PMID: 25071399]
[13]
Zazuli Z, Duin NJCB, Jansen K, Vijverberg SJH, Maitland-van der Zee AH, Masereeuw R. The impact of genetic polymorphisms in organic cation transporters on renal drug disposition. Int J Mol Sci 2020; 21(18): 6627.
[http://dx.doi.org/10.3390/ijms21186627] [PMID: 32927790]
[14]
Duning K, Wennmann DO, Bokemeyer A, et al. Common exonic missense variants in the C2 domain of the human KIBRA protein modify lipid binding and cognitive performance. Transl Psychiatry 2013; 3(6): e272.
[http://dx.doi.org/10.1038/tp.2013.49] [PMID: 23778582]
[15]
Feinberg H, Rowntree TJW, Tan SLW, Drickamer K, Weis WI, Taylor ME. Common polymorphisms in human langerin change specificity for glycan ligands. J Biol Chem 2013; 288(52): 36762-71.
[http://dx.doi.org/10.1074/jbc.M113.528000] [PMID: 24217250]
[16]
Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation. J Mol Biol 2013; 425(21): 3970-7.
[http://dx.doi.org/10.1016/j.jmb.2013.07.015] [PMID: 23871684]
[17]
Petrosino M, Novak L, Pasquo A, et al. Analysis and interpretation of the impact of missense variants in cancer. Int J Mol Sci 2021; 22(11): 5416.
[http://dx.doi.org/10.3390/ijms22115416] [PMID: 34063805]
[18]
Xiao D, Guo Y, Li X, et al. The impacts of SLC22A1 rs594709 and SLC47A1 rs2289669 polymorphisms on metformin therapeutic efficacy in Chinese type 2 diabetes patients. Int J Endocrinol 2016; 2016: 1-7.
[http://dx.doi.org/10.1155/2016/4350712] [PMID: 26977146]
[19]
Hou W, Zhang D, Lu W, et al. Polymorphism of organic cation transporter 2 improves glucose-lowering effect of metformin via influencing its pharmacokinetics in Chinese type 2 diabetic patients. Mol Diagn Ther 2015; 19(1): 25-33.
[http://dx.doi.org/10.1007/s40291-014-0126-z] [PMID: 25573751]
[20]
Abate N, Chandalia M. Ethnicity and type 2 diabetes. J Diabetes Complications 2001; 15(6): 320-7.
[http://dx.doi.org/10.1016/S1056-8727(01)00161-1] [PMID: 11711326]
[21]
Mohan V, Sandeep S, Deepa R, Shah B, Varghese C. Epidemiology of type 2 diabetes: Indian scenario. Indian J Med Res 2007; 125(3): 217-30.
[PMID: 17496352]
[22]
Akkuş İ, Kalak S, Vural H, et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin Chim Acta 1996; 244(2): 221-7.
[http://dx.doi.org/10.1016/0009-8981(96)83566-2] [PMID: 8714439]
[23]
Taysi S, Polat F, Gul M, Sari R, Bakan E. Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis. Rheumatol Int 2002; 21(5): 200-4.
[http://dx.doi.org/10.1007/s00296-001-0163-x] [PMID: 11958437]
[24]
Yagi K. Increased serum lipid peroxides initiate atherogenesis. BioEssays 1984; 1(2): 58-60.
[http://dx.doi.org/10.1002/bies.950010205]
[25]
Griesmacher A, Kindhauser M, Andert SE, et al. Enhanced serum levels of thiobarbituric-acid-reactive substances in diabetes mellitus. Am J Med 1995; 98(5): 469-75.
[http://dx.doi.org/10.1016/S0002-9343(99)80347-7] [PMID: 7733126]
[26]
Girón MD, Salto R, González Y, et al. Modulation of hepatic and intestinal Glutathione S-transferases and other antioxidant enzymes by dietary lipids in streptozotocin diabetic rats. Chemosphere 1999; 38(13): 3003-13.
[http://dx.doi.org/10.1016/S0045-6535(98)00502-5] [PMID: 10230044]
[27]
Opara EC. Oxidative stress, micronutrients, diabetes mellitus and its complications. J R Soc Promot Health 2002; 122(1): 28-34.
[http://dx.doi.org/10.1177/146642400212200112] [PMID: 11989140]
[28]
Fridlyand L, Philipson LH. Oxidative reactive species in cell injury: Mechanisms in diabetes mellitus and therapeutic approaches. Ann N Y Acad Sci 2006; 1066(1): 136-51.
[http://dx.doi.org/10.1196/annals.1363.019] [PMID: 16533924]
[29]
Yoshida K, Hirokawa J, Tagami S, Kawakami Y, Urata Y, Kondo T. Weakened cellular scavenging activity against oxidative stress in diabetes mellitus: Regulation of glutathione synthesis and efflux. Diabetologia 1995; 38(2): 201-10.
[http://dx.doi.org/10.1007/BF00400095] [PMID: 7713315]
[30]
Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2007; 113(1): 88-120.
[http://dx.doi.org/10.1016/j.pharmthera.2006.07.004] [PMID: 17097148]
[31]
Hori M, Oniki K, Ueda K, et al. Combined glutathione S-transferase T1 and M1 positive genotypes afford protection against type 2 diabetes in Japanese. Pharmacogenomics 2007; 8(10): 1307-14.
[http://dx.doi.org/10.2217/14622416.8.10.1307]
[32]
Bid HK, Konwar R, Saxena M, Chaudhari P, Agrawal CG, Banerjee M. Association of glutathione S-transferase (GSTM1, T1 and P1) gene polymorphisms with type 2 diabetes mellitus in north Indian population. J Postgrad Med 2010; 56(3): 176-81.
[http://dx.doi.org/10.4103/0022-3859.68633] [PMID: 20739761]
[33]
Zaki MA, Moghazy TF, El-Deeb MMK, Mohamed AH, Mohamed NAA. Glutathione S-transferase M1, T1 and P1 gene polymorphisms and the risk of developing type 2 diabetes mellitus in Egyptian diabetic patients with and without diabetic vascular complications. Alex J Med 2015; 51(1): 73-82.
[http://dx.doi.org/10.1016/j.ajme.2014.03.003]
[34]
Effect of metformin or gliclazide on lipid peroxidation and antioxidant levels in patients with diabetes mellitus. Turk J Med Sci 2008; 38(6): 545-8.
[35]
Mohammed NJ. Evaluation the oxidative stress in patients with diabetes mellitus (Type I and type II) and study genetic level of glutathione-S-transferase mu 1. Evaluation 2015; 5(12)
[36]
Politi C, Roumeliotis S, Tripepi G, Spoto B. Web 12. Politi C, Roumeliotis S, Tripepi G, Spoto B. Sample size calculation in genetic association studies: A practical approach. Life (Basel) 2023; 13(1): 235.
[http://dx.doi.org/10.3390/life13010235] [PMID: 36676184]
[37]
Banerjee M, Bid HK, Konwar R, Agrawal CG. Association of IL-4 and IL-1RN (receptor antagonist) gene variants and the risk of type 2 diabetes mellitus: A study in the north Indian population. Indian J Med Sci 2008; 62(7): 259-66.
[http://dx.doi.org/10.4103/0019-5359.42021] [PMID: 18688110]
[38]
Banerjee M, Bid HK, Konwar R, et al. Vitamin D receptor (FokI, BsmI and TaqI) gene polymorphisms and type 2 diabetes mellitus: A North Indian study. Indian J Med Sci 2009; 63(5): 187-94.
[http://dx.doi.org/10.4103/0019-5359.53164] [PMID: 19584489]
[39]
Ha H, Kim KH. Role of oxidative stress in the development of diabetic nephropathy. Kidney Int Suppl 1995; 51: S18-21.
[PMID: 7474682]
[40]
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16(3): 1215.
[http://dx.doi.org/10.1093/nar/16.3.1215] [PMID: 3344216]
[41]
Kumar S, Swaroop S, Sahu A, Kant S, Banerjee M. Association of MMP7 T > C gene variant (rs10502001) and expression in chronic obstructive pulmonary disease. DNA Cell Biol 2023; 42(9): 548-53.
[http://dx.doi.org/10.1089/dna.2023.0150] [PMID: 37527206]
[42]
Abdel-Rahman SZ, Anwar WA, Abdel-Aal WE, Mostafa HM, Au WW. GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 1998; 22(2): 129-38.
[http://dx.doi.org/10.1046/j.1525-1500.1998.00934.x] [PMID: 9544433]
[43]
Shikata E, Yamamoto R, Takane H, et al. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J Hum Genet 2007; 52(2): 117-22.
[http://dx.doi.org/10.1007/s10038-006-0087-0] [PMID: 17111267]
[44]
Zhou K, Donnelly LA, Kimber CH, et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter 1 and glycemic response to metformin: A GoDARTS study. Diabetes 2009; 58(6): 1434-9.
[http://dx.doi.org/10.2337/db08-0896] [PMID: 19336679]
[45]
Emami Riedmaier A, Fisel P, Nies AT, Schaeffeler E, Schwab M. Metformin and cancer: From the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol Sci 2013; 34(2): 126-35.
[http://dx.doi.org/10.1016/j.tips.2012.11.005] [PMID: 23277337]
[46]
Becker ML, Visser LE, van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Genetic variation in the organic cation transporter 1 is associated with metformin response in patients with diabetes mellitus. Pharmacogenomics J 2009; 9(4): 242-7.
[http://dx.doi.org/10.1038/tpj.2009.15] [PMID: 19381165]
[47]
Tarasova L, Kalnina I, Geldnere K, et al. Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics 2012; 22(9): 659-66.
[http://dx.doi.org/10.1097/FPC.0b013e3283561666] [PMID: 22735389]
[48]
Singh S, Shukla AK, Usman K, Banerjee M. Pharmacogenetic impact of SLC22A1 gene variant rs628031 (G/A) in newly diagnosed Indian type 2 diabetes patients undergoing metformin monotherapy. Pharmacogenet Genomics 2023; 33(3): 51-8.
[http://dx.doi.org/10.1097/FPC.0000000000000493] [PMID: 36853844]
[49]
AL-Eitan LN. Almomani BA, Nassar AM, Elsaqa BZ, Saadeh NA. Metformin Pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 polymorphisms on glycemic control and HbA1c levels. J Pers Med 2019; 9(1): 17.
[http://dx.doi.org/10.3390/jpm9010017] [PMID: 30934600]
[50]
AL-Eitan L. H Tarkhan A. Practical challenges and translational issues in pharmacogenomics and personalized medicine from 2010 onwards. Curr Pharmacogenomics Person Med 2016; 14(1): 7-17.
[51]
Marin JJ, Briz O, Monte MJ, Blazquez AG, Macias RI. Genetic variants in genes involved in mechanisms of chemoresistance to anticancer drugs. Curr Cancer Drug Targets 2012; 12(4): 402-38.
[http://dx.doi.org/10.2174/156800912800190875] [PMID: 22229248]
[52]
Teitz T, Wei T, Valentine MB, et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6(5): 529-35.
[http://dx.doi.org/10.1038/75007] [PMID: 10802708]
[53]
Yan H, Brouha B, Liu T, et al. Proteolytic cleavage of Livin (ML-IAP) in apoptotic melanoma cells potentially mediated by a non-canonical caspase. J Dermatol Sci 2006; 43(3): 189-200.
[http://dx.doi.org/10.1016/j.jdermsci.2006.05.007] [PMID: 16806840]
[54]
Negri FV, Bozzetti C, Lagrasta CA, et al. PTEN status in advanced colorectal cancer treated with cetuximab. Br J Cancer 2010; 102(1): 162-4.
[http://dx.doi.org/10.1038/sj.bjc.6605471] [PMID: 19953097]
[55]
Tamiya S, Etoh K, Suzushima H, Takatsuki K, Matsuoka M. Mutation of CD95 (Fas/Apo-1) gene in adult T-cell leukemia cells. Blood 1998; 91(10): 3935-42.
[http://dx.doi.org/10.1182/blood.V91.10.3935] [PMID: 9573032]
[56]
Buczyńska A, Sidorkiewicz I, Krętowski AJ, Adamska A. Examining the clinical relevance of metformin as an antioxidant intervention. Front Pharmacol 2024; 15: 1330797.
[http://dx.doi.org/10.3389/fphar.2024.1330797] [PMID: 38362157]
[57]
Shokri F, Ghaedi H, Ghafouri Fard S, et al. Impact of ATM and SLC22A1 polymorphisms on therapeutic response to metformin in Iranian diabetic patients. Int J Mol Cell Med 2016; 5(1): 1-7.
[PMID: 27386433]
[58]
Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes 1999; 48(1): 1-9.
[http://dx.doi.org/10.2337/diabetes.48.1.1] [PMID: 9892215]
[59]
Wang G, Zhang L, Li Q. Genetic polymorphisms of GSTT1, GSTM1, and NQO1 genes and diabetes mellitus risk in Chinese population. Biochem Biophys Res Commun 2006; 341(2): 310-3.
[http://dx.doi.org/10.1016/j.bbrc.2005.12.195] [PMID: 16413497]
[60]
Shu Y, Brown C, Castro RA, et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin Pharmacol Ther 2008; 83(2): 273-80.
[http://dx.doi.org/10.1038/sj.clpt.6100275] [PMID: 17609683]
[61]
Song IS, Shin HJ, Shim EJ, et al. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin Pharmacol Ther 2008; 84(5): 559-62.
[http://dx.doi.org/10.1038/clpt.2008.61] [PMID: 18401339]
[62]
Chen Y, Li S, Brown C, et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet Genomics 2009; 19(7): 497-504.
[http://dx.doi.org/10.1097/FPC.0b013e32832cc7e9] [PMID: 19483665]
[63]
Yalin S, Hatungil R, Tamer L, et al. Glutathione S‐transferase gene polymorphisms in Turkish patients with diabetes mellitus. Cell Biochem Funct 2007; 25(5): 509-13.
[64]
Verlaan M, te Morsche RHM, Roelofs HMJ, et al. Glutathione S‐transferase mu null genotype affords protection against alcohol induced chronic pancreatitis. Am J Med Genet A 2003; 120A(1): 34-9.
[http://dx.doi.org/10.1002/ajmg.a.20010] [PMID: 12794689]
[65]
Nowier SR, Kashmiry NK, Rasool HA, Morad H, Ismail S. Association of type 2 diabetes mellitus and glutathione s transferase (GSTM1 and GSTT1) genetic polymorphism. Res J Medicine & Med Sci 2009; 4: 181-8.
[66]
Fujita H, Narita T, Meguro H, et al. No association of glutathione S-transferase M1 gene polymorphism with diabetic nephropathy in Japanese type 2 diabetic patients. Ren Fail 2000; 22(4): 479-86.
[http://dx.doi.org/10.1081/JDI-100100889] [PMID: 10901185]
[67]
Doney ASF, Lee S, Leese GP, Morris AD, Palmer CNA. Increased cardiovascular morbidity and mortality in type 2 diabetes is associated with the glutathione S transferase theta-null genotype: A Go-DARTS study. Circulation 2005; 111(22): 2927-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.509224] [PMID: 15927971]