Current Pharmacogenomics and Personalized Medicine

Author(s): Jyotsna Singh*, Vijay Tripathi, Rajiv Kant and Jonathan A. Lal

DOI: 10.2174/0118756921317994240906051408

DownloadDownload PDF Flyer Cite As
Epidemiology and Genetic Architecture of Type 2 Diabetes Mellitus in Geographically Different Indian Populations: A Review

Article ID: e18756921317994 Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Type 2 Diabetes Mellitus (T2DM) has been a severe public health issue worldwide for many years. The primary cause and risk factor of T2DM is hereditary and complicated interaction between epigenetics. Identification and understanding of genetic markers may help to detect, prevent, and manage T2DM. This review examined the effect of single-gene and gene-gene interactions for predicting diabetes mellitus. Based on the literature survey, common and unique Single Nucleotide Polymorphisms (SNPs) and genes were explored in the Indian Populations, including PPARG, TCF7L2, KCNJ11, CDKN2A, IGF2BP2, SLC30A8, HHEX and CDKAL1. Identifying common and specific markers may help in risk prediction and early detection of T2DM. Future research and Genome-wide association studies are also required to predict the gene-gene interaction, generate large data sets for removing non-representative groups, and focus only on specific marker-associated traits.

Keywords: Type 2 diabetes, diabetes mellitus, single nucleotide polymorphism, genetics, genome-wide studies, GDM.

Graphical Abstract

[1]
Hunt D, Hemmingsen B, Matzke A, et al. The WHO global diabetes compact: A new initiative to support people living with diabetes. Lancet Diabetes Endocrinol 2021; 9(6): 325-7.
[http://dx.doi.org/10.1016/S2213-8587(21)00111-X] [PMID: 33862005]
[2]
Goyal R, Singhal M, Jialal I. Type 2 Diabetes. In: StatPearls. StatPearls Publishing 2023.
[3]
Hivert MF, Vassy JL, Meigs JB. Susceptibility to type 2 diabetes mellitus—From genes to prevention. Nat Rev Endocrinol 2014; 10(4): 198-205.
[http://dx.doi.org/10.1038/nrendo.2014.11] [PMID: 24535206]
[4]
International Diabetes Federation. IDF Diabetes Atlas 2015.
[5]
Classification and Diagnosis of Diabetes. Diabetes Care 2017; 40: S11-24.
[http://dx.doi.org/10.2337/dc17-S005] [PMID: 27979889]
[6]
Schuster D. Obesity and the development of type 2 diabetes: The effects of fatty tissue inflammation. Diabetes Metab Syndr Obes 2010; 3: 253-62.
[http://dx.doi.org/10.2147/DMSO.S7354] [PMID: 21437093]
[7]
Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives. Nat Rev Endocrinol 2012; 8(4): 228-36.
[http://dx.doi.org/10.1038/nrendo.2011.183] [PMID: 22064493]
[8]
Rasouli N, Kern PA. Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 2008; 93: s64-73.
[http://dx.doi.org/10.1210/jc.2008-1613] [PMID: 18987272]
[9]
Luhar S, Kondal D, Jones R, et al. Lifetime risk of diabetes in metropolitan cities in India. Diabetologia 2021; 64(3): 521-9.
[http://dx.doi.org/10.1007/s00125-020-05330-1] [PMID: 33225415]
[10]
Hu FB. Globalization of Diabetes. Diabetes Care 2011; 34(6): 1249-57.
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[11]
Sinclair A, Saeedi P, Kaundal A, Karuranga S, Malanda B, Williams R. Diabetes and global ageing among 65-99- year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2020; 162: 108078.
[http://dx.doi.org/10.1016/j.diabres.2020.108078]
[12]
Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138: 271-81.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[13]
Oberoi S, Kansra P. Economic menace of diabetes in India: A systematic review. Int J Diabetes Dev Ctries 2020; 40(4): 464-75.
[http://dx.doi.org/10.1007/s13410-020-00838-z] [PMID: 32837090]
[14]
Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215-22.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9] [PMID: 20609967]
[15]
Singh GM, Danaei G, Farzadfar F, et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: A pooled analysis. PLoS One 2013; 8(7): e65174.
[http://dx.doi.org/10.1371/journal.pone.0065174] [PMID: 23935815]
[16]
Anjana RM, Deepa M, Pradeepa R, et al. Prevalence of diabetes and prediabetes in 15 states of India: Results from the ICMR–INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol 2017; 5(8): 585-96.
[http://dx.doi.org/10.1016/S2213-8587(17)30174-2] [PMID: 28601585]
[17]
Corsi DJ, Subramanian SV. Socioeconomic gradients and distribution of diabetes, hypertension, and obesity in India. JAMA Netw Open 2019; 2(4): e190411.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.0411] [PMID: 30951154]
[18]
Joseph A, Thirupathamma M, Mathews E, Alagu M. Genetics of type 2 diabetes mellitus in Indian and global population: A review. Egypt J Med Hum Genet 2022; 23(1): 135.
[http://dx.doi.org/10.1186/s43042-022-00346-1] [PMID: 37192883]
[19]
Khan IA, Poornima S, Jahan P, Rao P, Hasan Q. Type 2 Diabetes Mellitus and the association of candidate genes in Asian Indian population from Hyderabad, India. J Clin Diagn Res 2015; 9(11): GC01-5.
[http://dx.doi.org/10.7860/JCDR/2015/14471.6855] [PMID: 26673680]
[20]
Hall E, Dekker Nitert M, Volkov P, et al. The effects of high glucose exposure on global gene expression and DNA methylation in human pancreatic islets. Mol Cell Endocrinol 2018; 472: 57-67.
[http://dx.doi.org/10.1016/j.mce.2017.11.019] [PMID: 29183809]
[21]
Ling C, Rönn T. Epigenetics in human obesity and Type 2 Diabetes. Cell Metab 2019; 29(5): 1028-44.
[http://dx.doi.org/10.1016/j.cmet.2019.03.009] [PMID: 30982733]
[22]
Alberti KGMM, Zimmet P, Shaw J. The metabolic syndrome—A new worldwide definition. Lancet 2005; 366(9491): 1059-62.
[http://dx.doi.org/10.1016/S0140-6736(05)67402-8] [PMID: 16182882]
[23]
Moledina N, Leung AA. Endocrinology. In: Hui D, Leung AA, Ma C, Eds. Approach to Internal Medicine. Springer 2022; pp. 365-96.
[http://dx.doi.org/10.1007/978-3-030-72980-6_11]
[24]
Ban HJ, Heo JY, Oh KS, Park KJ. Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genet 2010; 11(1): 26.
[http://dx.doi.org/10.1186/1471-2156-11-26] [PMID: 20416077]
[25]
Witka BZ, Oktaviani DJ, Marcellino M, Barliana MI, Abdulah R. Type 2 Diabetes-associated genetic polymorphisms as potential disease predictors. Diabetes Metab Syndr Obes 2019; 12: 2689-706.
[http://dx.doi.org/10.2147/DMSO.S230061] [PMID: 31908510]
[26]
Chan JCN, Cheung CK, Swaminathan R, Nicholls MG, Cockram CS. Obesity, albuminuria and hypertension among Hong Kong Chinese with non-insulin-dependent diabetes mellitus (NIDDM). Postgrad Med J 1993; 69(809): 204-10.
[http://dx.doi.org/10.1136/pgmj.69.809.204] [PMID: 8497435]
[27]
Dabelea D, DeGroat J, Sorrelman C, et al. Diabetes in Navajo youth: Prevalence, incidence, and clinical characteristics: The SEARCH for Diabetes in youth study. Diabetes Care 2009; S141-7.
[http://dx.doi.org/10.2337/dc09-S206]
[28]
Liu LL, Yi JP, Beyer J, et al. Type 1 and Type 2 diabetes in Asian and Pacific Islander U.S. youth: The SEARCH for Diabetes in Youth Study. Diabetes Care 2009; 32 (Suppl. 2): S133-40.
[http://dx.doi.org/10.2337/dc09-S205]
[29]
Karter AJ, Schillinger D, Adams AS, et al. Elevated rates of diabetes in Pacific Islanders and Asian subgroups: The Diabetes Study of Northern California (DISTANCE). Diabetes Care 2013; 36(3): 574-9.
[http://dx.doi.org/10.2337/dc12-0722] [PMID: 23069837]
[30]
Sattar N, Gill JMR. Type 2 diabetes in migrant south Asians: Mechanisms, mitigation, and management. Lancet Diabetes Endocrinol 2015; 3(12): 1004-16.
[http://dx.doi.org/10.1016/S2213-8587(15)00326-5] [PMID: 26489808]
[31]
McKeigue PM, Shah B, Marmot MG. Relation of central obesity and insulin resistance with high diabetes prevalence and cardiovascular risk in South Asians. Lancet 1991; 337(8738): 382-6.
[http://dx.doi.org/10.1016/0140-6736(91)91164-P] [PMID: 1671422]
[32]
Haines L, Wan KC, Lynn R, Barrett TG, Shield JPH. Rising incidence of type 2 diabetes in children in the U.K. Diabetes Care 2007; 30(5): 1097-101.
[http://dx.doi.org/10.2337/dc06-1813] [PMID: 17259470]
[33]
Fuchsberger C, Flannick J, Teslovich TM, et al. The genetic architecture of type 2 diabetes. Nature 2016; 536(7614): 41-7.
[http://dx.doi.org/10.1038/nature18642] [PMID: 27398621]
[34]
McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med 2010; 363(24): 2339-50.
[http://dx.doi.org/10.1056/NEJMra0906948] [PMID: 21142536]
[35]
Dimas AS, Lagou V, Barker A, et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 2014; 63(6): 2158-71.
[http://dx.doi.org/10.2337/db13-0949] [PMID: 24296717]
[36]
Flannick J, Florez JC. Type 2 diabetes: Genetic data sharing to advance complex disease research. Nat Rev Genet 2016; 17(9): 535-49.
[http://dx.doi.org/10.1038/nrg.2016.56] [PMID: 27402621]
[37]
Franks PW, Pearson E, Florez JC. Gene-environment and gene-treatment interactions in type 2 diabetes: Progress, pitfalls, and prospects. Diabetes Care 2013; 36(5): 1413-21.
[http://dx.doi.org/10.2337/dc12-2211] [PMID: 23613601]
[38]
Shitomi-Jones LM, Akam L, Hunter D, Singh P, Mastana S. Genetic risk scores for the determination of Type 2 Diabetes Mellitus (T2DM) in North India. Int J Environ Res Public Health 2023; 20(4): 3729.
[http://dx.doi.org/10.3390/ijerph20043729] [PMID: 36834424]
[39]
Pelle MC, Provenzano M, Zaffina I, et al. Role of a Dual Glucose-Dependent Insulinotropic Peptide (GIP)/glucagon-like peptide-1 receptor agonist (Twincretin) in glycemic control: From pathophysiology to treatment. Life (Basel) 2021; 12(1): 29.
[http://dx.doi.org/10.3390/life12010029] [PMID: 35054422]
[40]
Himanshu D, Ali W, Wamique M. Type 2 diabetes mellitus: Pathogenesis and genetic diagnosis. J Diabetes Metab Disord 2020; 19(2): 1959-66.
[http://dx.doi.org/10.1007/s40200-020-00641-x] [PMID: 33520871]
[41]
van Leeuwen N, Nijpels G, Becker ML, et al. A gene variant near ATM is significantly associated with metformin treatment response in type 2 diabetes: A replication and meta-analysis of five cohorts. Diabetologia 2012; 55(7): 1971-7.
[http://dx.doi.org/10.1007/s00125-012-2537-x] [PMID: 22453232]
[42]
Gall WE, Beebe K, Lawton KA, et al. Alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One 2010; 5(5): e10883.
[http://dx.doi.org/10.1371/journal.pone.0010883]
[43]
Tricò D, Prinsen H, Giannini C, et al. Elevated α-hydroxybutyrate and branched-chain amino acid levels predict deterioration of glycemic control in adolescents. J Clin Endocrinol Metab 2017; 102(7): 2473-81.
[http://dx.doi.org/10.1210/jc.2017-00475] [PMID: 28482070]
[44]
Mitchell KJ. What is complex about complex disorders? Genome Biol 2012; 13(1): 237.
[http://dx.doi.org/10.1186/gb-2012-13-1-237] [PMID: 22269335]
[45]
Mahajan A, Taliun D, Thurner M, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 2018; 50(11): 1505-13.
[http://dx.doi.org/10.1038/s41588-018-0241-6] [PMID: 30297969]
[46]
Bellou V, Belbasis L, Tzoulaki I, Evangelou E. Risk factors for type 2 diabetes mellitus: An exposure-wide umbrella review of meta-analyses. PLoS One 2018; 13(3): e0194127.
[http://dx.doi.org/10.1371/journal.pone.0194127] [PMID: 29558518]
[47]
Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol 1997; 145(7): 614-9.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009158] [PMID: 9098178]
[48]
Sinha R, Dufour S, Petersen KF, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: Relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 2002; 51(4): 1022-7.
[http://dx.doi.org/10.2337/diabetes.51.4.1022] [PMID: 11916921]
[49]
Hillier TA, Pedula KL. Complications in young adults with early-onset type 2 diabetes: Losing the relative protection of youth. Diabetes Care 2003; 26(11): 2999-3005.
[http://dx.doi.org/10.2337/diacare.26.11.2999] [PMID: 14578230]
[50]
Weinstein AR, Sesso HD, Lee IM, et al. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA 2004; 292(10): 1188-94.
[http://dx.doi.org/10.1001/jama.292.10.1188] [PMID: 15353531]
[51]
Lynch J, Helmrich SP, Lakka TA, et al. Moderately intense physical activities and high levels of cardiorespiratory fitness reduce the risk of non-insulin-dependent diabetes mellitus in middle-aged men. Arch Intern Med 1996; 156(12): 1307-14.
[http://dx.doi.org/10.1001/archinte.1996.00440110073010] [PMID: 8651839]
[52]
Mishra S, Pericherla S, Manthuruthil S, Mishra S, Hanno R. Effect of physical activity on insulin resistance, inflammation and oxidative stress in Diabetes Mellitus. J Clin Diagn Res 2013; 7(8): 1764-6.
[http://dx.doi.org/10.7860/JCDR/2013/6518.3306] [PMID: 24086908]
[53]
Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci 2013; 1281(1): 141-59.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06785.x] [PMID: 23167451]
[54]
Ross R. Does exercise without weight loss improve insulin sensitivity? Diabetes Care 2003; 26(3): 944-5.
[http://dx.doi.org/10.2337/diacare.26.3.944] [PMID: 12610063]
[55]
Chang K, Khandpur N, Neri D, et al. Association between childhood consumption of ultraprocessed food and adiposity trajectories in the avon longitudinal study of parents and children birth cohort. JAMA Pediatr 2021; 175(9): e211573.
[http://dx.doi.org/10.1001/jamapediatrics.2021.1573] [PMID: 34125152]
[56]
Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542(7640): 177-85.
[http://dx.doi.org/10.1038/nature21363] [PMID: 28179656]
[57]
Pillon NJ, Loos RJF, Marshall SM, Zierath JR. Metabolic consequences of obesity and type 2 diabetes: Balancing genes and environment for personalized care. Cell 2021; 184(6): 1530-44.
[http://dx.doi.org/10.1016/j.cell.2021.02.012] [PMID: 33675692]
[58]
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23(7): 804-14.
[http://dx.doi.org/10.1038/nm.4350] [PMID: 28697184]
[59]
Heiskanen MA, Motiani KK, Mari A, et al. Exercise training decreases pancreatic fat content and improves beta cell function regardless of baseline glucose tolerance: A randomised controlled trial. Diabetologia 2018; 61(8): 1817-28.
[http://dx.doi.org/10.1007/s00125-018-4627-x] [PMID: 29717337]
[60]
Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: A randomized controlled trial. JAMA 2010; 304(20): 2253-62.
[http://dx.doi.org/10.1001/jama.2010.1710] [PMID: 21098771]
[61]
Sigal RJ, Kenny GP, Boulé NG, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: A randomized trial. Ann Intern Med 2007; 147(6): 357-69.
[http://dx.doi.org/10.7326/0003-4819-147-6-200709180-00005] [PMID: 17876019]
[62]
Cuff DJ, Meneilly GS, Martin A, Ignaszewski A, Tildesley HD, Frohlich JJ. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 2003; 26(11): 2977-82.
[http://dx.doi.org/10.2337/diacare.26.11.2977] [PMID: 14578226]
[63]
Cassidy S, Thoma C, Hallsworth K, et al. High intensity intermittent exercise improves cardiac structure and function and reduces liver fat in patients with type 2 diabetes: A randomised controlled trial. Diabetologia 2016; 59(1): 56-66.
[http://dx.doi.org/10.1007/s00125-015-3741-2] [PMID: 26350611]
[64]
Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and Diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016; 39(11): 2065-79.
[http://dx.doi.org/10.2337/dc16-1728] [PMID: 27926890]
[65]
Sheth J, Trivedi S, Shah A, et al. Are we predisposed to Type 2 Diabetes risk: A case-control study from Urban population in Western India. Endocrinol Metab J 2017; 5(3): 00122.
[http://dx.doi.org/10.15406/emij.2017.05.00122]
[66]
Viswanathan V, Zhu Y, Bala K, et al. Association between ACE gene polymorphism and diabetic nephropathy in South Indian patients. JOP 2001; 2(2): 83-7.
[PMID: 11867868]
[67]
Bhavani BA, Padma T, Sastry BKS, Reddy NK, Nausheen K. The Insertion I/Deletion D polymorphism of Angiotensin-Converting Enzyme (ACE) gene increase the susceptibility to Hypertension and/or Diabetes. Int J Hum Genet 2005; 5(4): 247-52.
[http://dx.doi.org/10.1080/09723757.2005.11885934]
[68]
Raza ST, Fatima J, Ahmed F, et al. Association of angiotensin-converting enzyme (ACE) and fatty acid binding protein 2 (FABP2) genes polymorphism with type 2 diabetes mellitus in Northern India. J Renin Angiotensin Aldosterone Syst 2014; 15(4): 572-9.
[http://dx.doi.org/10.1177/1470320313481082] [PMID: 23468166]
[69]
Singh PP, Naz I, Gilmour A, Singh M, Mastana S. Association of APOE (Hha1) and ACE (I/D) gene polymorphisms with type 2 diabetes mellitus in North West India. Diabetes Res Clin Pract 2006; 74(1): 95-102.
[http://dx.doi.org/10.1016/j.diabres.2006.03.013] [PMID: 16621107]
[70]
Kumar A, Mohindru K, Sehajpal PK. Angiotensin 1 converting enzyme polymorphism and diabetic nephropathy in north India. Int J Hum Genet 2005; 5(4): 279-83.
[http://dx.doi.org/10.1080/09723757.2005.11885939]
[71]
Raza ST, Abbas S, Ahmed F, Fatima J, Zaidi ZH, Mahdi F. Association of MTHFR and PPARγ2 gene polymorphisms in relation to type 2 diabetes mellitus cases among north Indian population. Gene 2012; 511(2): 375-9.
[http://dx.doi.org/10.1016/j.gene.2012.09.072] [PMID: 23036708]
[72]
Yajnik CS, Janipalli CS, Bhaskar S, et al. FTO gene variants are strongly associated with type 2 diabetes in South Asian Indians. Diabetologia 2009; 52(2): 247-52.
[http://dx.doi.org/10.1007/s00125-008-1186-6] [PMID: 19005641]
[73]
Tabassum R, Chavali S, Dwivedi OP, Tandon N, Bharadwaj D. Genetic variants of FOXA2: risk of type 2 diabetes and effect on metabolic traits in North Indians. J Hum Genet 2008; 53(11-12): 957-65.
[http://dx.doi.org/10.1007/s10038-008-0335-6] [PMID: 18797817]
[74]
Mahajan A, Tabassum R, Chavali S, et al. Obesity-dependent association of TNF-LTA locus with type 2 diabetes in North Indians. J Mol Med (Berl) 2010; 88(5): 515-22.
[http://dx.doi.org/10.1007/s00109-010-0594-5] [PMID: 20177654]
[75]
Chavali S, Mahajan A, Tabassum R, et al. Association of variants in genes involved in pancreatic β-cell development and function with type 2 diabetes in North Indians. J Hum Genet 2011; 56(10): 695-700.
[http://dx.doi.org/10.1038/jhg.2011.83] [PMID: 21814221]
[76]
Bodhini D, Radha V, Deepa R, et al. The G1057D polymorphism of IRS-2 gene and its relationship with obesity in conferring susceptibility to type 2 diabetes in Asian Indians. Int J Obes 2007; 31(1): 97-102.
[http://dx.doi.org/10.1038/sj.ijo.0803356] [PMID: 16652127]
[77]
Jahnavi S, Poovazhagi V, Kanthimathi S, et al. Novel ABCC8 (SUR1) gene mutations in Asian Indian children with congenital hyperinsulinemic hypoglycemia. Ann Hum Genet 2014; 78(5): 311-9.
[http://dx.doi.org/10.1111/ahg.12070] [PMID: 25117148]
[78]
Radha V, Vimaleswaran KS, Babu HNS, et al. Role of genetic polymorphism peroxisome proliferator-activated receptor-gamma2 Pro12Ala on ethnic susceptibility to diabetes in South-Asian and Caucasian subjects: Evidence for heterogeneity. Diabetes Care 2006; 29(5): 1046-51.
[http://dx.doi.org/10.2337/dc05-1473] [PMID: 16644635]
[79]
Singh S, Venketesh S, Verma JS, Verma M, Lellamma CO, Goel RC. Paraoxonase (PON1) activity in north west Indian Punjabis with coronary artery disease & type 2 diabetes mellitus. Indian J Med Res 2007; 125(6): 783-7.
[PMID: 17704557]
[80]
Singh P, Singh M, Gaur S, Kaur T. The ApoAI-CIII-AIV gene cluster and its relation to lipid levels in type 2 diabetes mellitus and coronary heart disease: Determination of a novel susceptible haplotype. Diab Vasc Dis Res 2007; 4(2): 124-9.
[http://dx.doi.org/10.3132/dvdr.2007.030] [PMID: 17654446]
[81]
Achyut BR, Srivastava A, Bhattacharya S, Mittal B. Genetic association of interleukin-1β (−511C/T) and interleukin-1 receptor antagonist (86 bp repeat) polymorphisms with Type 2 diabetes mellitus in North Indians. Clin Chim Acta 2007; 377(1-2): 163-9.
[http://dx.doi.org/10.1016/j.cca.2006.09.012] [PMID: 17069782]
[82]
Banerjee M, Bid HK, Konwar R, Agrawal CG. Association of IL-4 and IL-1RN (receptor antagonist) gene variants and the risk of type 2 diabetes mellitus: A study in the north Indian population. Indian J Med Sci 2008; 62(7): 259-66.
[http://dx.doi.org/10.4103/0019-5359.42021] [PMID: 18688110]
[83]
Vimaleswaran KS, Radha V, Ghosh S, et al. Peroxisome proliferator‐activated receptor‐γ co‐activator‐1α (PGC‐1α) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet Med 2005; 22(11): 1516-21.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01709.x] [PMID: 16241916]
[84]
Vimaleswaran KS, Radha V, Anjana M, et al. Effect of polymorphisms in the PPARGC1A gene on body fat in Asian Indians. Int J Obes 2006; 30(6): 884-91.
[http://dx.doi.org/10.1038/sj.ijo.0803228] [PMID: 16446747]
[85]
Sharma R, Matharoo K, Kapoor R, Bhanwer AJS. Association of PGC-1α gene with type 2 diabetes in three unrelated endogamous groups of North-West India (Punjab): A case-control and meta-analysis study. Mol Genet Genomics 2018; 293(2): 317-29.
[http://dx.doi.org/10.1007/s00438-017-1385-2] [PMID: 29063962]
[86]
Bhat A, Koul A, Rai E, Sharma S, Dhar MK, Bamezai RNK. PGC-1α Thr394Thr and Gly482Ser variants are significantly associated with T2DM in two North Indian populations: A replicate case-control study. Hum Genet 2007; 121(5): 609-14.
[http://dx.doi.org/10.1007/s00439-007-0352-0] [PMID: 17390150]
[87]
Ali S, Chopra R, Manvati S, et al. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS One 2013; 8(3): e58881.
[http://dx.doi.org/10.1371/journal.pone.0058881] [PMID: 23527042]
[88]
Abate N, Chandalia M, Satija P, et al. ENPP1/PC-1 K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 2005; 54(4): 1207-13.
[http://dx.doi.org/10.2337/diabetes.54.4.1207] [PMID: 15793263]
[89]
Chauhan G, Spurgeon CJ, Tabassum R, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 2010; 59(8): 2068-74.
[http://dx.doi.org/10.2337/db09-1386] [PMID: 20424228]
[90]
Reddy BM, Kommoju UJ, Samy SK, et al. Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type 2 diabetes mellitus in the population of Hyderabad, India. Indian J Med Res 2016; 143(4): 455-63.
[http://dx.doi.org/10.4103/0971-5916.184303] [PMID: 27377502]
[91]
Chidambaram M, Radha V, Mohan V. Replication of recently described type 2 diabetes gene variants in a South Indian population. Metabolism 2010; 59(12): 1760-6.
[http://dx.doi.org/10.1016/j.metabol.2010.04.024] [PMID: 20580033]
[92]
Bodhini D, Radha V, Dhar M, Narayani N, Mohan V. The rs12255372(G/T) and rs7903146(C/T) polymorphisms of the TCF7L2 gene are associated with type 2 diabetes mellitus in Asian Indians. Metabolism 2007; 56(9): 1174-8.
[http://dx.doi.org/10.1016/j.metabol.2007.04.012] [PMID: 17697858]
[93]
Chandak GR, Janipalli CS, Bhaskar S, et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 2006; 50(1): 63-7.
[http://dx.doi.org/10.1007/s00125-006-0502-2] [PMID: 17093941]
[94]
Tabassum R, Chauhan G, Dwivedi OP, et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes 2013; 62(3): 977-86.
[http://dx.doi.org/10.2337/db12-0406] [PMID: 23209189]
[95]
Kommoju UJ, Maruda J, Kadarkarai S, et al. No detectable association of IGF2BP2 and SLC30A8 genes with type 2 diabetes in the population of Hyderabad, India. Meta Gene 2013; 1: 15-23.
[http://dx.doi.org/10.1016/j.mgene.2013.09.003] [PMID: 25606370]
[96]
Saxena R, Saleheen D, Been LF, et al. Genome-wide association study identifies a novel locus contributing to type 2 diabetes susceptibility in Sikhs of Punjabi origin from India. Diabetes 2013; 62(5): 1746-55.
[http://dx.doi.org/10.2337/db12-1077] [PMID: 23300278]
[97]
Phani NM, Vohra M, Rajesh S, et al. Implications of critical PPARγ2, ADIPOQ and FTO gene polymorphisms in type 2 diabetes and obesity-mediated susceptibility to type 2 diabetes in an Indian population. Mol Genet Genomics 2016; 291(1): 193-204.
[http://dx.doi.org/10.1007/s00438-015-1097-4] [PMID: 26243686]
[98]
Ryuk JA, Zhang X, Ko BS, Daily JW, Park S. Association of β3-adrenergic receptor rs4994 polymorphisms with the risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2017; 129: 86-96.
[http://dx.doi.org/10.1016/j.diabres.2017.03.034] [PMID: 28521197]
[99]
Gupta V, Vinay DG, Rafiq S, et al. Association analysis of 31 common polymorphisms with type 2 diabetes and its related traits in Indian sib pairs. Diabetologia 2012; 55(2): 349-57.
[http://dx.doi.org/10.1007/s00125-011-2355-6] [PMID: 22052079]
[100]
Lalrohlui F, Sharma V, Sharma I, et al. MACF1 gene variant rs2296172 is associated with T2D susceptibility in Mizo population from Northeast India. Int J Diabetes Dev Ctries 2020; 40(2): 223-6.
[http://dx.doi.org/10.1007/s13410-019-00788-1]
[101]
Bains V, Kaur H, Badaruddoza B. Association analysis of polymorphisms in LEP (rs7799039 and rs2167270) and LEPR (rs1137101) gene towards the development of type 2 diabetes in North Indian Punjabi population. Gene 2020; 754: 144846.
[http://dx.doi.org/10.1016/j.gene.2020.144846] [PMID: 32512158]
[102]
Matharoo K, Arora P, Bhanwer AJS. Association of adiponectin (AdipoQ) and sulphonylurea receptor (ABCC8) gene polymorphisms with Type 2 Diabetes in North Indian population of Punjab. Gene 2013; 527(1): 228-34.
[http://dx.doi.org/10.1016/j.gene.2013.05.075] [PMID: 23764562]
[103]
Nair AK, Sugunan D, Kumar H, Anilkumar G. Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: Association of SNPs in STRA6 with type 2 diabetes in a South Indian population. PLoS One 2010; 5(7): e11444.
[http://dx.doi.org/10.1371/journal.pone.0011444] [PMID: 20625434]
[104]
Sharma R, Matharoo K, Kapoor R, Chopra H, Bhanwer A. Ethnic differences in CAPN10 SNP-19 in type 2 diabetes: A North-West Indian case control study and evidence from meta-analysis. Genet Res 2013; 95(5): 146-55.
[http://dx.doi.org/10.1017/S0016672313000207] [PMID: 24429295]
[105]
Belosludtsev KN, Belosludtseva NV, Dubinin MV. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore. Int J Mol Sci 2020; 21(18): 6559.
[http://dx.doi.org/10.3390/ijms21186559] [PMID: 32911736]
[106]
Murphy R, Turnbull DM, Walker M, Hattersley AT. Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243AG mitochondrial point mutation. Diabet Med 2008; 25(4): 383-99.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02359.x] [PMID: 18294221]
[107]
van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W, et al. Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1992; 1(5): 368-71.
[http://dx.doi.org/10.1038/ng0892-368] [PMID: 1284550]
[108]
Yee ML, Wong R, Datta M, et al. Mitochondrial disease: An uncommon but important cause of diabetes mellitus. Endocrinol Diabetes Metab Case Rep 2018; 2018: 18-0091.
[http://dx.doi.org/10.1530/EDM-18-0091] [PMID: 30306776]
[109]
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384-7.
[http://dx.doi.org/10.1126/science.1104343] [PMID: 15662004]
[110]
Vijaya Padma V, Anitha S, Santhini E, et al. Mitochondrial and nuclear gene mutations in the type 2 diabetes patients of Coimbatore population. Mol Cell Biochem 2010; 345(1-2): 223-9.
[http://dx.doi.org/10.1007/s11010-010-0576-5] [PMID: 20730618]
[111]
Duraisamy P, Elango S, Vishwanandha VP, Balamurugan R. Prevalence of mitochondrial tRNA gene mutations and their association with specific clinical phenotypes in patients with type 2 diabetes mellitus of Coimbatore. Genet Test Mol Biomarkers 2010; 14(1): 49-55.
[http://dx.doi.org/10.1089/gtmb.2009.0024] [PMID: 20143911]
[112]
Bhat A, Koul A, Sharma S, et al. The possible role of 10398A and 16189C mtDNA variants in providing susceptibility toT2DM in two North Indian populations: A replicative study. Hum Genet 2007; 120(6): 821-6.
[http://dx.doi.org/10.1007/s00439-006-0272-4] [PMID: 17066297]
[113]
Lalrohlui F, Zohmingthanga J. hruaii V, Kumar NS. Genomic profiling of mitochondrial DNA reveals novel complex gene mutations in familial type 2 diabetes mellitus individuals from Mizo ethnic population, Northeast India. Mitochondrion 2020; 51: 7-14.
[http://dx.doi.org/10.1016/j.mito.2019.12.001] [PMID: 31862415]
[114]
Sharma V, Sharma I, Singh VP, et al. mtDNA G10398A variation provides risk to type 2 diabetes in population group from the Jammu region of India. Meta Gene 2014; 2: 269-73.
[http://dx.doi.org/10.1016/j.mgene.2014.02.003] [PMID: 25606409]