Current Pharmaceutical Design

Author(s): Qian Li, Hui Zhang, Yongshan He, Hao Zhang and Conghui Han*

DOI: 10.2174/0113816128298998240828060306

DownloadDownload PDF Flyer Cite As
Inhibition of Colorectal Cancer Metastasis by Total Flavones of Abelmoschus manihot via LncRNA AL137782-mediated STAT3/EMT Pathway Regulation

Page: [219 - 232] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Colorectal cancer (CRC) ranks among the most lethal malignancies globally, particularly following metastasis which results in poor prognosis. In recent years, CRC incidence in China has persistently increased. Total flavonoids (TFA) from Abelmoschus manihot, a natural compound, are recognized for their anti-inflammatory, analgesic, and antioxidant properties. However, despite extensive research into the therapeutic potential of TFA, coverage of its role in cancer treatment is notably lacking. To address this research void, our study aims to unveil the role and potential mechanisms of TFA in treating CRC.

Methods: We conducted a series of experiments to assess the impact of TFA on CRC cells. Two specific CRC cell lines, DLD-1 and HCT116, were employed in cell proliferation, colony formation, flow cytometry, and cell migration assays. Additionally, to test the in vivo effects of TFA, we developed a nude mouse xenograft tumor model to assess TFA's impact on tumor growth and liver metastasis. Furthermore, we meticulously analyzed the gene expression differences between CRC cells pretreated with TGF-β and those treated with TFA using RNA-seq technology. We also examined the molecular mechanisms of TFA and assessed the expression of proteins related to the STAT3/EMT signaling pathway through Western blotting and siRNA technology.

Results: Our research findings reveal for the first time the effect of TFA on CRC cells. Result shows that TFA could suppress cell proliferation, migration, and induce apoptosis. In vivo results showed that TFA inhibited tumor growth and liver metastasis. Molecular mechanism studies have shown that TFA exerts these effects by upregulating the expression of non-coding RNA AL137782, inhibiting the EMT/STAT3 signaling pathway. These results suggest that TFA is a potential candidate for mitigating CRC metastasis.

Conclusion: However, further research is needed to comprehensively evaluate the efficacy and safety of TFA in animal models and clinical settings. These findings bring great hope for the development of innovative CRC treatment methods.

Keywords: Colorectal cancer, long non-coding RNAs, epithelial-mesenchymal transition, total flavonoids, Abelmoschus manihot, antiinflammatory.

[1]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[2]
Dariya B, Aliya S, Merchant N. Colorectal cancer biology, diagnosis, and therapeutic approaches. Crit Rev Oncog 2020; 25(2)
[3]
Cai X, Su Y, Ning J, Fan X, Shen M. Research on the effect and mechanism of selenium on colorectal cancer through TRIM32. Biol Trace Elem Res 2024; 1-14.
[http://dx.doi.org/10.1007/s12011-024-04206-4] [PMID: 38691306]
[4]
Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017; 168(4): 670-91.
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[5]
Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 2005; 24(37): 5764-74.
[http://dx.doi.org/10.1038/sj.onc.1208927] [PMID: 16123809]
[6]
Thiery JP, Acloque H, Huang RY. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[7]
Shin AE, Giancotti FG, Rustgi AK. Metastatic colorectal cancer: Mechanisms and emerging therapeutics. Trends Pharmacol Sci 2023; 44(4): 222-36.
[http://dx.doi.org/10.1016/j.tips.2023.01.003] [PMID: 36828759]
[8]
Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGFβ and stem cell pathways in tumor cell invasion: Role of EMT promoting Smad complexes. Cell Cycle 2010; 9(12): 2363-74.
[http://dx.doi.org/10.4161/cc.9.12.12050] [PMID: 20519943]
[9]
Sadrkhanloo M, Entezari M, Orouei S, et al. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182: 106311.
[http://dx.doi.org/10.1016/j.phrs.2022.106311] [PMID: 35716914]
[10]
Wu LW, Hu X. SSNA1 promotes hepatocellular carcinoma metastasis via STAT3/EMT induction. Anticancer Res 2023; 43(8): 3479-86.
[http://dx.doi.org/10.21873/anticanres.16524] [PMID: 37500134]
[11]
Chen Y, Shao Z, Jiang E, et al. CCL21/CCR7 interaction promotes EMT and enhances the stemness of OSCC via a JAK2/STAT3 signaling pathway. J Cell Physiol 2020; 235(9): 5995-6009.
[http://dx.doi.org/10.1002/jcp.29525] [PMID: 32017846]
[12]
Liu W, Geng C, Li X, Li Y, Song S, Wang C. Downregulation of SLC9A8 promotes epithelial–mesenchymal transition and metastasis in colorectal cancer cells via the IL6-JAK1/STAT3 signaling pathway. Dig Dis Sci 2023; 68(5): 1873-84.
[http://dx.doi.org/10.1007/s10620-022-07805-0] [PMID: 36583805]
[13]
Bai Y, Wang X, Cai M, et al. Cinobufagin suppresses colorectal cancer growth via STAT3 pathway inhibition. Am J Cancer Res 2021; 11(1): 200-14.
[PMID: 33520369]
[14]
Xie X, Tang B, Xiao YF, et al. Long non-coding RNAs in colorectal cancer. Oncotarget 2016; 7(5): 5226-39.
[http://dx.doi.org/10.18632/oncotarget.6446] [PMID: 26637808]
[15]
Bai J, Xu J, Zhao J, Zhang R. lncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial–mesenchymal transition underlying colorectal cancer exacerbation. J Cell Physiol 2020; 235(2): 1453-68.
[http://dx.doi.org/10.1002/jcp.29065] [PMID: 31276207]
[16]
Li J, Zhao L, Zhang C, et al. The lncRNA FEZF1-AS1 promotes the progression of colorectal cancer through regulating OTX1 and targeting miR-30a-5p. Oncol Res 2020; 28(1): 51-63.
[http://dx.doi.org/10.3727/096504019X15619783964700] [PMID: 31270006]
[17]
Tsumbu CN, Deby-Dupont G, Tits M, et al. Polyphenol content and modulatory activities of some tropical dietary plant extracts on the oxidant activities of neutrophils and myeloperoxidase. Int J Mol Sci 2012; 13(1): 628-50.
[http://dx.doi.org/10.3390/ijms13010628] [PMID: 22312276]
[18]
Yang BL, Zhu P, Li YR, et al. Total flavone of Abelmoschus manihot suppresses epithelial-mesenchymal transition via interfering transforming growth factor-β1 signaling in Crohn’s disease intestinal fibrosis. World J Gastroenterol 2018; 24(30): 3414-25.
[http://dx.doi.org/10.3748/wjg.v24.i30.3414] [PMID: 30122880]
[19]
Zhang D, Zhu P, Liu Y, et al. Total flavone of Abelmoschus manihot ameliorates Crohn’s disease by regulating the NF-κB and MAPK signaling pathways. Int J Mol Med 2019; 44(1): 324-34.
[http://dx.doi.org/10.3892/ijmm.2019.4180] [PMID: 31059072]
[20]
Hay ED. An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 1995; 154(1): 8-20.
[http://dx.doi.org/10.1159/000147748] [PMID: 8714286]
[21]
Savagner P. Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 2001; 23(10): 912-23.
[http://dx.doi.org/10.1002/bies.1132] [PMID: 11598958]
[22]
Kuang F, Luo D, Zhou M, Du J, Yang J. lncRNAs AC156455.1 and AC104532.2 as biomarkers for diagnosis and prognosis in colorectal cancer. Dis Markers 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/4872001] [PMID: 36277972]
[23]
Lai XY, Zhao YY, Liang H. Studies on chemical constituents in flower of Abelmoschus manihot. Zhongguo Zhongyao Zazhi 2006; 31(19): 1597-600.
[PMID: 17165583]
[24]
Tu Y, Sun W, Wan YG, et al. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, ameliorates adriamycin-induced renal inflammation and glomerular injury via inhibiting p38MAPK signaling pathway activity in rats. J Ethnopharmacol 2013; 147(2): 311-20.
[http://dx.doi.org/10.1016/j.jep.2013.03.006] [PMID: 23518420]
[25]
Ai G, Liu Q, Hua W, Huang Z, Wang D. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: In vitro and in vivo studies. J Ethnopharmacol 2013; 146(3): 794-802.
[http://dx.doi.org/10.1016/j.jep.2013.02.005] [PMID: 23422335]
[26]
Zhang L, Li P, Xing C, et al. Efficacy and safety of Abelmoschus manihot for primary glomerular disease: A prospective, multicenter randomized controlled clinical trial. Am J Kidney Dis 2014; 64(1): 57-65.
[http://dx.doi.org/10.1053/j.ajkd.2014.01.431] [PMID: 24631042]
[27]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[28]
Campanale JP, Sun TY, Montell DJ. Development and dynamics of cell polarity at a glance. J Cell Sci 2017; 130(7): 1201-7.
[http://dx.doi.org/10.1242/jcs.188599] [PMID: 28365593]
[29]
Sousa-Squiavinato ACM, Rocha MR, Barcellos-de-Souza P, de Souza WF, Morgado-Diaz JA. Cofilin-1 signaling mediates epithelial-mesenchymal transition by promoting actin cytoskeleton reorganization and cell-cell adhesion regulation in colorectal cancer cells. Biochim Biophys Acta Mol Cell Res 2019; 1866(3): 418-29.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.003] [PMID: 30296500]
[30]
Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med 2015; 4(1): e6.
[http://dx.doi.org/10.1186/s40169-015-0048-3] [PMID: 25852822]
[31]
Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 2018; 13(1): 395-412.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043854] [PMID: 29414248]
[32]
Hu X, Xing W, Zhao R, et al. HDAC2 inhibits EMT-mediated cancer metastasis by downregulating the long noncoding RNA H19 in colorectal cancer. J Exp Clin Cancer Res 2020; 39(1): 270.
[http://dx.doi.org/10.1186/s13046-020-01783-9] [PMID: 33267897]
[33]
Raveh E, Matouk IJ, Gilon M, Hochberg A. The H19 long non- coding RNA in cancer initiation, progression and metastasis – A proposed unifying theory. Mol Cancer 2015; 14(1): 184.
[http://dx.doi.org/10.1186/s12943-015-0458-2] [PMID: 26536864]
[34]
Li H, Wang M, Zhou H, Lu S, Zhang B. Long non-coding RNA EBLN3P promotes the progression of liver cancer via alteration of microRNA-144-3p/DOCK4 signal. Cancer Manag Res 2020; 12: 9339-49.
[http://dx.doi.org/10.2147/CMAR.S261976] [PMID: 33061623]
[35]
Zhang Y, Huang W, Yuan Y, et al. Long non-coding RNA H19 promotes colorectal cancer metastasis via binding to hnRNPA2B1. J Exp Clin Cancer Res 2020; 39(1): 141.
[http://dx.doi.org/10.1186/s13046-020-01619-6] [PMID: 32698890]
[36]
Chen Y, Yu X, Xu Y, Shen H. Identification of dysregulated lncRNAs profiling and metastasis-associated lncRNAs in colorectal cancer by genome-wide analysis. Cancer Med 2017; 6(10): 2321-30.
[http://dx.doi.org/10.1002/cam4.1168] [PMID: 28857495]
[37]
Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 2013; 333(2): 213-21.
[http://dx.doi.org/10.1016/j.canlet.2013.01.033] [PMID: 23354591]
[38]
Hao Y, Yang X, Zhang D, Luo J, Chen R. Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through epithelial-mesenchymal-transition in lung cancer. Gene 2017; 608: 1-12.
[http://dx.doi.org/10.1016/j.gene.2017.01.023] [PMID: 28119085]
[39]
López-Novoa JM, Nieto MA. Inflammation and EMT: An alliance towards organ fibrosis and cancer progression. EMBO Mol Med 2009; 1(6-7): 303-14.
[http://dx.doi.org/10.1002/emmm.200900043] [PMID: 20049734]
[40]
Perwez Hussain S, Harris CC. Inflammation and cancer: An ancient link with novel potentials. Int J Cancer 2007; 121(11): 2373-80.
[http://dx.doi.org/10.1002/ijc.23173] [PMID: 17893866]
[41]
Schwitalla S, Ziegler PK, Horst D, et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 2013; 23(1): 93-106.
[http://dx.doi.org/10.1016/j.ccr.2012.11.014] [PMID: 23273920]
[42]
Grivennikov SI, Wang K, Mucida D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 2012; 491(7423): 254-8.
[http://dx.doi.org/10.1038/nature11465] [PMID: 23034650]
[43]
Grivennikov SI, Karin M. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann Rheum Dis 2011; 70 (Suppl. 1): i104-8.
[http://dx.doi.org/10.1136/ard.2010.140145] [PMID: 21339211]
[44]
Rokavec M, Öner MG, Li H, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 2014; 124(4): 1853-67.
[http://dx.doi.org/10.1172/JCI73531] [PMID: 24642471]
[45]
Yadav A, Kumar B, Datta J, Teknos TN, Kumar P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol Cancer Res 2011; 9(12): 1658-67.
[http://dx.doi.org/10.1158/1541-7786.MCR-11-0271] [PMID: 21976712]
[46]
Li H, Bai R, Zhao Z, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 2018; 38(6): BSR20181170.
[http://dx.doi.org/10.1042/BSR20181170] [PMID: 30341241]