Current Pharmaceutical Design

Author(s): Sarvesh Bhargava, Rohitas Deshmukh* and Hitesh Kumar Dewangan

DOI: 10.2174/0113816128321468240828103439

DownloadDownload PDF Flyer Cite As
Recent Advancement in Drug Development for Treating Malaria using Herbal Medicine and Nanotechnological Approach

Page: [203 - 218] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

More than two hundred million people around the world are infected with malaria, a blood-borne disease that poses a significant risk to human life. Single medications, such as lumefantrine, primaquine, and chloroquine, as well as combinations of these medications with artemisinin or its derivatives, are currently being used as therapies. In addition, due to rising antimalarial drug resistance, other therapeutic options are needed immediately. Furthermore, due to anti-malarial medication failures, a new drug is required. Medication discovery and development are costly and time-consuming. Many malaria treatments have been developed however, most treatments have low water solubility and bioavailability. They may also cause drugresistant parasites, which would increase malaria cases and fatalities. Nanotechnology may offer a safer, more effective malaria therapy and control option. Nanoparticles' high loading capacity, concentrated drug delivery, biocompatibility, and low toxicity make them an attractive alternative to traditional therapy. Nanotechnologybased anti-malarial chemotherapeutic medications outperform conventional therapies in therapeutic benefits, safety, and cost. This improves patient treatment compliance. The limitations of malaria treatments and the importance of nanotechnological approaches to the treatment of malaria were also topics that were covered in this review. The most recent advancements in nanomaterials and the advantages they offer in terms of medication delivery are discussed in this article. The prospective therapy for malaria is also discussed. Additionally, the limitations of malaria therapies and the importance of nanotechnology-based approaches to the treatment of malaria were explored.

Keywords: Malaria, primaquine, herbal drugs, resistance, bioavailability, drug delivery.

[1]
Rahman K, Khan SU, Fahad S, et al. Nano-biotechnology: A new approach to treat and prevent malaria. Int J Nanomedicine 2019; 14: 1401-10.
[http://dx.doi.org/10.2147/IJN.S190692] [PMID: 30863068]
[2]
Al-Awadhi M, Ahmad S, Iqbal J. Current status and the epidemiology of malaria in the middle east region and beyond. Microorganisms 2021; 9(2): 338.
[http://dx.doi.org/10.3390/microorganisms9020338] [PMID: 33572053]
[3]
Akilimali A, Bisimwa C, Aborode AT, et al. Self-medication and anti-malarial Drug Resistance in the Democratic Republic of the Congo (DRC): A silent threat. Trop Med Health 2022; 50(1): 73.
[http://dx.doi.org/10.1186/s41182-022-00466-9] [PMID: 36195896]
[4]
Lakew YY, Fikrie A, Godana SB, Wariyo F, Seyoum W. Magnitude of malaria and associated factors among febrile adults in siraro district public health facilities, West Arsi Zone, Oromia, Ethiopia 2022: A facility-based cross-sectional study. Malar J 2023; 22(1): 259.
[http://dx.doi.org/10.1186/s12936-023-04697-x] [PMID: 37674201]
[5]
Liu Q, Yan W, Qin C, Du M, Liu M, Liu J. Millions of excess cases and thousands of excess deaths of malaria occurred globally in 2020 during the COVID-19 pandemic. J Glob Health 2022; 12: 05045.
[http://dx.doi.org/10.7189/jogh.12.05045] [PMID: 36527272]
[6]
Oladipo HJ, Tajudeen YA, Oladunjoye IO, et al. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Ann Med Surg 2022; 81: 104366.
[http://dx.doi.org/10.1016/j.amsu.2022.104366] [PMID: 36046715]
[7]
Gao L, Shi Q, Liu Z, Li Z, Dong X. Impact of the COVID-19 pandemic on malaria control in Africa: A preliminary analysis. Trop Med Infect Dis 2023; 8(1): 67.
[http://dx.doi.org/10.3390/tropicalmed8010067] [PMID: 36668974]
[8]
Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther 2022; 20(3): 353-72.
[http://dx.doi.org/10.1080/14787210.2021.1962291] [PMID: 34348573]
[9]
Gujjari L, Kalani H, Pindiprolu SK, Arakareddy BP, Yadagiri G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol Control 2022; 17: e00244.
[http://dx.doi.org/10.1016/j.parepi.2022.e00244] [PMID: 35243049]
[10]
Shabani L, Abbasi M, Azarnew Z, Amani AM, Vaez A. Neuro-nanotechnology: Diagnostic and therapeutic nano-based strategies in applied neuroscience. Biomed Eng Online 2023; 22(1): 1.
[http://dx.doi.org/10.1186/s12938-022-01062-y] [PMID: 36593487]
[11]
Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J Nanobiotechnology 2022; 20(1): 262.
[http://dx.doi.org/10.1186/s12951-022-01477-8] [PMID: 35672712]
[12]
Torkashvand H, Dehdast SA, Nateghpour M, et al. Antimalarial nano-drug delivery system based on graphene quantum dot on Plasmodium falciparum: Preparation, characterization, toxicological evaluation. Diamond Related Materials 2023; 132: 109670.
[http://dx.doi.org/10.1016/j.diamond.2022.109670]
[13]
[15]
Autino B, Corbett Y, Castelli F, Taramelli D. Pathogenesis of malaria in tissues and blood. Mediterr J Hematol Infect Dis 2012; 4(1): e2012061.
[http://dx.doi.org/10.4084/mjhid.2012.061] [PMID: 23170190]
[16]
Grobusch MP, Kremsner PG. Uncomplicated Malaria. Curr Top Microbiol Immunol 2005; 295: 81-104.
[http://dx.doi.org/10.1007/3-540-29088-5_4] [PMID: 16265888]
[17]
Garcia LS. Malaria. Clin Lab Med 2010; 30(1): 93-129.
[18]
Crutcher JM, Hoffman SL. Malaria. In: Baron S, Ed. Medical Microbiology. (4th ed.), Galveston, TX: University of Texas Medical Branch at Galveston 1996.
[19]
Trampuz A, Jereb M, Muzlovic I, Prabhu RM. Clinical review: Severe malaria. Crit Care 2003; 7(4): 315-23.
[http://dx.doi.org/10.1186/cc2183] [PMID: 12930555]
[20]
Okafor CN, Finnigan NA. Malaria (Plasmodium ovale). Treasure Island: StatPearls Publishing 2020.
[21]
Hill SR, Thakur RK, Sharma GK. Antimalarial medications. Treasure Island, FL: StatPearls Publishing 2022.
[22]
Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010-2019). Geneva, Switzerland: WHO 2020.
[23]
World malaria report 2020: 20 years of global progress and challenges. In: 2020. Available from: https://iris.who.int/handle/10665/337660
[24]
Fomba S, Koné D, Doumbia B, et al. Management of uncomplicated malaria among children under five years at public and private sector facilities in Mali. BMC Public Health 2020; 20(1): 1888.
[http://dx.doi.org/10.1186/s12889-020-09873-1] [PMID: 33298011]
[25]
Belete TM. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des Devel Ther 2020; 14: 3875-89.
[http://dx.doi.org/10.2147/DDDT.S265602]
[26]
Madhav H, Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur J Med Chem 2021; 210: 112955.
[http://dx.doi.org/10.1016/j.ejmech.2020.112955] [PMID: 33131885]
[27]
Thriemer K, Ley B, Bobogare A, et al. Challenges for achieving safe and effective radical cure of Plasmodium vivax: A round table discussion of the APMEN Vivax Working Group. Malar J 2017; 16(1): 141.
[http://dx.doi.org/10.1186/s12936-017-1784-1] [PMID: 28381261]
[28]
Commons RJ, Simpson JA, Thriemer K, et al. The efficacy of dihydroartemisinin-piperaquine and artemether-lumefantrine with and without primaquine on Plasmodium vivax recurrence: A systematic review and individual patient data meta-analysis. PLoS Med 2019; 16(10): e1002928.
[http://dx.doi.org/10.1371/journal.pmed.1002928] [PMID: 31584960]
[29]
Netam AK, Prasad J, Satapathy T, Jain P. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT - Advances in biomedical engineering and technology. In: Rizvanov AA, Singh BK, Ganasala P, Eds. Singapore: Springer Singapore 2021; pp. 207-20.
[30]
Okebe J, Bojang K, D’Alessandro U. Use of artemisinin and its derivatives for the treatment of malaria in children. Pediatr Infect Dis J 2014; 33(5): 522-4.
[http://dx.doi.org/10.1097/INF.0000000000000306]
[31]
Sudhir Dhote N, Dineshbhai Patel R, Kuwar U, Agrawal M, Alexander A, Jain P. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr Cancer Drug Targets 2024; 24: 1-22.
[32]
White NJ. 43-Malaria. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, Eds. Manson’s tropical infectious diseases. (23rd ed.). Philadelphia: W.B. Saunders 2014; pp. 532-600.e1.
[http://dx.doi.org/10.1016/B978-0-7020-5101-2.00044-3]
[33]
National Guidelines for the Treatment of Malaria 2019. Available from: https://knowledgehub.health.gov.za/elibrary/national-guidelines-treatment-malaria-2019
[34]
Baruah UK, Gowthamarajan K, Vanka R, Karri VVSR, Selvaraj K, Jojo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target 2017; 25(7): 567-81.
[http://dx.doi.org/10.1080/1061186X.2017.1291645] [PMID: 28166440]
[35]
Kremsner PG, Radloff P, Metzger W, et al. Quinine plus clindamycin improves chemotherapy of severe malaria in children. Antimicrob Agents Chemother 1995; 39(7): 1603-5.
[http://dx.doi.org/10.1128/AAC.39.7.1603] [PMID: 7492113]
[36]
Islahudin F, Tindall SM, Mellor IR, et al. The antimalarial drug quinine interferes with serotonin biosynthesis and action. Sci Rep 2014; 4(1): 3618.
[http://dx.doi.org/10.1038/srep03618] [PMID: 24402577]
[37]
Ursos LMB, Roepe PD. Chloroquine resistance in the malarial parasite, Plasmodium falciparum. Med Res Rev 2002; 22(5): 465-91.
[http://dx.doi.org/10.1002/med.10016] [PMID: 12210555]
[38]
Trape JF. The public health impact of chloroquine resistance in Africa. Am J Trop Med Hyg 2001; 64(1): 12.
[39]
Slater AFG. Chloroquine: Mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol Ther 1993; 57(2-3): 203-35.
[http://dx.doi.org/10.1016/0163-7258(93)90056-J] [PMID: 8361993]
[40]
Al-Bari MAA. Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother 2015; 70(6): 1608-21.
[http://dx.doi.org/10.1093/jac/dkv018] [PMID: 25693996]
[41]
Jain P, Satapathy T, Pandey RK. First report on ticks (Acari: Ixodidae) controlling activity of cottonseed oil (Gossypium Sp.). Int J Acarol 2020; 46(4): 263-7.
[http://dx.doi.org/10.1080/01647954.2020.1767203]
[42]
Chou AC, Fitch CD. Control of heme polymerase by chloroquine and other quinoline derivatives. Biochem Biophys Res Commun 1993; 195(1): 422-7.
[http://dx.doi.org/10.1006/bbrc.1993.2060] [PMID: 8363618]
[43]
Van Riemsdijk MM, Sturkenboom MCJM, Ditters JM, et al. Low body mass index is associated with an increased risk of neuropsychiatric adverse events and concentration impairment in women on mefloquine. Br J Clin Pharmacol 2004; 57(4): 506-12.
[http://dx.doi.org/10.1046/j.1365-2125.2003.02035.x] [PMID: 15025750]
[44]
Hiebsch RR, Raub TJ, Wattenberg BW. Primaquine blocks transport by inhibiting the formation of functional transport vesicles. Studies in a cell-free assay of protein transport through the Golgi apparatus. J Biol Chem 1991; 266(30): 20323-8.
[http://dx.doi.org/10.1016/S0021-9258(18)54926-7] [PMID: 1657920]
[45]
Recht J, Ashley E, White N. Malaria safety of 8-aminoquinoline antimalarial medicines. World Health Organization 2014; pp. 1-2.
[46]
White NJ, Qiao LG, Qi G, Luzzatto L. Rationale for recommending a lower dose of primaquine as a Plasmodium falciparum gametocytocide in populations where G6PD deficiency is common. Malar J 2012; 11(1): 418.
[http://dx.doi.org/10.1186/1475-2875-11-418] [PMID: 23237606]
[47]
Vaidya AB, Mather MW. Atovaquone resistance in malaria parasites. Drug Resist Updat 2000; 3(5): 283-7.
[http://dx.doi.org/10.1054/drup.2000.0157] [PMID: 11498396]
[48]
Fry M, Pudney M. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). Biochem Pharmacol 1992; 43(7): 1545-53.
[http://dx.doi.org/10.1016/0006-2952(92)90213-3] [PMID: 1314606]
[49]
Kremsner PG, Looareesuwan S, Chulay JD. Atovaquone and proguanil hydrochloride for treatment of malaria. J Travel Med 1999; 6(S1) (Suppl. 1): S18-20.
[http://dx.doi.org/10.1093/jtm/6.suppl.S18] [PMID: 23573548]
[50]
Baggish AL. Antiparasitic agent atovaquone. Antimicrob Agents Chemother 2002; 46: 1163-73.
[51]
Shakir L, Hussain M, Javeed A, Ashraf M, Riaz A. Artemisinins and immune system. Eur J Pharmacol 2011; 668: 6-14.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.044]
[52]
Nixon GL, Moss DM, Shone AE, et al. Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother 2013; 68(5): 977-85.
[http://dx.doi.org/10.1093/jac/dks504] [PMID: 23292347]
[53]
Meshnick SR. Artemisinin: Mechanisms of action, resistance and toxicity. Int J Parasitol 2002; 32(13): 1655-60.
[http://dx.doi.org/10.1016/S0020-7519(02)00194-7] [PMID: 12435450]
[54]
Sahu B. Comprehensive review on non-alcoholic fatty liver disease (NAFLD). Clin Adv Drug Treat Prob Sci 2024; 1(1): 1-7.
[55]
Woodrow CJ, Haynes RK, Krishna S. Artemisinins. Postgrad Med J 2005; 81(952): 71-8.
[http://dx.doi.org/10.1136/pgmj.2004.028399] [PMID: 15701735]
[56]
Ribeiro IR, Olliaro P. Safety of artemisinin and its derivatives. A review of published and unpublished clinical trials. Méd Trop 1998; 58(3) (Suppl.): 50-3.
[PMID: 10212898]
[57]
Brewer TG, Weina PJ, Heiffer MH, et al. Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg 1994; 51(3): 251-9.
[http://dx.doi.org/10.4269/ajtmh.1994.51.251] [PMID: 7943542]
[58]
Mace KE, Lucchi NW, Tan KR. Malaria surveillance — United States, 2018. MMWR Surveill Summ 2022; 71(8): 1-35.
[http://dx.doi.org/10.15585/mmwr.ss7108a1] [PMID: 36048717]
[59]
Wicht KJ, Mok S, Fidock DA. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annu Rev Microbiol 2020; 74(1): 431-54.
[http://dx.doi.org/10.1146/annurev-micro-020518-115546] [PMID: 32905757]
[60]
de Ridder S, van der Kooy F, Verpoorte R. Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 2008; 120(3): 302-14.
[http://dx.doi.org/10.1016/j.jep.2008.09.017] [PMID: 18977424]
[61]
John DT, Petri WA, Eds. Markell and Voge’s medical parasitology. (9th ed.), Philadelphia: WB Saunders 2006.
[62]
Kaboré JMT, Siribié M, Hien D, et al. Attitudes, practices, and determinants of community care-seeking behaviours for fever/malaria episodes in the context of the implementation of multiple first-line therapies for uncomplicated malaria in the health district of Kaya, Burkina Faso. Malar J 2022; 21(1): 155.
[http://dx.doi.org/10.1186/s12936-022-04180-z] [PMID: 35637506]
[63]
Makanga M, Krudsood S. The clinical efficacy of artemether/lumefantrine (Coartem S.S). Malar J 2009; 8(S1) (Suppl. 1): S5.
[http://dx.doi.org/10.1186/1475-2875-8-S1-S5] [PMID: 19818172]
[64]
Omari AA, Gamble C, Garner P. Artemether-lumefantrine (four-dose regimen) for treating uncomplicated P. falciparum malaria. Cochrane Database Syst Rev 2006; 2006(2): Cd005965.
[65]
de Vries PJ, Dien TK. Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria. Drugs 1996; 52(6): 818-36.
[http://dx.doi.org/10.2165/00003495-199652060-00004] [PMID: 8957153]
[66]
Looareesuwan S, Oosterhuis B, Schilizzi BM. Dose-finding and efficacy study for i.m. artemotil (beta-arteether) and comparison with i.m. artemether in acute uncomplicated P. falciparum malaria. Br J Clin Pharmacol 2002; 53(5): 492-500.
[67]
Jongdeepaisal M, Ean M, Heng C, et al. Acceptability and feasibility of malaria prophylaxis for forest goers: Findings from a qualitative study in Cambodia. Malar J 2021; 20(1): 446.
[http://dx.doi.org/10.1186/s12936-021-03983-w] [PMID: 34823527]
[68]
Jin Q, Liu T, Chen D, et al. Therapeutic potential of artemisinin and its derivatives in managing kidney diseases. Front Pharmacol 2023; 14: 1097206.
[http://dx.doi.org/10.3389/fphar.2023.1097206] [PMID: 36874000]
[69]
Tran T, Qiao Y, You H, Cheong DHJ. Chronic inflammation in asthma: Antimalarial drug artesunate as a therapeutic agent. In: Chatterjee S, Jungraithmayr W, Bagchi D, Eds. Immunity and inflammation in health and disease. Academic Press 2018; pp. 309-18.
[http://dx.doi.org/10.1016/B978-0-12-805417-8.00025-1]
[70]
Anvikar AR, Sharma B, Shahi BH, et al. Artesunate-amodiaquine fixed dose combination for the treatment of Plasmodium falciparum malaria in India. Malar J 2012; 11(1): 97.
[http://dx.doi.org/10.1186/1475-2875-11-97] [PMID: 22458860]
[71]
Raman J, Gast L, Balawanth R, et al. High levels of imported asymptomatic malaria but limited local transmission in KwaZulu-Natal, a South African malaria-endemic province nearing malaria elimination. Malar J 2020; 19(1): 152.
[http://dx.doi.org/10.1186/s12936-020-03227-3] [PMID: 32295590]
[72]
Orrell C, Little F, Smith P, et al. Pharmacokinetics and tolerability of artesunate and amodiaquine alone and in combination in healthy volunteers. Eur J Clin Pharmacol 2008; 64(7): 683-90.
[http://dx.doi.org/10.1007/s00228-007-0452-8] [PMID: 18415093]
[73]
Kigozi SP, Kigozi RN, Epstein A, et al. Rapid shifts in the age-specific burden of malaria following successful control interventions in four regions of Uganda. Malar J 2020; 19(1): 128.
[http://dx.doi.org/10.1186/s12936-020-03196-7] [PMID: 32228584]
[74]
Meshnick SR, Dobson MJ. The history of antimalarial drugs. In: Rosenthal PJ, Ed. Antimalarial chemotherapy: Mechanisms of action, resistance, and new directions in drug discovery. Humana Press 2001; pp. 15-25.
[http://dx.doi.org/10.1385/1-59259-111-6:15]
[75]
Achan J, Talisuna AO, Erhart A, et al. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar J 2011; 10(1): 144.
[http://dx.doi.org/10.1186/1475-2875-10-144] [PMID: 21609473]
[76]
Abumsimir B, Al-Qaisi TS. The next generation of malaria treatments: The great expectations. Future Sci OA 2023; 9(2): FSO834.
[http://dx.doi.org/10.2144/fsoa-2023-0018] [PMID: 37009056]
[77]
Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet 1996; 31(4): 257-74.
[http://dx.doi.org/10.2165/00003088-199631040-00003] [PMID: 8896943]
[78]
Toden S, Goel A. The holy grail of curcumin and its efficacy in various diseases: Is bioavailability truly a big concern? J Restor Med 2017; 6(1): 27-36.
[79]
Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: Inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 2007; 51(2): 488-94.
[http://dx.doi.org/10.1128/AAC.01238-06] [PMID: 17145789]
[80]
Padmanaban G, Nagaraj VA, Rangarajan PN. Artemisinin-based combination with curcumin adds a new dimension to malaria therapy. Curr Sci 2012; 102: 704-11.
[81]
Ullah Khan S, Saleh TA, Wahab A, et al. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine 2018; 13: 733-62.
[http://dx.doi.org/10.2147/IJN.S153167] [PMID: 29440898]
[82]
Gong P, Li H, He X, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 2007; 18(28): 285604.
[http://dx.doi.org/10.1088/0957-4484/18/28/285604]
[83]
Fortina P, Kricka LJ, Surrey S, Grodzinski P. Nanobiotechnology: the promise and reality of new approaches to molecular recognition. Trends Biotechnol 2005; 23(4): 168-73.
[http://dx.doi.org/10.1016/j.tibtech.2005.02.007] [PMID: 15780707]
[84]
Goodsell DS. Bionanotechnology: Lessons from Nature. John Wiley & Sons 2004.
[http://dx.doi.org/10.1002/0471469572]
[85]
Jia L, Zhang Q, Li Q, Song H. The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: Long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 2009; 20(38): 385601.
[http://dx.doi.org/10.1088/0957-4484/20/38/385601] [PMID: 19713585]
[86]
Song JY, Kwon EY, Kim BS. Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 2010; 33(1): 159-64.
[http://dx.doi.org/10.1007/s00449-009-0373-2] [PMID: 19701776]
[87]
Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malar J 2019; 18(1): 93.
[http://dx.doi.org/10.1186/s12936-019-2724-z] [PMID: 30902052]
[88]
Gelb MH. Drug discovery for malaria: A very challenging and timely endeavor. Curr Opin Chem Biol 2007; 11(4): 440-5.
[http://dx.doi.org/10.1016/j.cbpa.2007.05.038] [PMID: 17761335]
[89]
Nureye D, Assefa S. Old and recent advances in life cycle, pathogenesis, diagnosis, prevention, and treatment of malaria including perspectives in Ethiopia. ScientificWorldJournal 2020; 2020: 1-17.
[http://dx.doi.org/10.1155/2020/1295381]
[90]
Jain P, Pandey R, Shukla SS. Natural sources of anti-inflammation. In: Jain P, Pandey R, Shukla SS, Eds. Inflammation: Natural Resources and Its Applications. New Delhi, India: Springer 2015; pp. 25-133.
[http://dx.doi.org/10.1007/978-81-322-2163-0_4]
[91]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26: 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012]
[92]
Masri A, Anwar A, Khan NA, Siddiqui R. The use of nanomedicine for targeted therapy against bacterial infections. Antibiotics 2019; 8(4): 260.
[http://dx.doi.org/10.3390/antibiotics8040260] [PMID: 31835647]
[93]
Jain P, Satapathy T, Pandey RK. A mini review of methods to control ticks population infesting cattle in Chhattisgarh with special emphasis on herbal acaricides. Indian J Nat Prod Resour 2020; 11(12): 217-23.
[94]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[95]
Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv Pharm Bull 2015; 5(3): 305-13.
[http://dx.doi.org/10.15171/apb.2015.043] [PMID: 26504751]
[96]
Rathore P, Rao SP, Roy A, Satapathy T, Singh V, Jain P. Hepatoprotective activity of isolated herbal compounds. Res J Pharm Technol 2014; 7(2): 229-34.
[97]
Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee C. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett 2017; 7(2): 91-122.
[http://dx.doi.org/10.1007/s40089-017-0208-0]
[98]
Singh A, Sharma S, Yadagiri G, et al. Sensible graphene oxide differentiates macrophages and Leishmania: A bio-nano interplay in attenuating intracellular parasite. RSC Advances 2020; 10(46): 27502-11.
[http://dx.doi.org/10.1039/D0RA04266H] [PMID: 35516949]
[99]
Anselmo S, Lantero E, Lancelot A, Serrano L, Ferna X, Sierra T. Promising nanomaterials in the fight against malaria. J Mater Chem B 2020; 8: 9428-48.
[100]
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol 2015; 6: 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[101]
Momeni A, Rasoolian M, Momeni A, et al. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis. J Liposome Res 2013; 23(2): 134-44.
[http://dx.doi.org/10.3109/08982104.2012.762519] [PMID: 23350940]
[102]
Lasic D. Novel applications of liposomes. Trends Biotechnol 1998; 16(7): 307-21.
[http://dx.doi.org/10.1016/S0167-7799(98)01220-7] [PMID: 9675915]
[103]
Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13(1): 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[104]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282]
[105]
Jain A, Jain P, Soni P, Tiwari A, Tiwari SP. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J Gastrointest Cancer 2023; 54(1): 90-5.
[http://dx.doi.org/10.1007/s12029-021-00788-7] [PMID: 35043370]
[106]
Khiev D, Mohamed ZA, Vichare R, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021; 11(1): 173.
[http://dx.doi.org/10.3390/nano11010173] [PMID: 33445545]
[107]
Afolabi BB, Okoromah CAN. Intramuscular arteether for treating severe malaria. Cochrane Libr 2004; 2004(4): CD004391.
[http://dx.doi.org/10.1002/14651858.CD004391.pub2] [PMID: 15495107]
[108]
Singh R, Prasad J, Satapathy T, Jain P, Singh S. Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J Biochem Biophys 2021; 58(2): 156-61.
[109]
Dwivedi P, Khatik R, Khandelwal K, et al. Preparation and characterization of solid lipid nanoparticles of antimalarial drug arteether for oral administration. J Biomater Tissue Eng 2014; 4(2): 133-7.
[http://dx.doi.org/10.1166/jbt.2014.1148]
[110]
Attama AA, Kenechukwu FC, Onuigbo EB, et al. Solid lipid nanoparticles encapsulating a fluorescent marker (coumarin 6) and antimalarials - Artemether and lumefantrine: Evaluation of cellular uptake and antimalarial activity. Eur J Nanomed 2016; 8(3): 129-38.
[http://dx.doi.org/10.1515/ejnm-2016-0009]
[111]
Garg A, Tomar DS, Bhalala K, Wahajuddin M. Development and investigation of Artemether loaded binary solid lipid nanoparticles: Physicochemical characterization and in-situ single-pass intestinal permeability. J Drug Deliv Sci Technol 2020; 60: 102072.
[http://dx.doi.org/10.1016/j.jddst.2020.102072]
[112]
Mishra A. Impact of sewage water on behavioral response and oxygen consumption of fish Clarius batrachus. Prob Sci 2024; 1(1): 8-14.
[113]
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol 2019; 51: 255-67.
[http://dx.doi.org/10.1016/j.jddst.2019.02.017]
[114]
Fang C-L, Al-Suwayeh SA, Fang J-Y. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Pat Nanotechnol 2013; 7(1): 41-55.
[http://dx.doi.org/10.2174/187221013804484827] [PMID: 22946628]
[115]
Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013; 19: 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[116]
Ali H, Singh SK. Biological voyage of solid lipid nanoparticles: A proficient carrier in nanomedicine. Ther Deliv 2016; 7(10): 691-709.
[http://dx.doi.org/10.4155/tde-2016-0038] [PMID: 27790956]
[117]
Vanka R, Kuppusamy G, Praveen Kumar S, et al. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers. J Microencapsul 2018; 35(2): 121-36.
[http://dx.doi.org/10.1080/02652048.2018.1441915] [PMID: 29448884]
[118]
Prabhu P, Suryavanshi S, Pathak S, Sharma S, Patravale V. Artemether-lumefantrine nanostructured lipid carriers for oral malaria therapy: Enhanced efficacy at reduced dose and dosing frequency. Int J Pharm 2016; 511(1): 473-87.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.021] [PMID: 27421912]
[119]
Busari ZA, Dauda KA, Morenikeji OA, et al. Antiplasmodial activity and toxicological assessment of curcumin PLGA-encapsulated nanoparticles. Front Pharmacol 2017; 8: 622.
[http://dx.doi.org/10.3389/fphar.2017.00622] [PMID: 28932197]
[120]
Deshmukh R. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach. J Mol Graph Model 2023; 122: 108497.
[http://dx.doi.org/10.1016/j.jmgm.2023.108497] [PMID: 37149980]
[121]
Islam M, Huang Y, Jain P, Fan B, Tong L, Wang F. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property. Biocatal Agric Biotechnol 2023; 50: 102700.
[http://dx.doi.org/10.1016/j.bcab.2023.102700]
[122]
Maniyar MM, Deshmukh AS, Shelke SJ. Ethosomes: A carrier for transdermal drug delivery system. Asian J Pharm Res 2022; 12(3): 225-8.
[http://dx.doi.org/10.52711/2231-5691.2022.00037]
[123]
Jain P, Satapathy T, Pandey RK. Acaricidal activity and biochemical analysis of Citrus limetta seed oil for controlling Ixodid Tick Rhipicephalus microplus infesting cattle. Syst Appl Acarol 2021; 26(7): 1350-60.
[http://dx.doi.org/10.11158/saa.26.7.13]
[124]
Chauhan N, Vasava P, Khan SL, et al. Ethosomes: A novel drug carrier. Ann Med Surg (Lond) 2022; 82: 104595.
[http://dx.doi.org/10.1016/j.amsu.2022.104595] [PMID: 36124209]
[125]
Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J Adv Pharm Technol Res 2010; 1(3): 274-82.
[126]
Aly NSM, Matsumori H, Dinh TQ, et al. Pioneer use of antimalarial transdermal combination therapy in rodent malaria model. Pathogens 2023; 12(3): 398.
[http://dx.doi.org/10.3390/pathogens12030398] [PMID: 36986320]
[127]
Shen S, Liu SZ, Zhang YS, et al. Compound antimalarial ethosomal cataplasm: Preparation, evaluation, and mechanism of penetration enhancement. Int J Nanomedicine 2015; 10: 4239-53.
[http://dx.doi.org/10.2147/IJN.S83402] [PMID: 26170661]
[128]
Obisesan OR, Adekunle AS, Oyekunle JAO, et al. Catalytic degradation of β-hematin (malaria biomaker) using some selected metal oxide nanoparticles. Mater Res Express 2020; 7(1): 015044.
[http://dx.doi.org/10.1088/2053-1591/ab6645]
[129]
Rai M, Ingle AP, Paralikar P, Gupta I, Medici S, Santos CA. Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 2017; 526(1-2): 254-70.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.042] [PMID: 28450172]
[130]
Rajiv Gandhi P, Jayaseelan C, Kamaraj C, Radhika Rajasree SR, Mary RR. In vitro antimalarial activity of synthesized TiO2 nanoparticles using Momordica charantia leaf extract against Plasmodium falciparum. J Appl Biomed 2018; 16(4): 378-86.
[http://dx.doi.org/10.1016/j.jab.2018.04.001]
[131]
Kannan D, Yadav N, Ahmad S, et al. Pre-clinical study of iron oxide nanoparticles fortified artesunate for efficient targeting of malarial parasite. EBioMedicine 2019; 45: 261-77.
[http://dx.doi.org/10.1016/j.ebiom.2019.06.026] [PMID: 31255656]
[132]
Hennrich F, Chan C, Moore V, Rolandi M, O’Connell M. Carbon Nanotubes Properties and Applications. Taylor & Francis Group 2006.
[133]
O’conpell MJ. Carbon nanotubes: Properties and applications. CRC press 2018.
[http://dx.doi.org/10.1201/9781315222127]
[134]
Fan W, Zhang L, Liu T. Graphene-carbon nanotube hybrids for energy and environmental applications. Springer Singapore 2017.
[http://dx.doi.org/10.1007/978-981-10-2803-8]
[135]
Fatouros DG, Marta R, Van der Merwe M. Stabilisation of carbon nanotube suspensions. In: Carbon Nanotubes. Jenny Stanford Publishing 2019; pp. 1-22.
[http://dx.doi.org/10.1201/9780429066337-1]
[136]
Anamika J, Nikhar V, Laxmikant G, Priya S, Sonal V, Vyas SP. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: Options and opportunity. Drug Deliv Transl Res 2020; 10(4): 1095-110.
[http://dx.doi.org/10.1007/s13346-020-00770-z] [PMID: 32378173]
[137]
Lima TLC, Feitosa RC, Dos Santos-Silva E, et al. Improving encapsulation of hydrophilic chloroquine diphosphate into biodegradable nanoparticles: A promising approach against herpes virus simplex-1 infection. Pharmaceutics 2018; 10(4): 255.
[http://dx.doi.org/10.3390/pharmaceutics10040255] [PMID: 30513856]
[138]
Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted drug delivery-from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J Multidiscip Healthc 2021; 14: 1711-24.
[http://dx.doi.org/10.2147/JMDH.S313968] [PMID: 34267523]
[139]
Patel R, Kuwar U, Dhote N, et al. Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr Drug Deliv 2024; 21(2): 193-210.
[http://dx.doi.org/10.2174/1567201820666230112170035] [PMID: 36644864]
[140]
Onzi G, Guterres SS, Pohlmann AR, Frank LA. Active targeting of nanocarriers. In: The ADME Encyclopedia: A Comprehensive Guide on Biopharmacy and Pharmacokinetics. Cham: Springer International Publishing 2021; pp. 1-13.
[141]
Jain P, Satapathy T, Pandey RK. Acaricidal activity and clinical safety of arecoline hydrobromide on calves infested with cattle tick Rhipicephalus microplus (Acari: Ixodidae). Vet Parasitol 2021; 298(May): 109490.
[http://dx.doi.org/10.1016/j.vetpar.2021.109490] [PMID: 34271319]
[142]
Martí Coma-Cros E. Investigation of branched and linear polymers as oral delivery systems of antimalarial drugs. University of Barcelona 2019.
[143]
Singh S, Chitnis CE. Molecular signaling involved in entry and exit of malaria parasites from host erythrocytes. Cold Spring Harb Perspect Med 2017; 7(10): a026815.
[http://dx.doi.org/10.1101/cshperspect.a026815] [PMID: 28507195]
[144]
Kekani LN, Witika BA. Current advances in nanodrug delivery systems for malaria prevention and treatment. Discov Nano 2023; 18(1): 66.
[http://dx.doi.org/10.1186/s11671-023-03849-x] [PMID: 37382765]
[145]
Cieślak M, Ryszawy D, Pudełek M, et al. Bioinspired bola-type peptide dendrimers inhibit proliferation and invasiveness of glioblastoma cells in a manner dependent on their structure and amphipathic properties. Pharmaceutics 2020; 12(11): 1106.
[http://dx.doi.org/10.3390/pharmaceutics12111106] [PMID: 33217976]
[146]
Hu Q, Wang Y, Xu L, Chen D, Cheng L. Transferrin conjugated ph-and redox-responsive poly(Amidoamine) dendrimer conjugate as an efficient drug delivery carrier for cancer therapy. Int J Nanomedicine 2020; 15: 2751-64.
[http://dx.doi.org/10.2147/IJN.S238536] [PMID: 32368053]
[147]
Sahoo RK, Gothwal A, Rani S, Nakhate KT. Ajazuddin, Gupta U. PEGylated dendrimer mediated delivery of bortezomib: Drug conjugation versus encapsulation. Int J Pharm 2020; 584: 119389.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119389] [PMID: 32380027]
[148]
Srinageshwar B, Florendo M, Clark B, et al. A mixed-surface polyamidoamine dendrimer for in vitro and in vivo delivery of large plasmids. Pharmaceutics 2020; 12(7): 619.
[http://dx.doi.org/10.3390/pharmaceutics12070619] [PMID: 32635142]
[149]
Chu CS, White NJ. Management of relapsing Plasmodium vivax malaria. Expert Rev Anti Infect Ther 2016; 14(10): 885-900.
[http://dx.doi.org/10.1080/14787210.2016.1220304] [PMID: 27530139]
[150]
Dawre S, Pathak S, Sharma S, Devarajan PV. Enhanced antimalalarial activity of a prolonged release in situ gel of arteether–lumefantrine in a murine model. Eur J Pharm Biopharm 2018; 123: 95-107.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.002] [PMID: 29122736]
[151]
Owonubi SJ, Aderibigbe BA, Mukwevho E, Sadiku ER, Ray SS. Characterization and in vitro release kinetics of antimalarials from whey protein-based hydrogel biocomposites. Int J Ind Chem 2018; 9(1): 39-52.
[http://dx.doi.org/10.1007/s40090-018-0139-2]
[152]
Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010; 62(4-5): 560-75.
[http://dx.doi.org/10.1016/j.addr.2009.11.024] [PMID: 19914313]
[153]
Ramazani A, Keramati M, Malvandi H, Danafar H, Kheiri Manjili H. Preparation and in vivo evaluation of anti-plasmodial properties of artemisinin-loaded PCL-PEG-PCL nanoparticles. Pharm Dev Technol 2018; 23(9): 911-20.
[http://dx.doi.org/10.1080/10837450.2017.1372781] [PMID: 28851256]
[154]
Ruwizhi N, Maseko RB, Aderibigbe BA. Recent advances in the therapeutic efficacy of artesunate. Pharmaceutics 2022; 14(3): 504.
[http://dx.doi.org/10.3390/pharmaceutics14030504] [PMID: 35335880]
[155]
Thakkar M SB. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res 2016; 6(4): 414-25.
[http://dx.doi.org/10.1007/s13346-016-0290-2] [PMID: 27067712]
[156]
Nosrati H, Salehiabar M, Bagheri Z, Rashidzadeh H, Davaran S, Danafar H. Preparation, characterization, and evaluation of amino acid modified magnetic nanoparticles: Drug delivery and MRI contrast agent applications. Pharm Dev Technol 2018; 23: 1156-67.
[157]
Guasch-Girbau A, Fernàndez-Busquets X. Review of the current landscape of the potential of nanotechnology for future malaria diagnosis, treatment, and vaccination strategies. Pharmaceutics 2021; 13(12): 2189.
[http://dx.doi.org/10.3390/pharmaceutics13122189] [PMID: 34959470]
[158]
Fotoran WL, Müntefering T, Kleiber N, Miranda BNM, Liebau E, Irvine DJ. A multilamellar nanoliposome stabilized by interlayer hydrogen bonds increases antimalarial drug efficacy. Nanomedicine 2019; 22: 102099.
[http://dx.doi.org/10.1016/j.nano.2019.102099]
[159]
Apolinário AC, Salata GC, Bianco AFR, Fukumori C, Lopes LB. Opening the pandora’s box of nanomedicine: There is needed plenty of room at the bottom. Quim Nova 2020; 43: 212-25.
[http://dx.doi.org/10.21577/0100-4042.20170481]
[160]
Rashidzadeh H, Tabatabaei Rezaei SJ, Adyani SM, et al. Recent advances in targeting malaria with nanotechnology-based drug carriers. Pharm Dev Technol 2021; 26(8): 807-23.
[http://dx.doi.org/10.1080/10837450.2021.1948568] [PMID: 34190000]
[161]
Kayentao K, Florey LS, Mihigo J, et al. Impact evaluation of malaria control interventions on morbidity and all-cause child mortality in Mali, 2000–2012. Malar J 2018; 17(1): 424.
[http://dx.doi.org/10.1186/s12936-018-2573-1] [PMID: 30428880]
[162]
Hamelmann NM, Paats JWD, Avalos-Padilla Y, et al. Single-chain polymer nanoparticles targeting the ookinete stage of malaria parasites. ACS Infect Dis 2023; 9(1): 56-64.
[http://dx.doi.org/10.1021/acsinfecdis.2c00336] [PMID: 36516858]
[163]
Panzarini E, Mariano S, Carata E, Mura F, Rossi M, Dini L. Intracellular transport of silver and gold nanoparticles and biological responses: An update. Int J Mol Sci 2018; 19(5): 1305.
[http://dx.doi.org/10.3390/ijms19051305] [PMID: 29702561]
[164]
Pestehchian N, Vafaei MR, Nematolahy P, Varshosaz J, Yousefi HA, Bide VZ. A new effective antiplasmodial compound: Nanoformulated pyrimethamine. J Glob Antimicrob Resist 2020; 20: 309-15.
[165]
Wang X, Xie Y, Jiang N, et al. Enhanced antimalarial efficacy obtained by targeted delivery of artemisinin in heparin-coated magnetic hollow mesoporous nanoparticles. ACS Appl Mater Interfaces 2021; 13(1): 287-97.
[http://dx.doi.org/10.1021/acsami.0c20070] [PMID: 33356111]
[166]
a) Gandrala D, Gupta N, Lavu A, Nallapati VT, Guddattu V, Saravu K. Recurrence in Plasmodium vivax malaria: A prospective cohort study with long follow-up from a coastal region in South-West India. F1000 Res 2022; 11: 279.;
b) Wilson KL. A synthetic nanoparticle based vaccine approach targeting MSP4/5 is immunogenic and induces moderate protection against murine blood-stage malaria. Front Immunol 2019; 10: 331.
[167]
Kumar R, Ray PC, Datta D, Bansal GP, Angov E, Kumar N. Nanovaccines for malaria using Plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine 2015; 33: 5064-71.
[http://dx.doi.org/10.1016/j.vaccine.2015.08.025]
[168]
Al-Deen F, Xiang S, Ma C, et al. Magnetic nanovectors for the development of DNA blood-stage malaria vaccines. Nanomaterials 2017; 7(2): 30.
[http://dx.doi.org/10.3390/nano7020030] [PMID: 28336871]
[169]
Powles L, Wilson KL, Xiang SD, et al. Pullulan-coated iron oxide nanoparticles for blood-stage malaria vaccine delivery. Vaccines 2020; 8(4): 651.
[http://dx.doi.org/10.3390/vaccines8040651] [PMID: 33153189]
[170]
Araújo RV, Santos SS, Igne Ferreira E, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules 2018; 23(11): 2849.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[171]
Dias AP, da Silva Santos S, da Silva JV, et al. Dendrimers in the context of nanomedicine. Int J Pharm 2020; 573: 118814.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118814] [PMID: 31759101]
[172]
Chauhan AS. Dendrimers for drug delivery. Molecules 2018; 23(4): 938.
[http://dx.doi.org/10.3390/molecules23040938] [PMID: 29670005]
[173]
Bhairam M, Prasad J, Verma K, Jain P, Gidwani B. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes. Mater Today Proc 2023; 83: 59-68.
[http://dx.doi.org/10.1016/j.matpr.2023.01.147]
[174]
Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine. Molecules 2020; 25(17): 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[175]
Russier J, Grillaud M, Bianco A. Elucidation of the cellular uptake mechanisms of polycationic HYDRAmers. Bioconjug Chem 2015; 26(8): 1484-93.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00270] [PMID: 26046960]
[176]
Jain P, Satapathy T, Pandey RK. First report on efficacy of Citrus limetta seed oil in controlling cattle tick Rhipicephalus microplus in red Sahiwal calves. Vet Parasitol 2021; 296(June): 109508.
[http://dx.doi.org/10.1016/j.vetpar.2021.109508] [PMID: 34218174]
[177]
Akbarzadeh A, Khalilov R, Mostafavi E, Annabi N, Abasi E, Kafshdooz T. Role of dendrimers in advanced drug delivery and biomedical applications: A review. Exp Oncol 2018; 40: 178-83.
[http://dx.doi.org/10.31768/2312-8852.2018.40(3):178-183]
[178]
Varela-Aramburu S, Ghosh C, Goerdeler F, Priegue P, Moscovitz O, Seeberger PH. Targeting and inhibiting plasmodium falciparum using ultra-small gold nanoparticles. ACS Appl Mater Interfaces 2020; 12(39): 43380-7.
[http://dx.doi.org/10.1021/acsami.0c09075] [PMID: 32875786]
[179]
Avitabile E, Senes N, D’Avino C, et al. The potential antimalarial efficacy of hemocompatible silver nanoparticles from Artemisia species against P. falciparum parasite. PLoS One 2020; 15(9): e0238532.
[http://dx.doi.org/10.1371/journal.pone.0238532] [PMID: 32870934]
[180]
Metwally DM, Alajmi RA, El-Khadragy MF, Al-Quraishy S. Silver nanoparticles biosynthesized with Salvia officinalis leaf exert protective effect on hepatic tissue injury induced by plasmodium chabaudi. Front Vet Sci 2021; 7: 620665.
[http://dx.doi.org/10.3389/fvets.2020.620665] [PMID: 33614756]
[181]
Dkhil MA, Al-Shaebi EM, Al-Quraishy S. Effect of indigofera oblongifolia on the hepatic oxidative status and expression of inflammatory and apoptotic genes during blood-stage murine malaria. Oxid Med Cell Longev 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/8264861] [PMID: 30838089]
[182]
Pradhan S, Mishra A, Sahoo S, Pradhan S, Babu PJ, Singh YD. Artemisinin based nanomedicine for therapeutic applications: Recent advances and challenges. Pharmacol Res Mod Chin Med 2022; 2: 100064.
[183]
Gérard Yaméogo JB, Mazet R, Wouessidjewe D, Choisnard L. Pharmacokinetic study of intravenously administered artemisinin-loaded surface-decorated amphiphilic γ-cyclodextrin nanoparticles. Mater Sci Eng C Mater Biol Appl 2020; 106: 110281.
[184]
He W, Du Y, Li C, et al. Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate. Int J Pharm 2021; 609: 121138.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121138] [PMID: 34592395]
[185]
da Silva de Barros AO, Portilho FL, dos Santos Matos AP, et al. Preliminary studies on drug delivery of polymeric primaquine microparticles using the liver high uptake effect based on size of particles to improve malaria treatment. Mater Sci Eng C 2021; 128: 112275.
[http://dx.doi.org/10.1016/j.msec.2021.112275] [PMID: 34474834]
[186]
Wu KW, Sweeney C, Dudhipala N, et al. Primaquine loaded solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and nanoemulsion (NE): Effect of lipid Matrix and surfactant on drug entrapment, in vitro release, and ex vivo hemolysis. AAPS PharmSciTech 2021; 22(7): 240.
[http://dx.doi.org/10.1208/s12249-021-02108-5] [PMID: 34590195]
[187]
Gomes F, Ribeiro AC, Sanches GS, et al. A nanochitosan-D-galactose formulation increases the accumulation of primaquine in the liver. Antimicrob Agents Chemother 2024; 68(5): e00915-23.
[http://dx.doi.org/10.1128/aac.00915-23] [PMID: 38517190]
[188]
Miatmoko A, Nurjannah I, Nehru NF, et al. Interactions of primaquine and chloroquine with PEGylated phosphatidylcholine liposomes. Sci Rep 2021; 11(1): 12420.
[http://dx.doi.org/10.1038/s41598-021-91866-0] [PMID: 34127730]
[189]
Marwah M, Narain Srivastava P, Mishra S, Nagarsenker M. Functionally engineered ‘hepato-liposomes’: Combating liver-stage malaria in a single prophylactic dose. Int J Pharm 2020; 587: 119710.
[190]
Pillay E, Khodaiji S, Bezuidenhout BC, Litshie M, Coetzer TL. Evaluation of automated malaria diagnosis using the Sysmex XN-30 analyser in a clinical setting. Malar J 2019; 18(1): 15.
[http://dx.doi.org/10.1186/s12936-019-2655-8] [PMID: 30670023]
[191]
Odera PA, Otieno G, Onyango JO, et al. NANOPARTICLE-BASED formulation of dihydroartemisinin-lumefantrine duo-drugs: Preclinical evaluation and enhanced antimalarial efficacy in a mouse model. Heliyon 2024; 10(6): e26868.
[http://dx.doi.org/10.1016/j.heliyon.2024.e26868] [PMID: 38501019]
[192]
Silva MGD, Cardoso JF, Perasoli FB, et al. Nanoemulsion composed of 10-(4,5-dihydrothiazol-2-yl)thio)decan-1-ol), a synthetic analog of 3-alkylpiridine marine alkaloid: Development, characterization, and antimalarial activity. Eur J Pharm Sci 2020; 151: 105382.
[http://dx.doi.org/10.1016/j.ejps.2020.105382] [PMID: 32470575]
[193]
Jaromin A, Parapini S, Basilico N, et al. Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum. Bioact Mater 2021; 6(4): 1163-74.
[http://dx.doi.org/10.1016/j.bioactmat.2020.10.004] [PMID: 33134609]
[194]
Kigozi RN, Bwanika J, Goodwin E, et al. Determinants of malaria testing at health facilities: The case of Uganda. Malar J 2021; 20(1): 456.
[http://dx.doi.org/10.1186/s12936-021-03992-9] [PMID: 34863172]
[195]
Salim M, Khan J, Ramirez G, et al. Impact of ferroquine on the solubilization of artefenomel (OZ439) during in vitro lipolysis in milk and implications for oral combination therapy for malaria. Mol Pharm 2019; 16(4): 1658-68.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01333] [PMID: 30830789]
[196]
Umeyor CE, Obachie O, Chukwuka R, Attama A. Development insights of surface modified lipid nanoemulsions of dihydroartemisinin for malaria chemotherapy: Characterization, and in vivo antimalarial evaluation. Recent Pat Biotechnol 2019; 13(2): 149-65.
[http://dx.doi.org/10.2174/1872208313666181204095314] [PMID: 30514197]
[197]
Ghosh A, Banerjee T. Nanotized curcumin-benzothiophene conjugate: A potential combination for treatment of cerebral malaria. IUBMB Life 2020; 72(12): 2637-50.
[http://dx.doi.org/10.1002/iub.2394] [PMID: 33037778]
[198]
Agbo CP, Ugwuanyi TC, Ugwuoke WI, McConville C, Attama AA, Ofokansi KC. Intranasal artesunate-loaded nanostructured lipid carriers: A convenient alternative to parenteral formulations for the treatment of severe and cerebral malaria. J Control Release 2021; 334: 224-36.
[http://dx.doi.org/10.1016/j.jconrel.2021.04.020] [PMID: 33894303]
[199]
Guo W, Li N, Ren G, et al. Murine pharmacokinetics and antimalarial pharmacodynamics of dihydroartemisinin trimer self-assembled nanoparticles. Parasitol Res 2021; 120(8): 2827-37.
[http://dx.doi.org/10.1007/s00436-021-07208-6] [PMID: 34272998]
[200]
Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery. Gels 2023; 9(9): 753.
[http://dx.doi.org/10.3390/gels9090753] [PMID: 37754434]
[201]
Dini S, Douglas NM, Poespoprodjo JR, et al. The risk of morbidity and mortality following recurrent malaria in Papua, Indonesia: A retrospective cohort study. BMC Med 2020; 18(1): 28.
[http://dx.doi.org/10.1186/s12916-020-1497-0] [PMID: 32075649]
[202]
Louisa M, Hawa P, Purwantyastuti P, Mardliyati E, Freisleben H-J. Primaquine-chitosan nanoparticle improves drug delivery to liver tissue in rats. Open Access Maced J Med Sci 2022; 10(A): 1278-84.
[http://dx.doi.org/10.3889/oamjms.2022.10005]
[203]
Duan S, Wang R, Wang R, et al. In vivo antimalarial activity and pharmacokinetics of artelinic acid-choline derivative liposomes in rodents. Parasitology 2020; 147(1): 58-64.
[http://dx.doi.org/10.1017/S0031182019001306] [PMID: 31556865]
[204]
Anjani QK, Volpe-Zanutto F, Hamid KA, et al. Primaquine and chloroquine nano-sized solid dispersion-loaded dissolving microarray patches for the improved treatment of malaria caused by Plasmodium vivax. J Control Release 2023; 361: 385-401.
[http://dx.doi.org/10.1016/j.jconrel.2023.08.009] [PMID: 37562555]
[205]
Elmi T, Ardestani MS, Motevalian M, et al. Antiplasmodial effect of nano dendrimer G2 loaded with chloroquine in mice infected with plasmodium berghei. Acta Parasitol 2022; 67(1): 298-308.
[http://dx.doi.org/10.1007/s11686-021-00459-4] [PMID: 34398379]
[206]
Kashyap A, Kaur R, Baldi A, Jain UK, Chandra R, Madan J. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites. Int J Biol Macromol 2018; 114: 161-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.102] [PMID: 29572147]
[207]
Kojom Foko LP, Singh V. Malaria in pregnancy in India: A 50-year bird’s eye. Front Public Health 2023; 11: 1150466.
[http://dx.doi.org/10.3389/fpubh.2023.1150466] [PMID: 37927870]
[208]
Li S, Tan HY, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci 2015; 16(11): 26087-124.
[http://dx.doi.org/10.3390/ijms161125942] [PMID: 26540040]
[209]
Rios-Zertuche D, Carter KH, Harris KP, et al. Performance of passive case detection for malaria surveillance: Results from nine countries in Mesoamerica and the Dominican Republic. Malar J 2021; 20(1): 208.
[http://dx.doi.org/10.1186/s12936-021-03645-x] [PMID: 33931091]
[210]
Thawer SG, Chacky F, Runge M, et al. Sub-national stratification of malaria risk in Mainland Tanzania: A simplified assembly of survey and routine data. Malar J 2020; 19(1): 177.
[http://dx.doi.org/10.1186/s12936-020-03250-4] [PMID: 32384923]
[211]
Zhang Q, Ao Z, Hu N, Zhu Y, Liao F, Han D. Neglected interstitial space in malaria recurrence and treatment. Nano Res 2020; 13(10): 2869-78.
[http://dx.doi.org/10.1007/s12274-020-2946-y] [PMID: 32837694]
[212]
Chacky F, Runge M, Rumisha SF, et al. Nationwide school malaria parasitaemia survey in public primary schools, the United Republic of Tanzania. Malar J 2018; 17(1): 452.
[http://dx.doi.org/10.1186/s12936-018-2601-1] [PMID: 30518365]
[213]
Zoller T, Junghanss T, Kapaun A, et al. Intravenous artesunate for severe malaria in travelers, Europe. Emerg Infect Dis 2011; 17(5): 771-7.
[http://dx.doi.org/10.3201/eid1705.101229] [PMID: 21529383]
[214]
Chaves JB, Portugal Tavares de Moraes B, Regina Ferrarini S, Noé da Fonseca F, Silva AR, Gonçalves-de-Albuquerque CF. Potential of nanoformulations in malaria treatment. Front Pharmacol 2022; 13: 999300.
[http://dx.doi.org/10.3389/fphar.2022.999300] [PMID: 36386185]
[215]
Martí Coma-Cros E, Biosca A, Lantero E, et al. Antimalarial activity of orally administered curcumin incorporated in Eudragit®-containing liposomes. Int J Mol Sci 2018; 19(5): 1361.
[http://dx.doi.org/10.3390/ijms19051361] [PMID: 29734652]
[216]
Martí Coma-Cros E, Lancelot A, San Anselmo M, et al. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery. Biomater Sci 2019; 7(4): 1661-74.
[http://dx.doi.org/10.1039/C8BM01600C] [PMID: 30741274]
[217]
Ismail M, Du Y, Ling L, Li X. Artesunate-heparin conjugate based nanocapsules with improved pharmacokinetics to combat malaria. Int J Pharm 2019; 562: 162-71.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.031] [PMID: 30902709]
[218]
Michels LR, Maciel TR, Nakama KA, et al. Effects of surface characteristics of polymeric nanocapsules on the pharmacokinetics and efficacy of antimalarial quinine. Int J Nanomedicine 2019; 14: 10165-78.
[http://dx.doi.org/10.2147/IJN.S227914] [PMID: 32021159]
[219]
Moreira Souza AC, Grabe-Guimarães A, Cruz JS, et al. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation. Br J Pharmacol 2020; 177(19): 4448-63.
[http://dx.doi.org/10.1111/bph.15186] [PMID: 32608017]
[220]
Kathpalia H, Juvekar S, Mohanraj K, Apsingekar M, Shidhaye S. Investigation of pre-clinical pharmacokinetic parameters of atovaquone nanosuspension prepared using a pH-based precipitation method and its pharmacodynamic properties in a novel artemisinin combination. J Glob Antimicrob Resist 2020; 22: 248-56.
[http://dx.doi.org/10.1016/j.jgar.2020.02.018] [PMID: 32119990]
[221]
Volpe-Zanutto F, Ferreira LT, Permana AD, Kirkby M, Paredes AJ, Vora LK. Artemether and lumefantrine dissolving microneedle patches with improved pharmacokinetic performance and antimalarial efficacy in mice infected with Plasmodium yoelii. J Control Release 2021; 333: 298-315.
[222]
Golenser J, Salaymeh N, Higazi AA, et al. Treatment of experimental cerebral malaria by slow release of artemisone from injectable pasty formulation. Front Pharmacol 2020; 11: 846-9.
[http://dx.doi.org/10.3389/fphar.2020.00846] [PMID: 32595499]
[223]
Urbán P, Estelrich J, Adeva A, Cortés A, Fernàndez-Busquets X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res Lett 2011; 6(1): 620.
[http://dx.doi.org/10.1186/1556-276X-6-620] [PMID: 22151840]
[224]
Kaur R, Gorki V, Katare OP, Dhingra N, Chauhan M, Kaur R. Improved biopharmaceutical attributes of lumefantrine using choline mimicking drug delivery system: Preclinical investigation on NK-65 P. Berghei murine model. Expert Opin Drug Deliv 2021; 18: 1533-52.
[225]
Nnamani PO, Ugwu AA, Nnadi OH, et al. Formulation and evaluation of transdermal nanogel for delivery of artemether. Drug Deliv Transl Res 2021; 11(4): 1655-74.
[http://dx.doi.org/10.1007/s13346-021-00951-4] [PMID: 33742415]
[226]
Boateng-Marfo Y, Dong Y, Ng WK, Lin HS. Artemetherloaded zein nanoparticles: An innovative intravenous dosage form for the management of severe malaria. Int J Mol Sci 2021; 22(3): 1141.
[http://dx.doi.org/10.3390/ijms22031141] [PMID: 33498911]
[227]
Ristroph KD, Feng J, McManus SA, et al. Spray drying OZ439 nanoparticles to form stable, water-dispersible powders for oral malaria therapy. J Transl Med 2019; 17(1): 97.
[http://dx.doi.org/10.1186/s12967-019-1849-8] [PMID: 30902103]
[228]
Zwayen S, Zwain T, Singh KK. Targeted drug delivery for antimalarial therapy. In: Drug Development for Malaria. Wiley 2022; pp. 83-104.
[http://dx.doi.org/10.1002/9783527830589.ch4]
[229]
Biosca A, Dirscherl L, Moles E, Imperial S, Fernàndez-Busquets X. An immunopegliposome for targeted antimalarial combination therapy at the nanoscale. Pharmaceutics 2019; 11(7): 341.
[http://dx.doi.org/10.3390/pharmaceutics11070341] [PMID: 31315185]
[230]
Manconi M, Manca ML, Escribano-Ferrer E, et al. Nanoformulation of curcumin-loaded eudragit-nutriosomes to counteract malaria infection by a dual strategy: Improving antioxidant intestinal activity and systemic efficacy. Int J Pharm 2019; 556: 82-8.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.073] [PMID: 30528634]
[231]
Jain A, Jain P, Mathur S, Parihar DK. Curcuma species DNA fingerprinting of wild and cultivated genotypes from different agroclimatic zones. Pharmacol Res Zhongguo Xiandai Zhongyao 2024; 12: 100474.
[232]
Gupta A, Jain P, Nagori K, Adnan M. Ajazuddin. Treatment strategies for psoriasis using flavonoids from traditional Chinese medicine. Pharmacol Res Zhongguo Xiandai Zhongyao 2024; 12: 100463.
[233]
Jawahar N, Baruah UK, Singh V. Co-delivery of chloroquine phosphate and azithromycin nanoparticles to overcome drug resistance in malaria through intracellular targeting. J Pharm Sci Res 2019; 11: 33-40.
[234]
Prasad J, Netam AK, Satapathy T, Prakash Rao S, Jain P. Anti-hyperlipidemic and Antioxidant Activities of a Combination of Terminalia Arjuna and Commiphora Mukul on Experimental Animals BT - Advances in Biomedical Engineering and Technology. In: Rizvanov AA, Singh BK, Ganasala P, Eds. Singapore: Springer Singapore 2021; pp. 175-88.
[235]
Rashidzadeh H, Salimi M, Sadighian S, Rostamizadeh K, Ramazani A. In vivo antiplasmodial activity of curcumin-loaded nanostructured lipid carriers. Curr Drug Deliv 2019; 16(10): 923-30.
[http://dx.doi.org/10.2174/1567201816666191029121036] [PMID: 31663477]
[236]
Abazari M, Ghaffari A, Rashidzadeh H. Momeni badeleh S, Maleki Y. Current status and future outlook of nano-based systems for burn wound management. J Biomed Mater Res B Appl Biomater 2020; 108(5): 1934-52.
[http://dx.doi.org/10.1002/jbm.b.34535] [PMID: 31886606]
[237]
Bagheri AR, Golenser J, Greiner A. Controlled and manageable release of antimalarial Artemisone by encapsulation in biodegradable carriers. Eur Polym J 2020; 129: 109625.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109625]