Current Pharmaceutical Design

Author(s): Mohaddeseh Sadat Alavi, Abdulridha Mohammed Al-Asady, Farzaneh Abbasinezhad-Moud, Arezoo Rajabian, Zahra Rastegartizabi and Hamid R. Sadeghnia*

DOI: 10.2174/0113816128327215240827071257

DownloadDownload PDF Flyer Cite As
Oligoprotective Activity of Levetiracetam against Glutamate Toxicity: An In vitro Study

Page: [57 - 64] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: The role of glutamate in the development of some brain pathological conditions, such as multiple sclerosis, has been well described. Levetiracetam (LEV), a new broad-spectrum antiseizure medicine, is widely used to control certain types of seizures. Apart from its anti-seizure activity, LEV exerts neuroprotection via anti-inflammatory, antioxidant, and antiapoptotic effects. The current study was designed to evaluate the protective potential of LEV against glutamate-induced injury in OLN-93 oligodendrocytes.

Methods: At first, the potential negative impact of LEV on OLN-93 viability was evaluated. After that, the cells were concurrently treated with LEV (0-100 μM) and glutamate (8 mM) for 24 h. The viability, redox status, and the rate of apoptosis of OLN-93 cells were then assessed using 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl-2H-tetrazolium bromide (MTT), 2',7' dichlorodihydrofluorescein diacetate (H2DCFDA), 2-thiobarbituric acid reactive substances (TBARS) and annexin V/propidium iodide (PI) assays, respectively. Moreover, caspase-3 expression, as a marker of cell apoptosis, was evaluated by Western blotting.

Results: LEV at 1-800 μM did not have any negative effect on cell survival. Treatment with LEV (50 and 100 μM) substantially enhanced the cell viability following glutamate insult. The cytoprotective activity of LEV (50 and 100 μM) against glutamate toxicity was accompanied by reduced reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) level. Moreover, 100 μM of LEV inhibited apoptosis and decreased the expression level of cleaved caspase-3 following glutamate exposure.

Conclusion: Taken together, the results suggested that LEV has protective effects against glutamate-mediated cytotoxicity in OLN-93 cells. The oligoprotective action of LEV was shown to be exerted via inhibition of oxidative stress and cellular apoptosis.

Keywords: Glutamate, apoptosis, OLN-93 cells, levetiracetam, multiple sclerosis, oxidative stress.

[1]
Podbielska M, Banik N, Kurowska E, Hogan E. Myelin recovery in multiple sclerosis: The challenge of remyelination. Brain Sci 2013; 3(3): 1282-324.
[http://dx.doi.org/10.3390/brainsci3031282] [PMID: 24961530]
[2]
Bourque J, Hawiger D. Current and future immunotherapies for multiple sclerosis. Mo Med 2021; 118(4): 334-9.
[PMID: 34373668]
[3]
Hinoi E, Ogita K, Takeuchi Y, Ohashi H, Maruyama T, Yoneda Y. Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochem Int 2001; 38(3): 277-85.
[http://dx.doi.org/10.1016/S0197-0186(00)00075-9] [PMID: 11099787]
[4]
Saitta KS, Dreyfus CF, Chen S, Zhou R, Wu LJ. The role of the group I metabotropic glutamate receptor agonist, CHPG, in oligodendrocyte regeneration and repair following a cuprizone-induced lesion. Rutgers, The State University of New Jersey 2020.
[http://dx.doi.org/10.7282/t3-fsm6-tz70.]
[5]
Kuzmina US, Zainullina LF, Vakhitov VA, Bakhtiyarova KZ, Vakhitova YV. The role of glutamate in the pathogenesis of multiple sclerosis. Neurosci Behav Physiol 2020; 50(6): 669-75.
[http://dx.doi.org/10.1007/s11055-020-00953-8]
[6]
Newcombe J, Uddin A, Dove R, et al. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 2008; 18(1): 52-61.
[http://dx.doi.org/10.1111/j.1750-3639.2007.00101.x] [PMID: 17924980]
[7]
Saab AS, Tzvetavona ID, Trevisiol A, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 2016; 91(1): 119-32.
[http://dx.doi.org/10.1016/j.neuron.2016.05.016] [PMID: 27292539]
[8]
Srinivasan R, Sailasuta N, Hurd R, Nelson S, Pelletier D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005; 128(5): 1016-25.
[http://dx.doi.org/10.1093/brain/awh467] [PMID: 15758036]
[9]
Meldrum BS. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr 2000; 130: 1007S-5S.
[http://dx.doi.org/10.1093/jn/130.4.1007S]
[10]
Werner P, Pitt D, Raine CS. Multiple sclerosis: Altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 2001; 50(2): 169-80.
[http://dx.doi.org/10.1002/ana.1077] [PMID: 11506399]
[11]
Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm (Vienna) 2014; 121(8): 945-55.
[http://dx.doi.org/10.1007/s00702-014-1188-0]
[12]
Trinh TA, Seo YH, Choi S, Lee J, Kang KS. Protective effect of osmundacetone against neurological cell death caused by oxidative glutamate toxicity. Biomolecules 2021; 11(2): 328.
[http://dx.doi.org/10.3390/biom11020328] [PMID: 33671577]
[13]
Smith T, Groom A, Zhu B, Turski L. Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 2000; 6(1): 62-6.
[http://dx.doi.org/10.1038/71548] [PMID: 10613825]
[14]
Evonuk KS, Doyle RE, Moseley CE, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv 2020; 6(2): eaax5936.
[http://dx.doi.org/10.1126/sciadv.aax5936] [PMID: 31934627]
[15]
Howard P, Remi J, Remi C, et al. Levetiracetam. J Pain Symptom Manage 2018; 56(4): 645-9.
[http://dx.doi.org/10.1016/j.jpainsymman.2018.07.012] [PMID: 30036676]
[16]
Alfaro-Rodríguez A, Cortes-Altamirano JL, Olmos-Hernández A, Bonilla-Jaime H, Bandala C, González-Maciel A. Levetiracetam as an antiepileptic, neuroprotective, and hyperalgesic drug. Neurol India 2016; 64(6): 1266-75.
[http://dx.doi.org/10.4103/0028-3886.193801] [PMID: 27841198]
[17]
Erbaş O, Yılmaz M, Taşkıran D. Levetiracetam attenuates rotenone-induced toxicity: A rat model of Parkinson’s disease. Environ Toxicol Pharmacol 2016; 42: 226-30.
[http://dx.doi.org/10.1016/j.etap.2016.02.005] [PMID: 26896611]
[18]
Zou H, Brayer SW, Hurwitz M, Niyonkuru C, Fowler LE, Wagner AK. Neuroprotective, neuroplastic, and neurobehavioral effects of daily treatment with levetiracetam in experimental traumatic brain injury. Neurorehabil Neural Repair 2013; 27(9): 878-88.
[http://dx.doi.org/10.1177/1545968313491007] [PMID: 23812605]
[19]
Devi L, Ohno M. Effects of levetiracetam, an antiepileptic drug, on memory impairments associated with aging and Alzheimer’s disease in mice. Neurobiol Learn Mem 2013; 102: 7-11.
[http://dx.doi.org/10.1016/j.nlm.2013.02.001] [PMID: 23416036]
[20]
Shi JQ, Wang BR, Tian YY, et al. Antiepileptics topiramate and levetiracetam alleviate behavioral deficits and reduce neuropathology in APPswe/PS1dE9 transgenic mice. CNS Neurosci Ther 2013; 19(11): 871-81.
[http://dx.doi.org/10.1111/cns.12144] [PMID: 23889921]
[21]
Imai T, Sugiyama T, Iwata S, Nakamura S, Shimazawa M, Hara H. Levetiracetam, an antiepileptic drug has neuroprotective effects on intracranial hemorrhage injury. Neuroscience 2020; 431: 25-33.
[http://dx.doi.org/10.1016/j.neuroscience.2020.01.036] [PMID: 32058064]
[22]
Ueda Y, Doi T, Nagatomo K, Tokumaru J, Takaki M, Willmore LJ. Effect of levetiracetam on molecular regulation of hippocampal glutamate and GABA transporters in rats with chronic seizures induced by amygdalar FeCl3 injection. Brain Res 2007; 1151: 55-61.
[http://dx.doi.org/10.1016/j.brainres.2007.03.021] [PMID: 17408599]
[23]
Haghikia A, Ladage K, Hinkerohe D, et al. Implications of antiinflammatory properties of the anticonvulsant drug levetiracetam in astrocytes. J Neurosci Res 2008; 86(8): 1781-8.
[http://dx.doi.org/10.1002/jnr.21639] [PMID: 18335543]
[24]
Kim JE, Choi HC, Song HK, et al. Levetiracetam inhibits interleukin-1β inflammatory responses in the hippocampus and piriform cortex of epileptic rats. Neurosci Lett 2010; 471(2): 94-9.
[http://dx.doi.org/10.1016/j.neulet.2010.01.018] [PMID: 20080147]
[25]
Stettner M, Dehmel T, Mausberg AK, Köhne A, Rose CR, Kieseier BC. Levetiracetam exhibits protective properties on rat Schwann cells in vitro. J Peripher Nerv Syst 2011; 16(3): 250-60.
[http://dx.doi.org/10.1111/j.1529-8027.2011.00355.x] [PMID: 22003940]
[26]
Thöne J, Ellrichmann G, Faustmann PM, Gold R, Haghikia A. Anti-inflammatory effects of levetiracetam in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2012; 14(1): 9-12.
[http://dx.doi.org/10.1016/j.intimp.2012.05.021] [PMID: 22691576]
[27]
Löscher W, Gillard M, Sands ZA, Kaminski RM, Klitgaard H. Synaptic vesicle glycoprotein 2a ligands in the treatment of epilepsy and beyond. CNS Drugs 2016; 30(11): 1055-77.
[http://dx.doi.org/10.1007/s40263-016-0384-x] [PMID: 27752944]
[28]
Rigo J-M, Hans G, Nguyen L, et al. The anti-epileptic drug levetiracetam reverses the inhibition by negative allosteric modulators of neuronal GABA- and glycine-gated currents. Br J Pharmacol 2002; 136(5): 659-72.
[http://dx.doi.org/10.1038/sj.bjp.0704766] [PMID: 12086975]
[29]
Steinhoff BJ, Staack AM. Levetiracetam and brivaracetam: A review of evidence from clinical trials and clinical experience. Ther Adv Neurol Disord 2019; 12: 1756286419873518.
[http://dx.doi.org/10.1177/1756286419873518] [PMID: 31523280]
[30]
Costa AM, Lucchi C, Malkoç A, Rustichelli C, Biagini G. Relationship between delta rhythm, seizure occurrence and allopregnanolone hippocampal levels in epileptic rats exposed to the rebound effect. Pharmaceuticals (Basel) 2021; 14(2): 127.
[http://dx.doi.org/10.3390/ph14020127] [PMID: 33561937]
[31]
Borowicz KK, Piskorska B, Banach M, Czuczwar SJ. Neuroprotective actions of neurosteroids. Front Endocrinol (Lausanne) 2011; 2: 50.
[http://dx.doi.org/10.3389/fendo.2011.00050] [PMID: 22649375]
[32]
De Nicola AF, Garay LI, Meyer M, et al. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J Neuroendocrinol 2018; 30(2): e12502.
[http://dx.doi.org/10.1111/jne.12502] [PMID: 28675779]
[33]
Alavi MS, Fanoudi S, Fard AV, et al. Safranal attenuates excitotoxin-induced oxidative OLN-93 cells injury. Drug Res (Stuttg) 2019; 69(6): 323-9.
[http://dx.doi.org/10.1055/a-0790-8200] [PMID: 30463091]
[34]
Alavi MS, Negah SS, Ghorbani A, Hosseini A, Sadeghnia HR. Levetiracetam promoted rat embryonic neurogenesis via NMDA receptor-mediated mechanism in vitro. Life Sci 2021; 284: 119923.
[http://dx.doi.org/10.1016/j.lfs.2021.119923] [PMID: 34481865]
[35]
Rahimi VB, Askari VR, Mehrdad A, Sadeghnia HR. Boswellia serrata has promising impact on glutamate and quinolinic acid-induced toxicity on oligodendroglia cells: In vitro study. Acta Pol Pharm 2017; 74(6): 1803-11.
[36]
Sadeghnia HR, Jamshidi R, Afshari AR, Mollazadeh H, Forouzanfar F, Rakhshandeh H. Terminalia chebula attenuates quinolinate-induced oxidative PC12 and OLN-93 cell death. Mult Scler Relat Disord 2017; 14: 60-7.
[http://dx.doi.org/10.1016/j.msard.2017.03.012] [PMID: 28619434]
[37]
Rossetti AO, Bromfield EB. Determinants of success in the use of oral levetiracetam in status epilepticus. Epilepsy Behav 2006; 8(3): 651-4.
[http://dx.doi.org/10.1016/j.yebeh.2006.01.006] [PMID: 16495155]
[38]
Mink S, Muroi C, Seule M, Bjeljac M, Keller E. Levetiracetam compared to valproic acid: Plasma concentration levels, adverse effects and interactions in aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 2011; 113(8): 644-8.
[http://dx.doi.org/10.1016/j.clineuro.2011.05.007] [PMID: 21703756]
[39]
Stockburger C, Miano D, Baeumlisberger M, et al. A mitochondrial role of SV2a protein in aging and Alzheimer’s disease: Studies with levetiracetam. J Alzheimers Dis 2016; 50(1): 201-15.
[http://dx.doi.org/10.3233/JAD-150687] [PMID: 26639968]
[40]
Alavi MS, Fanoudi S, Hosseini A, Jalili-Nik M, Bagheri A, Sadeghnia HR. Everolimus attenuates glutamate-induced PC12 cells death. Int J Neurosci 2021; 1-12.
[PMID: 33998365]
[41]
Alavi MS, Fanoudi S, Hosseini M, Sadeghnia HR. Beneficial effects of levetiracetam in streptozotocin-induced rat model of Alzheimer’s disease. Metab Brain Dis 2022; 37(3): 689-700.
[http://dx.doi.org/10.1007/s11011-021-00888-0] [PMID: 35098412]
[42]
Lassmann H. Mechanisms of white matter damage in multiple sclerosis. Glia 2014; 62(11): 1816-30.
[http://dx.doi.org/10.1002/glia.22597] [PMID: 24470325]
[43]
Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: Pathology of the newly forming lesion. Ann Neurol 2004; 55(4): 458-68.
[http://dx.doi.org/10.1002/ana.20016] [PMID: 15048884]
[44]
Yao X, Feng S-Q, Fan B-Y, et al. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res 2021; 16(3): 561-6.
[http://dx.doi.org/10.4103/1673-5374.293157] [PMID: 32985488]
[45]
Richter-Landsberg C, Heinrich M. OLN-93: A new permanent oligodendroglia cell line derived from primary rat brain glial cultures. J Neurosci Res 1996; 45(2): 161-73.
[PMID: 8843033]
[46]
Kim DH, Kim DW, Jung BH, et al. Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 2019; 43(2): 326-34.
[http://dx.doi.org/10.1016/j.jgr.2018.12.002] [PMID: 30976171]
[47]
Nagasaka A, Mogi C, Ono H, et al. The proton-sensing G protein- coupled receptor T-cell death-associated gene 8 (TDAG8) shows cardioprotective effects against myocardial infarction. Sci Rep 2017; 7(1): 7812.
[http://dx.doi.org/10.1038/s41598-017-07573-2] [PMID: 28798316]
[48]
Wang C, An Y, Xia Z, et al. The neuroprotective effect of melatonin in glutamate excitotoxicity of R28 cells and mouse retinal ganglion cells. Front Endocrinol (Lausanne) 2022; 13: 986131.
[http://dx.doi.org/10.3389/fendo.2022.986131] [PMID: 36313740]
[49]
An Y, Li H, Wang M, Xia Z, Ding L, Xia X. Nuclear factor erythroid 2-related factor 2 agonist protects retinal ganglion cells in glutamate excitotoxicity retinas. Biomed Pharmacother 2022; 153: 113378.
[http://dx.doi.org/10.1016/j.biopha.2022.113378] [PMID: 36076474]
[50]
Sadeghnia HR, Kolangikhah M, Asadpour E, Forouzanfar F, Hosseinzadeh H. Berberine protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. Iran J Basic Med Sci 2017; 20(5): 594-603.
[PMID: 28656094]
[51]
Rajabian A, Boroushaki MT, Hayatdavoudi P, Sadeghnia HR. Boswellia serrata protects against glutamate-induced oxidative stress and apoptosis in PC12 and N2a cells. DNA Cell Biol 2016; 35(11): 666-79.
[http://dx.doi.org/10.1089/dna.2016.3332] [PMID: 27494534]
[52]
Cunha MP, Lieberknecht V, Ramos-Hryb AB, et al. Creatine affords protection against glutamate-induced nitrosative and oxidative stress. Neurochem Int 2016; 95: 4-14.
[http://dx.doi.org/10.1016/j.neuint.2016.01.002] [PMID: 26804444]
[53]
Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci 2005; 6(1): 13.
[http://dx.doi.org/10.1186/1471-2202-6-13] [PMID: 15730564]
[54]
Li H, Han W, Wang H, et al. Tanshinone IIA inhibits glutamate-induced oxidative toxicity through prevention of mitochondrial dysfunction and suppression of MAPK activation in SH-SY5Y human neuroblastoma cells. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/4517486] [PMID: 28690763]
[55]
Zhang Y, Bhavnani BR. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF) and this process is inhibited by equine estrogens. BMC Neurosci 2006; 7(1): 49.
[http://dx.doi.org/10.1186/1471-2202-7-49] [PMID: 16776830]
[56]
Wood MD, Gillard M. Evidence for a differential interaction of brivaracetam and levetiracetam with the synaptic vesicle 2A protein. Epilepsia 2017; 58(2): 255-62.
[http://dx.doi.org/10.1111/epi.13638] [PMID: 28012162]
[57]
Fukuyama K, Okada M. Brivaracetam and levetiracetam suppress astroglial L-Glutamate release through hemichannel via inhibition of synaptic vesicle protein. Int J Mol Sci 2022; 23(9): 4473.
[http://dx.doi.org/10.3390/ijms23094473] [PMID: 35562864]
[58]
Kwiecińska P, Taubøll E, Gregoraszczuk EŁ. Effects of valproic acid and levetiracetam on viability and cell cycle regulatory genes expression in the OVCAR-3 cell line. Pharmacol Rep 2012; 64(1): 157-65.
[http://dx.doi.org/10.1016/S1734-1140(12)70742-9] [PMID: 22580532]
[59]
Sendrowski K, Sobaniec P, Poskrobko E, Rusak M, Sobaniec W. Unfavorable effect of levetiracetam on cultured hippocampal neurons after hyperthermic injury. Pharmacol Rep 2017; 69(3): 462-8.
[http://dx.doi.org/10.1016/j.pharep.2017.01.020] [PMID: 28319750]
[60]
Yan BC, Shen H, Zhang Y, et al. The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling. Neurosci Lett 2018; 662: 84-90.
[http://dx.doi.org/10.1016/j.neulet.2017.10.010] [PMID: 29024726]
[61]
Sendrowski K, Boćkowski L, Sobaniec W, Iłendo E, Jaworowska B, Śmigielska-Kuzia J. Levetiracetam protects hippocampal neurons in culture against hypoxia-induced injury. Folia Histochem Cytobiol 2011; 49(1): 148-52.
[http://dx.doi.org/10.5603/FHC.2011.0021] [PMID: 21526502]
[62]
ERTILAV K. Levetiracetam modulates hypoxia-induced inflammation and oxidative stress via inhibition of TRPV1 channel in the DBTRG glioblastoma cell line. J Cell Neurosci Oxid Stress 2019; 11(3): 885-94.
[63]
Kilicdag H, Daglıoglu K, Erdogan S, et al. The effect of levetiracetam on neuronal apoptosis in neonatal rat model of hypoxic ischemic brain injury. Early Hum Dev 2013; 89(5): 355-60.
[http://dx.doi.org/10.1016/j.earlhumdev.2012.12.002] [PMID: 23266150]
[64]
Marini H, Costa C, Passaniti M, et al. Levetiracetam protects against kainic acid-induced toxicity. Life Sci 2004; 74(10): 1253-64.
[http://dx.doi.org/10.1016/j.lfs.2003.08.006] [PMID: 14697408]
[65]
Çiltaş AÇ, Gündoğdu S, Yulak F. Levetiracetam protects against glutamate-induced excitotoxicity in SH-SY5Y cell line. Int J Nat Sci 2022; 6(2): 142-9.
[http://dx.doi.org/10.47947/ijnls.1187054.]
[66]
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate-induced cytotoxicity in different cell lines: A comparative/collective analysis/study. Front Cell Neurosci 2015; 9: 91.
[http://dx.doi.org/10.3389/fncel.2015.00091] [PMID: 25852482]
[67]
Kwiecińska P, Taubøll E, Gregoraszczuk EŁ. Comparison of the effects of valproic acid and levetiracetam on apoptosis in the human ovarian cancer cell line OVCAR-3. Pharmacol Rep 2012; 64(3): 603-14.
[http://dx.doi.org/10.1016/S1734-1140(12)70856-3] [PMID: 22814014]
[68]
Ando S, Funato M, Ohuchi K, et al. The protective effects of levetiracetam on a human iPSCs-derived spinal muscular atrophy model. Neurochem Res 2019; 44(7): 1773-9.
[http://dx.doi.org/10.1007/s11064-019-02814-4] [PMID: 31102025]