Current Pharmaceutical Design

Author(s): Pragya Yadav, Manas Gupta, Satya Prakash Singh and Poonam Parashar*

DOI: 10.2174/0113816128322485240826065135

DownloadDownload PDF Flyer Cite As
Biocompatible Electrospun Hydrogel Fibers for Advanced Wound Healing Therapies

Page: [3240 - 3254] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Wound healing is a complex cascade and is governed through a number of crucial factors. Conventional wound dressing possesses numerous limitations which hinder wound healing process and may result in serious infections and even mortality. A lot of effort have been put in through researchers to develop a multifaceted dressing which can address these limitations and facilitate accelerated wound healing. Among various newly developed dressings, electrospun hydrogel nanofibers have emerged as a promising class of biomaterials for advanced wound care and tissue engineering applications. These biomimetic fibers closely mimic the architect of the native extracellular matrix, providing an optimal environment that facilitates cellular proliferation and fast generation required for effective wound healing. Electrospinning offers versatility in precisely controlling fiber attributes such as diameter, alignment, and surface morphology and can entrap a variety of drugs with high efficacy. Recently, such dressings have advanced through the incorporation of smart features such as stimuli-responsive components, real-time wound monitoring sensors, and smart closed-loop systems. The electrospun hydrogels are bestowed with extreme porosity, water-retention attribute, biocompatibility, and modified drug release which make them superior over other wound dressings. The review gives an insight of electrospun hydrogel fibers and their application in wound healing and the studies assessing wound healing potential with underlying mechanisms have been critically analysed. Electrospun hydrogel fibers have significant potential to revolutionize wound care through their biomimetic structure, versatile customization, and capacity for integrating therapeutic and sensing capabilities, outlining future research directions toward next-generation wound care products.

Keywords: Hydrogel, smart wound dressings, electrospinning, tissue engineering, nanoscale fibers, biomaterials.

[1]
Chen C, Tang J, Gu Y, et al. Bioinspired hydrogel electrospun fibers for spinal cord regeneration. Adv Funct Mater 2019; 29(4): 1806899.
[http://dx.doi.org/10.1002/adfm.201806899]
[2]
Mutlu G, Calamak S, Ulubayram K, Guven E. Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material. J Drug Deliv Sci Technol 2018; 43: 185-93.
[http://dx.doi.org/10.1016/j.jddst.2017.09.017]
[3]
Wu Z, Zhu M, Mou X, Ye L. Overexpressing of caveolin-1 in mesenchymal stem cells promotes deep second-degree burn wound healing. J Biosci Bioeng 2021; 131(4): 341-7.
[http://dx.doi.org/10.1016/j.jbiosc.2020.11.010] [PMID: 33423964]
[4]
Cascone S, Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. Int J Pharm 2020; 573: 118803.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118803] [PMID: 31682963]
[5]
Pal P, Dadhich P, Srivas PK, Das B, Maulik D, Dhara S. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management. Biomater Sci 2017; 5(9): 1786-99.
[http://dx.doi.org/10.1039/C7BM00174F] [PMID: 28650050]
[6]
Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 2016; 85: 327-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.076] [PMID: 26740467]
[7]
Trinh XT, Long NV, Van Anh LT, et al. A comprehensive review of natural compounds for wound healing: Targeting bioactivity perspective. Int J Mol Sci 2022; 23(17): 9573.
[http://dx.doi.org/10.3390/ijms23179573] [PMID: 36076971]
[8]
Dodero A, Scarfi S, Pozzolini M, Vicini S, Alloisio M, Castellano M. Alginate-based electrospun membranes containing ZnO nanoparticles as potential wound healing patches: Biological, mechanical, and physicochemical characterization. ACS Appl Mater Interfaces 2020; 12(3): 3371-81.
[http://dx.doi.org/10.1021/acsami.9b17597] [PMID: 31876405]
[9]
Elangwe CN, Morozkina SN, Olekhnovich RO, Krasichkov A, Polyakova VO, Uspenskaya MV. A review on chitosan and cellulose hydrogels for wound dressings. Polymers (Basel) 2022; 14(23): 5163.
[http://dx.doi.org/10.3390/polym14235163] [PMID: 36501559]
[10]
Liu Y, Song S, Liu S, Zhu X, Wang P. Application of nanomaterial in hydrogels related to wound healing. J Nanomater 2022; 2022(1): 4656037.
[http://dx.doi.org/10.1155/2022/4656037]
[11]
Cassano R, Trombino S. Trehalose-based hydrogel potentially useful for the skin burn treatment. J Appl Polym Sci 2017; 134(17): app.44755.
[http://dx.doi.org/10.1002/app.44755]
[12]
Liu X, Jia G. Modern wound dressing using polymers/biopolymers. J Mater Sci Eng 2018; 7: 2169.
[13]
Lim DJ. Cross-linking agents for electrospinning-based bone tissue engineering. Int J Mol Sci 2022; 23(10): 5444.
[http://dx.doi.org/10.3390/ijms23105444] [PMID: 35628254]
[14]
Khalili S, Nouri Khorasani S, Razavi M, Hashemi Beni B, Heydari F, Tamayol A. Nanofibrous scaffolds with biomimetic structure. J Biomed Mater Res A 2018; 106(2): 370-6.
[http://dx.doi.org/10.1002/jbm.a.36246] [PMID: 28944539]
[15]
Pereira RF, Sousa A, Barrias CC, Bayat A, Granja PL, Bártolo PJ. Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanuf Rev 2017; 2(1): 1.
[http://dx.doi.org/10.1007/s40898-017-0003-8]
[16]
Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials (Basel) 2019; 12(16): 2540.
[http://dx.doi.org/10.3390/ma12162540] [PMID: 31404974]
[17]
de Moura FB, Ferreira AB, Muniz HE, et al. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. Int J Pharm 2022; 617: 121620.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121620] [PMID: 35219826]
[18]
Li W, Guan Q, Li M, Saiz E, Hou X. Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Prog Polym Sci 2023; 140: 101665.
[http://dx.doi.org/10.1016/j.progpolymsci.2023.101665]
[19]
Ding Z, Zhang Y, Guo P, et al. Injectable desferrioxamine-laden silk nanofiber hydrogels for accelerating diabetic wound healing. ACS Biomater Sci Eng 2021; 7(3): 1147-58.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01502] [PMID: 33522800]
[20]
Akin B, Ozmen MM. Antimicrobial cryogel dressings towards effective wound healing. Prog Biomater 2022; 11(4): 331-46.
[http://dx.doi.org/10.1007/s40204-022-00202-w] [PMID: 36123436]
[21]
Hussein Y, El-Fakharany EM, Kamoun EA, et al. Electrospun PVA/hyaluronic acid/L-arginine nanofibers for wound healing applications: Nanofibers optimization and in vitro bioevaluation. Int J Biol Macromol 2020; 164: 667-76.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.126] [PMID: 32682043]
[22]
Nguyen TTT, Ghosh C, Hwang SG, Tran LD, Park JS. Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci 2013; 48(20): 7125-33.
[http://dx.doi.org/10.1007/s10853-013-7527-y]
[23]
Sarhan WA, Azzazy HME. Apitherapeutics and phage-loaded nanofibers as wound dressings with enhanced wound healing and antibacterial activity. Nanomedicine (Lond) 2017; 12(17): 2055-67.
[http://dx.doi.org/10.2217/nnm-2017-0151] [PMID: 28805554]
[24]
Moutsatsou P, Coopman K, Georgiadou S. Biocompatibility assessment of conducting PANI/chitosan nanofibers for wound healing applications. Polymers (Basel) 2017; 9(12): 687.
[http://dx.doi.org/10.3390/polym9120687] [PMID: 30965990]
[25]
Amer AA, Mohammed RS, Hussein Y, Ali ASM, Khalil AA. Development of Lepidium sativum extracts/PVA electrospun nanofibers as wound healing dressing. ACS Omega 2022; 7(24): 20683-95.
[http://dx.doi.org/10.1021/acsomega.2c00912] [PMID: 35755335]
[26]
Fatahian R, Mirjalili M, Khajavi R, Rahimi MK, Nasirizadeh N. Fabrication of antibacterial and hemostatic electrospun PVA nanofibers for wound healing. SN Appl Sci 2020; 2(7): 1288.
[http://dx.doi.org/10.1007/s42452-020-3084-6]
[27]
Cheng H, Shi Z, Yue K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 2021; 124: 219-32.
[http://dx.doi.org/10.1016/j.actbio.2021.02.002] [PMID: 33556605]
[28]
Lee YH, Chang JJ, Yang MC, Chien CT, Lai WF. Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohydr Polym 2012; 88(3): 809-19.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.045]
[29]
Zandraa O, Ngwabebhoh FA, Patwa R, et al. Development of dual crosslinked mumio-based hydrogel dressing for wound healing application: Physico-chemistry and antimicrobial activity. Int J Pharm 2021; 607: 120952.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120952] [PMID: 34329699]
[30]
Badhe RV, Godse A, Shinkar A, et al. Development and characterization of conducting-polymer-based hydrogel dressing for wound healing. Turkish J Pharmaceut Scie 2021; 18(4): 483-91.
[http://dx.doi.org/10.4274/tjps.galenos.2020.44452] [PMID: 34496555]
[31]
Öksüz KE, Özkaya NK, İnan ZDŞ, Özer A. Novel natural spider silk embedded electrospun nanofiber mats for wound healing. Mater Today Commun 2021; 26: 101942.
[http://dx.doi.org/10.1016/j.mtcomm.2020.101942]
[32]
Contardi M, Heredia-Guerrero JA, Perotto G, et al. Transparent ciprofloxacin-povidone antibiotic films and nanofiber mats as potential skin and wound care dressings. Eur J Pharm Sci 2017; 104: 133-44.
[http://dx.doi.org/10.1016/j.ejps.2017.03.044] [PMID: 28366652]
[33]
Li A, Han Z, Li Z, Li J, Li X, Zhang Z. A PTHrP-2 loaded adhesive cellulose acetate nanofiber mat as wound dressing accelerates wound healing. Mater Des 2021; 212: 110241.
[http://dx.doi.org/10.1016/j.matdes.2021.110241]
[34]
Madhumathi K, Sudheesh Kumar PT, Abhilash S, et al. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 2010; 21(2): 807-13.
[http://dx.doi.org/10.1007/s10856-009-3877-z] [PMID: 19802687]
[35]
Har-el Y, Gerstenhaber JA, Brodsky R, Huneke RB, Lelkes PI. Electrospun soy protein scaffolds as wound dressings: Enhanced reepithelialization in a porcine model of wound healing. Wound Medicine 2014; 5: 9-15.
[http://dx.doi.org/10.1016/j.wndm.2014.04.007]
[36]
Yang S, Li X, Liu P, Zhang M, Wang C, Zhang B. Multifunctional chitosan/polycaprolactone nanofiber scaffolds with varied dual- drug release for wound-healing applications. ACS Biomater Sci Eng 2020; 6(8): 4666-76.
[http://dx.doi.org/10.1021/acsbiomaterials.0c00674] [PMID: 33455179]
[37]
Li P, Ruan L, Jiang G, et al. Design of 3D polycaprolactone/ε-polylysine-modified chitosan fibrous scaffolds with incorporation of bioactive factors for accelerating wound healing. Acta Biomater 2022; 152: 197-209.
[http://dx.doi.org/10.1016/j.actbio.2022.08.075] [PMID: 36084922]
[38]
Pawar HV, Tetteh J, Boateng JS. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf B Biointerfaces 2013; 102: 102-10.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.014] [PMID: 23006557]
[39]
Chin CY, Jalil J, Ng PY, Ng SF. Development and formulation of Moringa oleifera standardised leaf extract film dressing for wound healing application. J Ethnopharmacol 2018; 212: 188-99.
[http://dx.doi.org/10.1016/j.jep.2017.10.016] [PMID: 29080829]
[40]
Li C, Chang F, Gao F, et al. Chitosan-based composite film dressings with efficient self-diagnosis and synergistically inflammation resolution for accelerating diabetic wound healing. Appl Surf Sci 2024; 642: 158578.
[http://dx.doi.org/10.1016/j.apsusc.2023.158578]
[41]
Zhang Y, Wang Y, Chen L, et al. An injectable antibacterial chitosan-based cryogel with high absorbency and rapid shape recovery for noncompressible hemorrhage and wound healing. Biomaterials 2022; 285: 121546.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121546] [PMID: 35552114]
[42]
Huang Y, Zhao X, Zhang Z, et al. Degradable gelatin-based IPN cryogel hemostat for rapidly stopping deep noncompressible hemorrhage and simultaneously improving wound healing. Chem Mater 2020; 32(15): 6595-610.
[http://dx.doi.org/10.1021/acs.chemmater.0c02030]
[43]
Li Y, Yang Z, Sun Q, et al. Biocompatible cryogel with good breathability, exudate management, antibacterial and immunomodulatory properties for infected diabetic wound healing. Adv Sci (Weinh) 2023; 10(31): 2304243.
[http://dx.doi.org/10.1002/advs.202304243] [PMID: 37661933]
[44]
Vimalasruthi N, Vigneshkumar G, Esakkimuthu S, Sivakumar K, Stalin T. Electrospun nanofibers for industrial and energy applications. Electrospun Nanofibers: Principles. Berlin, Heidelberg: Springer Link 2022; pp. 693-720.
[http://dx.doi.org/10.1007/978-3-030-99958-2_24]
[45]
Davoodi P, Gill EL, Wang W, Huang YYS. Advances and innovations in electrospinning technology. Biomedical Applications of Electrospinning and Electrospraying. Oxford, England: Woodhead Publishing 2021.
[http://dx.doi.org/10.1016/B978-0-12-822476-2.00004-2]
[46]
Li Y, Zhu J, Cheng H, et al. Developments of advanced electrospinning techniques: A critical review. Adv Mater Technol 2021; 6(11): 2100410.
[http://dx.doi.org/10.1002/admt.202100410]
[47]
Valizadeh A, Mussa Farkhani S. Electrospinning and electrospun nanofibres. IET Nanobiotechnol 2014; 8(2): 83-92.
[http://dx.doi.org/10.1049/iet-nbt.2012.0040] [PMID: 25014079]
[48]
Rodríguez-Tobías H, Morales G, Grande D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater Sci Eng C 2019; 101: 306-22.
[http://dx.doi.org/10.1016/j.msec.2019.03.099] [PMID: 31029324]
[49]
Liu X, Xu H, Zhang M, Yu DG. Electrospun medicated nanofibers for wound healing: Review. Membranes (Basel) 2021; 11(10): 770.
[http://dx.doi.org/10.3390/membranes11100770] [PMID: 34677536]
[50]
Liu M, Zhang Y, Sun S, et al. Recent advances in electrospun for drug delivery purpose. J Drug Target 2019; 27(3): 270-82.
[http://dx.doi.org/10.1080/1061186X.2018.1481413] [PMID: 29798692]
[51]
Yu DG, Wang M, Li X, Liu X, Zhu LM, Annie Bligh SW. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(3): e1601.
[http://dx.doi.org/10.1002/wnan.1601] [PMID: 31692241]
[52]
Dong Y, Zheng Y, Zhang K, et al. Electrospun nanofibrous materials for wound healing. Advanced Fiber Materials 2020; 2(4): 212-27.
[http://dx.doi.org/10.1007/s42765-020-00034-y]
[53]
Liu SJ, Kau YC, Chou CY, Chen JK, Wu RC, Yeh WL. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing. J Membr Sci 2010; 355(1-2): 53-9.
[http://dx.doi.org/10.1016/j.memsci.2010.03.012]
[54]
Miguel SP, Figueira DR, Simões D, et al. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf B Biointerfaces 2018; 169: 60-71.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.011] [PMID: 29747031]
[55]
Gao C, Zhang L, Wang J, et al. Electrospun nanofibers promote wound healing: Theories, techniques, and perspectives. J Mater Chem B Mater Biol Med 2021; 9(14): 3106-30.
[http://dx.doi.org/10.1039/D1TB00067E] [PMID: 33885618]
[56]
Abrigo M, McArthur SL, Kingshott P. Electrospun nanofibers as dressings for chronic wound care: Advances, challenges, and future prospects. Macromol Biosci 2014; 14(6): 772-92.
[http://dx.doi.org/10.1002/mabi.201300561] [PMID: 24678050]
[57]
Gounden V, Singh M. Hydrogels and wound healing: Current and future prospects. Gels 2024; 10(1): 43.
[http://dx.doi.org/10.3390/gels10010043] [PMID: 38247766]
[58]
Li W, Liu H, Mi Y, et al. Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals. Friction 2022; 10(1): 80-93.
[http://dx.doi.org/10.1007/s40544-020-0416-x]
[59]
Tavakoli S, Klar AS. Advanced hydrogels as wound dressings. Biomolecules 2020; 10(8): 1169.
[http://dx.doi.org/10.3390/biom10081169] [PMID: 32796593]
[60]
Shu W, Wang Y, Zhang X, Li C, Le H, Chang F. Functional hydrogel dressings for treatment of burn wounds. Front Bioeng Biotechnol 2021; 9: 788461.
[http://dx.doi.org/10.3389/fbioe.2021.788461] [PMID: 34938723]
[61]
Zhao Y, Wang X, Qi R, Yuan H. Recent advances of natural-polymer-based hydrogels for wound antibacterial therapeutics. Polymers (Basel) 2023; 15(15): 3305.
[http://dx.doi.org/10.3390/polym15153305] [PMID: 37571202]
[62]
Zhang W, Liu L, Cheng H, et al. Hydrogel-based dressings designed to facilitate wound healing. Mater Advances 2024; 5(4): 1364-94.
[http://dx.doi.org/10.1039/D3MA00682D]
[63]
Memic A, Abdullah T, Mohammed HS, Joshi Navare K, Colombani T, Bencherif SA. Latest progress in electrospun nanofibers for wound healing applications. ACS Appl Bio Mater 2019; 2(3): 952-69.
[http://dx.doi.org/10.1021/acsabm.8b00637] [PMID: 35021385]
[64]
Ambekar RS, Kandasubramanian B. Advancements in nanofibers for wound dressing: A review. Eur Polym J 2019; 117: 304-36.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.05.020]
[65]
Serpico L, Dello Iacono S, Cammarano A, De Stefano L. Recent advances in stimuli-responsive hydrogel-based wound dressing. Gels 2023; 9(6): 451.
[http://dx.doi.org/10.3390/gels9060451] [PMID: 37367122]
[66]
Wang W, Ummartyotin S, Narain R. Advances and challenges on hydrogels for wound dressing. Curr Opin Biomed Eng 2023; 26: 100443.
[http://dx.doi.org/10.1016/j.cobme.2022.100443]
[67]
Chou SF, Carson D, Woodrow KA. Current strategies for sustaining drug release from electrospun nanofibers. J Control Release 2015; 220(Pt B): 584-91.
[http://dx.doi.org/10.1016/j.jconrel.2015.09.008] [PMID: 26363300]
[68]
Li Y, Wang J, Wang Y, Cui W. Advanced electrospun hydrogel fibers for wound healing. Compos, Part B Eng 2021; 223: 109101.
[http://dx.doi.org/10.1016/j.compositesb.2021.109101]
[69]
Contardi M, Kossyvaki D, Picone P, et al. Electrospun polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem Eng J 2021; 409: 128144.
[http://dx.doi.org/10.1016/j.cej.2020.128144]
[70]
Shahzad S, Yar M, Siddiqi SA, et al. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: Novel anti-bacterial wound dressing matrices. J Mater Sci Mater Med 2015; 26(3): 136.
[http://dx.doi.org/10.1007/s10856-015-5462-y] [PMID: 25716023]
[71]
Agarwal Y, Rajinikanth PS, Ranjan S, et al. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in vitro and in vivo studies. Int J Biol Macromol 2021; 176: 376-86.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.025] [PMID: 33561460]
[72]
Celebioglu A, Saporito AF, Uyar T. Green electrospinning of chitosan/pectin nanofibrous films by the incorporation of cyclodextrin/curcumin inclusion complexes: pH-responsive release and hydrogel features. ACS Sustain Chem Eng 2022; 10(14): 4758-69.
[http://dx.doi.org/10.1021/acssuschemeng.2c00650]
[73]
Jirofti N, Golandi M, Movaffagh J, Ahmadi FS, Kalalinia F. Improvement of the wound-healing process by curcumin-loaded chitosan/collagen blend electrospun nanofibers: In vitro and in vivo studies. ACS Biomater Sci Eng 2021; 7(8): 3886-97.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00131] [PMID: 34256564]
[74]
Ilomuanya MO, Okafor PS, Amajuoyi JN, et al. Polylactic acid-based electrospun fiber and hyaluronic acid-valsartan hydrogel scaffold for chronic wound healing. Beni Suef Univ J Basic Appl Sci 2020; 9(1): 31.
[http://dx.doi.org/10.1186/s43088-020-00057-9]
[75]
Hadisi Z, Farokhi M, Bakhsheshi-Rad HR, et al. Hyaluronic acid (HA)-based silk fibroin/Zinc oxide core–shell electrospun dressing for burn wound management. Macromol Biosci 2020; 20(4): 1900328.
[http://dx.doi.org/10.1002/mabi.201900328] [PMID: 32077252]
[76]
Eakwaropas P, Ngawhirunpat T, Rojanarata T, Akkaramongkolporn P, Opanasopit P, Patrojanasophon P. Fabrication of electrospun hydrogels loaded with Ipomoea pes caprae (L.) R. Br extract for infected wound. J Drug Deliv Sci Technol 2020; 55: 101478.
[http://dx.doi.org/10.1016/j.jddst.2019.101478]
[77]
Liu X, Nielsen LH, Kłodzińska SN, et al. Ciprofloxacin-loaded sodium alginate/poly (lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur J Pharm Biopharm 2018; 123: 42-9.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.004] [PMID: 29129734]
[78]
Zhang C, Yang X, Yu L, et al. Electrospun polyasparthydrazide nanofibrous hydrogel loading with in situ synthesized silver nanoparticles for full-thickness skin wound healing application. Mater Des 2024; 239: 112818.
[http://dx.doi.org/10.1016/j.matdes.2024.112818]
[79]
Shi X, Zhou T, Huang S, et al. An electrospun scaffold functionalized with a ROS-scavenging hydrogel stimulates ocular wound healing. Acta Biomater 2023; 158: 266-80.
[http://dx.doi.org/10.1016/j.actbio.2023.01.016] [PMID: 36638943]
[80]
Romero-Montero A, Labra-Vázquez P, del Valle LJ, et al. Development of an antimicrobial and antioxidant hydrogel/nano-electrospun wound dressing. RSC Advances 2020; 10(51): 30508-18.
[http://dx.doi.org/10.1039/D0RA05935H] [PMID: 35516054]
[81]
Nie K, Han S, Yang J, et al. Enzyme-crosslinked electrospun fibrous gelatin hydrogel for potential soft tissue engineering. Polymers (Basel) 2020; 12(9): 1977.
[http://dx.doi.org/10.3390/polym12091977] [PMID: 32878113]
[82]
Gonçalves de Pinho AR, Odila I, Leferink A, van Blitterswijk C, Camarero-Espinosa S, Moroni L. Hybrid polyester-hydrogel electrospun scaffolds for tissue engineering applications. Front Bioeng Biotechnol 2019; 7: 231.
[http://dx.doi.org/10.3389/fbioe.2019.00231] [PMID: 31681736]
[83]
Hajiabbas M, Alemzadeh I, Vossoughi M. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Carbohydr Polym 2020; 245: 116465.
[http://dx.doi.org/10.1016/j.carbpol.2020.116465] [PMID: 32718603]
[84]
Ochoa M, Rahimi R, Zhou J, et al. Integrated sensing and delivery of oxygen for next-generation smart wound dressings. Microsyst Nanoeng 2020; 6(1): 46.
[http://dx.doi.org/10.1038/s41378-020-0141-7] [PMID: 34567658]
[85]
Farahani M, Shafiee A. Wound healing: From passive to smart dressings. Adv Healthc Mater 2021; 10(16): 2100477.
[http://dx.doi.org/10.1002/adhm.202100477] [PMID: 34174163]
[86]
Li M, Li W, Cai W, et al. A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Mater Horiz 2019; 6(4): 703-10.
[http://dx.doi.org/10.1039/C8MH01441H]
[87]
Vázquez-González M, Willner I. Stimuli-responsive biomolecule-based hydrogels and their applications. Angew Chem Int Ed 2020; 59(36): 15342-77.
[http://dx.doi.org/10.1002/anie.201907670] [PMID: 31730715]
[88]
Wang S, Wu WY, Yeo JCC, et al. Responsive hydrogel dressings for intelligent wound management. BMEMat 2023; 1(2): e12021.
[http://dx.doi.org/10.1002/bmm2.12021]
[89]
Rani Raju N, Silina E, Stupin V, Manturova N, Chidambaram SB, Achar RR. Multifunctional and smart wound dressings-A review on recent research advancements in skin regenerative medicine. Pharmaceutics 2022; 14(8): 1574.
[http://dx.doi.org/10.3390/pharmaceutics14081574] [PMID: 36015200]
[90]
Wang J, Chen XY, Zhao Y, et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 2019; 13(10): 11686-97.
[http://dx.doi.org/10.1021/acsnano.9b05608] [PMID: 31490650]
[91]
Zhao X, Sun X, Yildirimer L, et al. Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing. Acta Biomater 2017; 49: 66-77.
[http://dx.doi.org/10.1016/j.actbio.2016.11.017] [PMID: 27826004]
[92]
Li Z, Song J, Zhang J, et al. Topical application of silk fibroin-based hydrogel in preventing hypertrophic scars. Colloids Surf B Biointerfaces 2020; 186: 110735.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110735] [PMID: 31865120]
[93]
Khrystonko O, Rimpelová S, Burianová T, Švorčík V, Lyutakov O, Elashnikov R. Smart multi stimuli-responsive electrospun nanofibers for on-demand drug release. J Colloid Interface Sci 2023; 648: 338-47.
[http://dx.doi.org/10.1016/j.jcis.2023.05.181] [PMID: 37301158]
[94]
Liu L, Li R, Liu F, et al. Highly elastic and strain sensing corn protein electrospun fibers for monitoring of wound healing. ACS Nano 2023; 17(10): 9600-10.
[http://dx.doi.org/10.1021/acsnano.3c03087] [PMID: 37130310]
[95]
Singh B, Kim J, Shukla N, Lee J, Kim K, Park MH. Smart delivery platform using core–shell nanofibers for sequential drug release in wound healing. ACS Appl Bio Mater 2023; 6(6): 2314-24.
[http://dx.doi.org/10.1021/acsabm.3c00178] [PMID: 37254937]
[96]
Deng X, Wu Y, Tang Y, et al. Microenvironment-responsive smart hydrogels with antibacterial activity and immune regulation for accelerating chronic wound healing. J Control Release 2024; 368: 518-32.
[http://dx.doi.org/10.1016/j.jconrel.2024.03.002] [PMID: 38462042]
[97]
Zhong H, Huang J, Luo M, et al. Near-field electrospun PCL fibers/GelMA hydrogel composite dressing with controlled deferoxamine-release ability and retiform surface for diabetic wound healing. Nano Res 2023; 16(1): 599-612.
[http://dx.doi.org/10.1007/s12274-022-4813-5]
[98]
Xu J, Huang H, Sun C, et al. Flexible accelerated-wound-healing antibacterial hydrogel-nanofiber scaffold for intelligent wearable health monitoring. ACS Appl Mater Interfaces 2024; 16(5): 5438-50.
[http://dx.doi.org/10.1021/acsami.3c14445] [PMID: 38112719]