Current Chinese Science

Author(s): Ganesh Mhaske*, Siddhesh Rokade, Chaitrali Rokade, Diksha Sonkusare, Divyani Mane, Poonam Mane and Aishwarya Shinde

DOI: 10.2174/0122102981320470240909113147

DownloadDownload PDF Flyer Cite As
In Silico Evaluation of Novel Quinoline Derivatives Targeting Hepatocyte Growth Factor Receptors as Anticancer Agents

Page: [260 - 275] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Numerous methods for computer-aided drug design (CAAD) have made it possible to create and synthesize new chemical entities. The utilization of In Silico techniques and structure-based drug design (SBDD) facilitate the visualization of the ligand-target binding process, in addition to allowing the prediction of receptor affinities and important binding pocket locations.

Objective: The current research work was carried out to recognize novel quinoline derivatives designed specifically to bind with hepatocyte growth factor (HGF) receptors.

Materials and Methods: For the formation of quinolines derivatives, ChemAxon Marvin Sketch 5.11.5 was utilized. SwissADME and the admetSAR online web tools were exploited to predict the pharmacokinetic properties and the toxicity of compounds. Numerous software, including Autodock 1.5.7, MGL Tools 1.5.7, Biovia Discovery Studio Visualizer v20.1.0.19295, Procheck, Protparam tool, and PyMOL, were also used to determine the ligand-receptor interactions of derivatives of quinoline with the target receptor (PDB -1R0P).

Results: Based on In Silico research, it was found that all compounds were less toxic, orally bioavailable, and had the proper pharmacokinetic properties. When compared to the commonly used drug gefitinib, the docking scores of all newly created derivative compounds were higher.

Conclusion: An increased binding energy, the number of H-bonds generated, and interactions with quinoline analogues are significant parameters to be considered while constructing compounds that are most appropriate for additional investigation. The favorable pharmacokinetic profile of quinoline moiety was found to enhance its potential as a novel lung cancer treatment alternative and may help medicinal chemists to carry out more thorough in vitro, in vivo, chemical, and pharmacological research studies.

Keywords: Mesenchymal-epithelial transition factor, HGFR, C-met, CADD, molecular docking, pharmacokinetics, bioavailability score, binding affinity.

Graphical Abstract

[1]
Mattiuzzi, C.; Lippi, G. Current cancer epidemiology. J. Epidemiol. Glob. Health, 2019, 9(4), 217-222.
[http://dx.doi.org/10.2991/jegh.k.191008.001] [PMID: 31854162]
[2]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[3]
Chadha, A.S.; Ganti, A.K.; Sohi, J.S.; Sahmoun, A.E.; Mehdi, S.A. Survival in untreated early stage non-small cell lung cancer. Anticancer Res., 2005, 25(5), 3517-3520.
[PMID: 16101172]
[4]
Furák, J.; Troján, I.; Szöke, T.; Agócs, L.; Csekeö, A.; Kas, J.; Svastics, E.; Eller, J.; Tiszlavicz, L. Lung cancer and its operable brain metastasis: Survival rate and staging problems. Ann. Thorac. Surg., 2005, 79(1), 241-247.
[http://dx.doi.org/10.1016/j.athoracsur.2004.06.051] [PMID: 15620950]
[5]
Padinharayil, H.; Varghese, J.; John, M.C.; Rajanikant, G.K.; Wilson, C.M.; Al-Yozbaki, M.; Renu, K.; Dewanjee, S.; Sanyal, R.; Dey, A.; Mukherjee, A.G.; Wanjari, U.R.; Gopalakrishnan, A.V.; George, A. Non-small cell lung carcinoma (NSCLC): Implications on molecular pathology and advances in early diagnostics and therapeutics. Genes Dis., 2023, 10(3), 960-989.
[http://dx.doi.org/10.1016/j.gendis.2022.07.023] [PMID: 37396553]
[6]
Huang, L.; Yin, Y.; Qian, D.; Cao, Y.; Wang, D.; Wu, X.; Ming, L.; Huang, Z.; Zhou, L. IRF7 and IFIT2 in mediating different hemorrhage outcomes for non-small cell lung cancer after bevacizumab treatment. J. Thorac. Dis., 2023, 15(4), 2022-2036.
[http://dx.doi.org/10.21037/jtd-23-389] [PMID: 37197507]
[7]
Faruki, H.; Mayhew, G.M.; Serody, J.S.; Hayes, D.N.; Perou, C.M.; Lai-Goldman, M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J. Thorac. Oncol., 2017, 12(6), 943-953.
[http://dx.doi.org/10.1016/j.jtho.2017.03.010] [PMID: 28341226]
[8]
Travis, W.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol., 2012, 25(1)(Suppl. 1), S18-S30.
[http://dx.doi.org/10.1038/modpathol.2011.150] [PMID: 22214967]
[9]
Pesch, B.; Kendzia, B.; Gustavsson, P.; Jöckel, K.H.; Johnen, G.; Pohlabeln, H.; Olsson, A.; Ahrens, W.; Gross, I.M.; Brüske, I.; Wichmann, H.E.; Merletti, F.; Richiardi, L.; Simonato, L.; Fortes, C.; Siemiatycki, J.; Parent, M.E.; Consonni, D.; Landi, M.T.; Caporaso, N.; Zaridze, D.; Cassidy, A.; Szeszenia-Dabrowska, N.; Rudnai, P.; Lissowska, J.; Stücker, I.; Fabianova, E.; Dumitru, R.S.; Bencko, V.; Foretova, L.; Janout, V.; Rudin, C.M.; Brennan, P.; Boffetta, P.; Straif, K.; Brüning, T. Cigarette smoking and lung cancer—relative risk estimates for the major histological types from a pooled analysis of case–control studies. Int. J. Cancer, 2012, 131(5), 1210-1219.
[http://dx.doi.org/10.1002/ijc.27339] [PMID: 22052329]
[10]
Fraser, M.; Seetharamu, N.; Diamond, M.; Lee, C.S. Profile of capmatinib for the treatment of metastatic non-small cell lung Cancer (NSCLC): Patient selection and perspectives. Cancer Manag. Res., 2023, 15, 1233-1243.
[http://dx.doi.org/10.2147/CMAR.S386799] [PMID: 37941971]
[11]
Yuan, T.; Ni, P.; Zhang, Z.; Wu, D.; Sun, G.; Zhang, H.; Chen, B.; Wang, X.; Cheng, Z. Targeting BET proteins inhibited the growth of non‐small cell lung carcinoma through downregulation of Met expression. Cell Biol. Int., 2023, 47(3), 622-633.
[http://dx.doi.org/10.1002/cbin.11962] [PMID: 36448366]
[12]
Gelsomino, F.; Facchinetti, F.; Haspinger, E.R.; Garassino, M.C.; Trusolino, L.; De Braud, F.; Tiseo, M. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit. Rev. Oncol. Hematol., 2014, 89(2), 284-299.
[http://dx.doi.org/10.1016/j.critrevonc.2013.11.006] [PMID: 24355409]
[13]
Rothschild, S. Targeted therapies in non-small cell lung cancer beyond EGFR and ALK. Cancers (Basel), 2015, 7(2), 930-949.
[http://dx.doi.org/10.3390/cancers7020816] [PMID: 26018876]
[14]
Zhang, Y.; Jain, R.; Zhu, M. Recent progress and advances in HGF/MET-targeted therapeutic agents for cancer treatment. Biomedicines, 2015, 3(1), 149-181.
[http://dx.doi.org/10.3390/biomedicines3010149] [PMID: 28536405]
[15]
Weidner, K.M.; Hartmann, G.; Sachs, M.; Birchmeier, W. Properties and functions of scatter factor/hepatocyte growth factor and its receptor c-Met. Am. J. Respir. Cell Mol. Biol., 1993, 8, 229.
[http://dx.doi.org/10.1165/ajrcmb/8.3.229]
[16]
Rosen, E.M.; Nigam, S.K.; Goldberg, I.D. Scatter factor and the c-met receptor: A paradigm for mesenchymal/epithelial interaction. J. Cell Biol., 1994, 127(6), 1783-1787.
[http://dx.doi.org/10.1083/jcb.127.6.1783] [PMID: 7806559]
[17]
Jin, L.; Fuchs, A.; Schnitt, S.J.; Yao, Y.; Joseph, A.; Lamszus, K.; Park, M.; Goldberg, I.D.; Rosen, E.M. Expression of scatter factor and c‐ met receptor in benign and malignant breast tissue. Cancer, 1997, 79(4), 749-760.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19970215)79:4<749:AID-CNCR12>3.0.CO;2-#] [PMID: 9024713]
[18]
Sattler, M.; Salgia, R. c-Met and hepatocyte growth factor: Potential as novel targets in cancer therapy. Curr. Oncol. Rep., 2007, 9(2), 102-108.
[http://dx.doi.org/10.1007/s11912-007-0005-4] [PMID: 17288874]
[19]
Jung, K.H.; Park, B.H.; Hong, S.S. Progress in cancer therapy targeting c-Met signaling pathway. Arch. Pharm. Res., 2012, 35(4), 595-604.
[http://dx.doi.org/10.1007/s12272-012-0402-6] [PMID: 22553051]
[20]
Salgia, R. Role of c-Met in cancer: Emphasis on lung cancer. In: Seminars in oncology; WB Saunders, 2009.
[http://dx.doi.org/10.1053/j.seminoncol.2009.02.008]
[21]
Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res., 2016, 5(3), 288-300.
[http://dx.doi.org/10.21037/tlcr.2016.06.07] [PMID: 27413711]
[22]
Ahmed, H.; Skouta, R. Hepatocyte growth factor receptor (HGFR) as a potential lung cancer target. FASEB J., 2018, 32(S1), 531-20.
[http://dx.doi.org/10.1096/fasebj.2018.32.1_supplement.531.20]
[23]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(1_suppl)(Suppl.), S7-S19.
[http://dx.doi.org/10.1177/1758834011422556] [PMID: 22128289]
[24]
Maulik, G.; Shrikhande, A.; Kijima, T.; Ma, P.C.; Morrison, P.T.; Salgia, R. Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev., 2002, 13(1), 41-59.
[http://dx.doi.org/10.1016/S1359-6101(01)00029-6] [PMID: 11750879]
[25]
Tam, N.N.C.; Chung, S.S.; Lee, D.T.; Wong, Y.C. Aberrant expression of hepatocyte growth factor and its receptor, c-Met, during sex hormone-induced prostatic carcinogenesis in the Noble rat. Carcinogenesis, 2000, 21(12), 2183-2191.
[http://dx.doi.org/10.1093/carcin/21.12.2183] [PMID: 11133807]
[26]
Gao, C.; Vande Woude, G.F. The MET Receptor Family. In: Receptor Tyrosine Kinases: Family and Subfamilies; Springer: Cham, 2015.
[http://dx.doi.org/10.1007/978-3-319-11888-8_8]
[27]
Nakamura, T. Structure and function of hepatocyte growth factor. Prog. Growth Factor Res., 1991, 3(1), 67-85.
[http://dx.doi.org/10.1016/0955-2235(91)90014-U] [PMID: 1838014]
[28]
Bottaro, D.P.; Rubin, J.S.; Faletto, D.L.; Chan, A.M.L.; Kmiecik, T.E.; Vande Woude, G.F.; Aaronson, S.A. Identification of the hepatocyte growth factor receptor as the c-Met proto-oncogene product. Science, 1991, 251(4995), 802-804.
[http://dx.doi.org/10.1126/science.1846706] [PMID: 1846706]
[29]
Gohda, E.; Tsubouchi, H.; Nakayama, H.; Hirono, S.; Sakiyama, O.; Takahashi, K.; Miyazaki, H.; Hashimoto, S.; Daikuhara, Y. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J. Clin. Invest., 1988, 81(2), 414-419.
[http://dx.doi.org/10.1172/JCI113334] [PMID: 3276728]
[30]
Eder, J.P.; Vande Woude, G.F.; Boerner, S.A.; LoRusso, P.M. Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin. Cancer Res., 2009, 15(7), 2207-2214.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1306] [PMID: 19318488]
[31]
Longati, P.; Bardelli, A.; Ponzetto, C.; Naldini, L.; Comoglio, P.M. Tyrosines1234-1235 are critical for activation of the tyrosine kinase encoded by the MET proto-oncogene (HGF receptor). Oncogene, 1994, 9(1), 49-57.
[PMID: 8302603]
[32]
Miranda, O.; Farooqui, M.; Siegfried, J.M. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers (Basel), 2018, 10(9), 280.
[http://dx.doi.org/10.3390/cancers10090280] [PMID: 30134579]
[33]
Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; Richards, W.; Sugarbaker, D.; Husain, A.N.; Christensen, J.G.; Salgia, R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res., 2005, 65(4), 1479-1488.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2650] [PMID: 15735036]
[34]
Pasquini, G.; Giaccone, G. C-MET inhibitors for advanced non-small cell lung cancer. Expert Opin. Investig. Drugs, 2018, 27(4), 363-375.
[http://dx.doi.org/10.1080/13543784.2018.1462336] [PMID: 29621416]
[35]
Sattler, M.; Hasina, R.; Reddy, M.M.; Gangadhar, T.; Salgia, R. The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther. Adv. Med. Oncol., 2011, 3(4), 171-184.
[http://dx.doi.org/10.1177/1758834011408636] [PMID: 21904579]
[36]
Ozasa, H.; Oguri, T.; Maeno, K.; Takakuwa, O.; Kunii, E.; Yagi, Y.; Uemura, T.; Kasai, D.; Miyazaki, M.; Niimi, A. Significance of c‐ MET overexpression in cytotoxic anticancer drug‐resistant small‐cell lung cancer cells. Cancer Sci., 2014, 105(8), 1032-1039.
[http://dx.doi.org/10.1111/cas.12447] [PMID: 24827412]
[37]
Taniguchi, H.; Yamada, T.; Takeuchi, S.; Arai, S.; Fukuda, K.; Sakamoto, S.; Kawada, M.; Yamaguchi, H.; Mukae, H.; Yano, S. Impact of MET inhibition on small‐cell lung cancer cells showing aberrant activation of the hepatocyte growth factor/MET pathway. Cancer Sci., 2017, 108(7), 1378-1385.
[http://dx.doi.org/10.1111/cas.13268] [PMID: 28474864]
[38]
Jücker, M.; Günther, A.; Gradl, G.; Fonatsch, C.; Krueger, G.; Diehl, V.; Tesch, H. The Met/Hepatocyte growth factor receptor (HGFR) gene is overexpressed in some cases of human leukemia and lymphoma. Leuk. Res., 1994, 18(1), 7-16.
[http://dx.doi.org/10.1016/0145-2126(94)90003-5] [PMID: 8289471]
[39]
You, W.K.; McDonald, D.M. The hepatocyte growth factor/c-Met signaling pathway as a therapeutic target to inhibit angiogenesis. BMB Rep., 2008, 41(12), 833-839.
[http://dx.doi.org/10.5483/BMBRep.2008.41.12.833] [PMID: 19123972]
[40]
Li, H.J.; Ke, F.Y.; Lin, C.C.; Lu, M.Y.; Kuo, Y.H.; Wang, Y.P.; Liang, K.H.; Lin, S.C.; Chang, Y.H.; Chen, H.Y.; Yang, P.C.; Wu, H.C. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling–driven epithelial-to-mesenchymal transition. Cancer Res., 2021, 81(15), 4094-4109.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3543] [PMID: 34145039]
[41]
Peruzzi, B.; Bottaro, D.P. Targeting the c-Met signaling pathway in cancer. Clin. Cancer Res., 2006, 12(12), 3657-3660.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-0818] [PMID: 16778093]
[42]
Maroun, C.R.; Rowlands, T. The Met receptor tyrosine kinase: A key player in oncogenesis and drug resistance. Pharmacol. Ther., 2014, 142(3), 316-338.
[http://dx.doi.org/10.1016/j.pharmthera.2013.12.014] [PMID: 24384534]
[43]
Elharafi, H.; Elhamdani, N.; Hachim, M.E.; Tebbaai, H.; Sadik, K.; El Hachadi, F.; Aboulmouhajir, A. In silico exploration of bioavailability, druggability, toxicity alerts and biological activity of a large series of fatty acids. Comput. Toxicol., 2021, 17, 100153.
[http://dx.doi.org/10.1016/j.comtox.2021.100153]
[44]
Yu, W.; MacKerell, A.D. Computer-aided drug design methods. Methods Mol. Biol., 2017, 1520, 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5]
[45]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[46]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[47]
Gabriele, B.; Mancuso, R.; Salerno, G.; Ruffolo, G.; Plastina, P. Novel and convenient synthesis of substituted quinolines by copper- or palladium-catalyzed cyclodehydration of 1-(2-aminoaryl)-2-yn-1-ols. J. Org. Chem., 2007, 72(18), 6873-6877.
[http://dx.doi.org/10.1021/jo071094z] [PMID: 17655259]
[48]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[49]
Köprülü, T.K.; Ökten, S.; Tekin, Ş.; Çakmak, O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J. Biochem. Mol. Toxicol., 2019, 33(3), e22260.
[http://dx.doi.org/10.1002/jbt.22260] [PMID: 30431695]
[50]
Nandhakumar, R.; Suresh, T.; Jude, A.L.C. Rajesh kannan, V.; Mohan, P.S. Synthesis, antimicrobial activities and cytogenetic studies of newer diazepino quinoline derivatives via Vilsmeier–Haack reaction. Eur. J. Med. Chem., 2007, 42(8), 1128-1136.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.004] [PMID: 17331623]
[51]
Katariya, K.D.; Shah, S.R.; Reddy, D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg. Chem., 2020, 94, 103406.
[http://dx.doi.org/10.1016/j.bioorg.2019.103406] [PMID: 31718889]
[52]
González-Sánchez, I.; Solano, J.D.; Loza-Mejía, M.A.; Olvera-Vázquez, S.; Rodríguez-Sotres, R.; Morán, J.; Lira-Rocha, A.; Cerbón, M.A. Antineoplastic activity of the thiazolo[5,4-b]quinoline derivative D3CLP in K-562 cells is mediated through effector caspases activation. Eur. J. Med. Chem., 2011, 46(6), 2102-2108.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.063] [PMID: 21420205]
[53]
Iqbal, J.; Ejaz, S.A.; Khan, I.; Ausekle, E.; Miliutina, M.; Langer, P. Exploration of quinolone and quinoline derivatives as potential anticancer agents. Daru, 2019, 27(2), 613-626.
[http://dx.doi.org/10.1007/s40199-019-00290-3] [PMID: 31410781]
[54]
Tseng, C.H.; Chen, Y.L.; Chung, K.Y.; Cheng, C.M.; Wang, C.H.; Tzeng, C.C. Synthesis and antiproliferative evaluation of 6-arylindeno[1,2-c]quinoline derivatives. Bioorg. Med. Chem., 2009, 17(21), 7465-7476.
[http://dx.doi.org/10.1016/j.bmc.2009.09.021] [PMID: 19796956]
[55]
Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Milczarek, M.; Wietrzyk, J.; Boryczka, S.; Mol, W.; Jampilek, J.; Dohnal, J.; Kalinowski, D.S.; Richardson, D.R. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg. Med. Chem. Lett., 2007, 17(22), 6138-6141.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.040] [PMID: 17904844]
[56]
Radini, I.; Elsheikh, T.; El-Telbani, E.; Khidre, R. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21(7), 909.
[http://dx.doi.org/10.3390/molecules21070909] [PMID: 27428939]
[57]
Sharma, R.; Patil, S.; Maurya, P. Drug discovery studies on quinoline-based derivatives as potential antimalarial agents. SAR QSAR Environ. Res., 2014, 25(3), 189-203.
[http://dx.doi.org/10.1080/1062936X.2013.875484] [PMID: 24601770]
[58]
Guan, L.P.; Jin, Q.H.; Tian, G.R.; Chai, K.Y.; Quan, Z.S. Synthesis of some quinoline-2(1H)-one and 1, 2, 4-triazolo[4,3-a] quinoline derivatives as potent anticonvulsants. J. Pharm. Pharm. Sci., 2007, 10(3), 254-262.
[PMID: 17727789]
[59]
Xie, Z.F.; Chai, K.Y.; Piao, H.R.; Kwak, K.C.; Quan, Z.S. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines. Bioorg. Med. Chem. Lett., 2005, 15(21), 4803-4805.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.051] [PMID: 16139502]
[60]
Wen, X.; Wang, S.B.; Liu, D.C.; Gong, G.H.; Quan, Z.S. Synthesis and evaluation of the anti-inflammatory activity of quinoline derivatives. Med. Chem. Res., 2015, 24(6), 2591-2603.
[http://dx.doi.org/10.1007/s00044-015-1323-y]
[61]
Pinz, M.P.; Reis, A.S.; de Oliveira, R.L.; Voss, G.T.; Vogt, A.G.; Sacramento, M.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. 7-Chloro-4-phenylsulfonyl quinoline, a new antinociceptive and anti-inflammatory molecule: Structural improvement of a quinoline derivate with pharmacological activity. Regul. Toxicol. Pharmacol., 2017, 90, 72-77.
[http://dx.doi.org/10.1016/j.yrtph.2017.08.014] [PMID: 28842336]
[62]
Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem., 2005, 13(20), 5759-5765.
[http://dx.doi.org/10.1016/j.bmc.2005.05.053] [PMID: 16002298]
[63]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[64]
Guan, Y.F.; Liu, X.J.; Yuan, X.Y.; Liu, W.B.; Li, Y.R.; Yu, G.X.; Tian, X.Y.; Zhang, Y.B.; Song, J.; Li, W.; Zhang, S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules, 2021, 26(16), 4899.
[http://dx.doi.org/10.3390/molecules26164899] [PMID: 34443487]
[65]
Shetty, P.R.; Shivaraja, G.; Krishnaswamy, G.; Pruthviraj, K.; Mohan, V.C.; Sreenivasa, S. Synthesis, characterization, biological screening, ADME and molecular docking studies of 2-phenyl quinoline-4-carboxamide derivatives. Asian J. Chem., 2020, 32(5), 1151-1157.
[http://dx.doi.org/10.14233/ajchem.2020.22583]
[66]
Mhaske, G.S.; Sen, A.K.; Shah, A.; Khiste, R.H.; Dale, A.V.; Sen, D.B. In silico identification of novel quinoline-3-carboxamide derivatives targeting platelet-derived growth factor receptor. Curr. Cancer Ther. Rev., 2022, 18(2), 131-142.
[http://dx.doi.org/10.2174/1573394718666220421111546]
[67]
Venugopala, K.N.; Uppar, V.; Chandrashekharappa, S.; Abdallah, H.H.; Pillay, M.; Deb, P.K.; Morsy, M.A.; Aldhubiab, B.E.; Attimarad, M.; Nair, A.B.; Sreeharsha, N.; Tratrat, C.; Yousef Jaber, A.; Venugopala, R.; Mailavaram, R.P.; Al-Jaidi, B.A.; Kandeel, M.; Haroun, M.; Padmashali, B. Cytotoxicity and antimycobacterial properties of pyrrolo[1, 2-a] quinoline derivatives: Molecular target identification and molecular docking studies. Antibiotics (Basel), 2020, 9(5), 233.
[http://dx.doi.org/10.3390/antibiotics9050233] [PMID: 32392709]
[68]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[69]
Daina, A.; Zoete, V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 2016, 11(11), 1117-1121.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[70]
Cheminformatics software for the next generation of scientists. Available from: http://www.chemaxon.com (accessed on 27-8- 2024)
[71]
Bank, R.P.D. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met in complex with the microbial alkaloid K-252a. Proc. Natl. Acad. Sci., 2023, 100, 12654-12659.
[72]
Free Download: BIOVIA Discovery Studio Visualizer., 2023. Available from: https://discover.3ds.com/discovery-studio-visualizer-download (accessed on 27-8-2024)
[73]
SWISS ADME. 2023. Available from: http://www.swissadme.ch/ (accessed on 27-8-2024)
[74]
AutoDock Vina. 2021. Available from: https://vina.scripps.edu/(accessed on 27-8-2024)