Current Green Chemistry

Author(s): Manoj Kumar Patel, Km Neha Shivhare*, Manish Kumar Jaiswal, Saurabh Kumar Tiwari, Ved Prakash, Rana Krishna Pal Singh and Ibadur Rahman Siddiqui

DOI: 10.2174/0122133461307610240903094350

DownloadDownload PDF Flyer Cite As
Electro-sustainable Synthesis: Rapid and Efficient Production of Benzothiazole Derivatives through Electrochemical Means for Sustainable Chemistry

Page: [75 - 83] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: We generally focused on an environmentally green synthesis and we used to replace toxic methods, hazardous reaction conditions from the greener methods such as electro-organic synthesis, use of visible light as an energy source, natural and biodegradable green catalysts etc.

Objective: Synthesis of biologically-active benzothiazole derivatives via eco-compatible method is the objective of our research article.

Methods: Electrochemical method where electro-organic synthesis was carried out in an undivided cell at room temperature in the presence of lithium perchlorate as a supporting electrolyte and electricity was also utilized here instead of a chemical substance with a simple graphite-iron electrode combination.

Results: The generation of 2-substituted benzothiazoles was achieved through the amalgamation of bis(2- aminophenyl)disulfides with aromatic aldehydes under the influence of the electrodes. Products were obtained here with the satisfactory to excellent yields with the range of 64% - 91%.

Conclusion: In conclusion, for the synthesis of benzothiazole derivatives, a different aqueous phase, facile, simple and dexterous method that is free from any type of hazardous catalyst was reported. This protocol represents a novel synthetic concept and an eco-compatible pathway along with green chemistry expertise like usage of the nontoxic solvent with effortless work-up procedure.

Keywords: Electro-catalysed, benzothiazoles, green synthesis, eco-compatible, sustainable chemistry, electro-organic synthesis.

Graphical Abstract

[1]
Schneider, P.; Schneider, G. Privileged structures revisited. Angew. Chem. Int. Ed., 2017, 56(27), 7971-7974.
[http://dx.doi.org/10.1002/anie.201702816] [PMID: 28558125]
[2]
Bräse, S., Ed.; Privileged Scaffolds in Medicinal Chemistry: Design, Synthesis, Evaluation; RSC: Cambridge, 2015.
[http://dx.doi.org/10.1039/9781782622246]
[3]
Yet, L. Privileged Structures in Drug Discovery; John Wiley & Sons, Inc.: Hoboken, 2018.
[http://dx.doi.org/10.1002/9781118686263]
[4]
(a) Vicini, P.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C.A.; La Colla, P. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases. Bioorg. Med. Chem., 2003, 11(22), 4785-4789.
[http://dx.doi.org/10.1016/S0968-0896(03)00493-0] [PMID: 14556794];
(b) Tale, R.H. Novel synthesis of 2-arylbenzothiazoles mediated by ceric ammonium nitrate (CAN). Org. Lett., 2002, 4(10), 1641-1642.
[http://dx.doi.org/10.1021/ol020027i] [PMID: 12000262]
[5]
(a) Henriksen, G.; Hauser, A.I.; Westwell, A.D.; Yousefi, B.H.; Schwaiger, M.; Drzezga, A.; Wester, H.J. Metabolically stabilized benzothiazoles for imaging of amyloid plaques. J. Med. Chem., 2007, 50(6), 1087-1089.
[http://dx.doi.org/10.1021/jm061466g] [PMID: 17319654];
(b) Wang, M.; Gao, M.; Mock, B.H.; Miller, K.D.; Sledge, G.W.; Hutchins, G.D.; Zheng, Q.H. Synthesis of carbon-11 labeled fluorinated 2-arylbenzothiazoles as novel potential PET cancer imaging agents. Bioorg. Med. Chem., 2006, 14(24), 8599-8607.
[http://dx.doi.org/10.1016/j.bmc.2006.08.026] [PMID: 16962783];
(c) Mortimer, C.G.; Wells, G.; Crochard, J.P.; Stone, E.L.; Bradshaw, T.D.; Stevens, M.F.G.; Westwell, A.D. Antitumor benzothiazoles. 26. 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem., 2006, 49(1), 179-185.
[http://dx.doi.org/10.1021/jm050942k] [PMID: 16392802];
(d) Kamal, A.; Khan, M.N.A.; Reddy, K.S.; Srikanth, Y.V.V.; Sridhar, B.; Sridhar, B. Synthesis, structural characterization and biological evaluation of novel[1,2,4]triazolo[1,5-b][1,2,4]benzothiadiazine-benzothiazole conjugates as potential anticancer agents. Chem. Biol. Drug Des., 2008, 71(1), 78-86.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00609.x] [PMID: 18086151];
(e) Liu, C.; Lin, J.; Pitt, S.; Zhang, R.F.; Sack, J.S.; Kiefer, S.E.; Kish, K.; Doweyko, A.M.; Zhang, H.; Marathe, P.H.; Trzaskos, J.; Mckinnon, M.; Dodd, J.H.; Barrish, J.C.; Schieven, G.L.; Leftheris, K. Benzothiazole based inhibitors of p38α MAP kinase. Bioorg. Med. Chem. Lett., 2008, 18(6), 1874-1879.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.011] [PMID: 18296051]
[6]
Bellavia, V.; Natangelo, M.; Fanelli, R.; Rotilio, D. Analysis of benzothiazole in Italian wines using headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Agric. Food Chem., 2000, 48(4), 1239-1242.
[http://dx.doi.org/10.1021/jf990634t] [PMID: 10775378]
[7]
(a) Ono, M. Development of positron-emission tomography/single-photon emission computed tomography imaging probes for in vivo detection of beta-amyloid plaques in Alzheimer’s brains. Chem. Pharm. Bull. (Tokyo), 2009, 57(10), 1029-1039.
[http://dx.doi.org/10.1248/cpb.57.1029] [PMID: 19801854];
(b) Henriksen, G.; Yousefi, B.H.; Drzezga, A.; Wester, H.J. Development and evaluation of compounds for imaging of β-amyloid plaque by means of positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(S1), 75-81.
[http://dx.doi.org/10.1007/s00259-007-0705-x]
[8]
Mathis, C.A.; Bacskai, B.J.; Kajdasz, S.T.; McLellan, M.E.; Frosch, M.P.; Hyman, B.T.; Holt, D.P.; Wang, Y.; Huang, G.F.; Debnath, M.L.; Klunk, W.E. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg. Med. Chem. Lett., 2002, 12(3), 295-298.
[http://dx.doi.org/10.1016/S0960-894X(01)00734-X] [PMID: 11814781]
[9]
Chen, Z.; Zeng, M.; Song, B.; Hou, C.; Hu, D.; Li, X.; Wang, Z.; Fan, H.; Bi, L.; Liu, J.; Yu, D. Dufulin activates HrBP1 to produce antiviral responses in tobacco. PLos One, 2012, 7(5), e37944.
[10]
Alarcón, A.B.; Cuesta-Rubio, O.; Pérez, J.C.; Piccinelli, A.L.; Rastrelli, L. Constituents of the cuban endemic species Calophyllum pinetorum. J. Nat. Prod., 2008, 71(7), 1283-1286.
[http://dx.doi.org/10.1021/np800079c]
[11]
(a) Kumbhare, R.M.; Dadmal, T.; Kosurkar, U.; Sridhar, V.; Rao, J.V. Synthesis and cytotoxic evaluation of thiourea and N-bis-benzothiazole derivatives: A novel class of cytotoxic agents. Bioorg. Med. Chem. Lett., 2012, 22(1), 453-455.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.106] [PMID: 22115593];
(b) Wang, Z.; Shi, X.H.; Wang, J.; Zhou, T.; Xu, Y.Z.; Huang, T.T.; Li, Y.F.; Zhao, Y.L.; Yang, L.; Yang, S.Y.; Yu, L.T.; Wei, Y.Q. Synthesis, structure-activity relationships and preliminary antitumor evaluation of benzothiazole-2-thiol derivatives as novel apoptosis inducers. Bioorg. Med. Chem. Lett., 2011, 21(4), 1097-1101.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.124] [PMID: 21262571]
[12]
Bolelli, K.; Yalcin, I.; Ertan-Bolelli, T.; Özgen, S.; Kaynak-Onurdag, F.; Yildiz, I.; Aki, E. Synthesis of novel 2-[4-(4-substitutedbenzamido/phenylacetamido)phenyl]benzothiazoles as antimicrobial agents. Med. Chem. Res., 2012, 21(11), 3818-3825.
[http://dx.doi.org/10.1007/s00044-011-9918-4]
[13]
(a) Porcari, A.R.; Devivar, R.V.; Kucera, L.S.; Drach, J.C.; Townsend, L.B. Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6-trichloro-1-(β-D-ribofuranosyl) benzimidazole. J. Med. Chem., 1998, 41(8), 1252-1262.
[http://dx.doi.org/10.1021/jm970559i] [PMID: 9548815];
(b) Roth, T.; Morningstar, M.L.; Boyer, P.L.; Hughes, S.H.; Buckheit, R.W., Jr; Michejda, C.J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-substituted benzimidazoles. J. Med. Chem., 1997, 40(26), 4199-4207.
[http://dx.doi.org/10.1021/jm970096g] [PMID: 9435891]
[14]
Van Zandt, M.C.; Jones, M.L.; Gunn, D.E.; Geraci, L.S.; Jones, J.H.; Sawicki, D.R.; Sredy, J.; Jacot, J.L.; DiCioccio, A.T.; Petrova, T.; Mitschler, A.; Podjarny, A.D. Discovery of 3-[(4,5,7-trifluorobenzothiazol-2-yl)methyl]indole-N-acetic acid (lidorestat) and congeners as highly potent and selective inhibitors of aldose reductase for treatment of chronic diabetic complications. J. Med. Chem., 2005, 48(9), 3141-3152.
[http://dx.doi.org/10.1021/jm0492094] [PMID: 15857120]
[15]
Mylari, B.L.; Larson, E.R.; Beyer, T.A.; Zembrowski, W.J.; Aldinger, C.E.; Dee, M.F.; Siegel, T.W.; Singleton, D.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem., 1991, 34(1), 108-122.
[http://dx.doi.org/10.1021/jm00105a018] [PMID: 1899452]
[16]
(a) Bradshaw, T.; Westwell, A. The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr. Med. Chem., 2004, 11(8), 1009-1021.
[http://dx.doi.org/10.2174/0929867043455530] [PMID: 15078163];
(b) Rodrigues-Rodrigues, C.; De Groot, N.S.; Rimola, A. Alva- rez-Larena; Lloveras, A. V.; Vidal- Gancedo, J.; Ventura, S.; Vend- rell, J.; Sodupe, M.; Gonzalez-Duarte, P. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J. Am. Chem. Soc., 2009, 131, 1436-1451.
[17]
Chen, j.; Mo, Y. Wireless electrochemical reactor for accelerated exploratory study of electroorganic synthesis. ACS Cent. Sci., 2023, 9, 1820-1826.
[http://dx.doi.org/10.1021/acscentsci.3c00856] [PMID: 37780362]
[18]
Claraz, A.; Djian, A.; Masson, G. Electrochemical tandem trifluoromethylation of allylamines/formal (3 + 2)-cycloaddition for the rapid access to CF3-containing imidazolines and oxazolidines. Org. Chem. Front., 2021, 8(2), 288-296.
[http://dx.doi.org/10.1039/D0QO01307B]
[19]
Zhang, Y.; Xu, S.; Zhu, Y.; Xu, Q.; Gao, H.; Liang, Z.; Yao, X. One‐pot synthesis of 4‐thiocyanato‐1 H‐pyrazoles through electrochemical multicomponent thiocyanation under metal‐ and oxidant‐free conditions. Eur. J. Org. Chem., 2023, 26(2), e202201278.
[http://dx.doi.org/10.1002/ejoc.202201278]
[20]
Elinson, M.N.; Ryzhkova, Y.E.; Vereshchagin, A.N.; Ryzhkov, F.V.; Kalashnikova, V.M.; Korolev, V.A.; Egorov, M.P. Electrochemically induced assembling of isatins, kojic acid, and malonic acid derivatives into substituted spiro[indole‐3,4′‐pyran]‐2(1H)‐one scaffold and predicting potential protein targets. J. Heterocycl. Chem., 2023, 60(2), 277-290.
[http://dx.doi.org/10.1002/jhet.4579]
[21]
Mohammadi, A.A.; Makarem, S.; Ahdenov, R.; Notash, N.A. Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction. Mol. Divers., 2020, 24(3), 763-770.
[http://dx.doi.org/10.1007/s11030-019-09979-8] [PMID: 31414305]
[22]
(a) Little, R.D.; Moeller, K.D. Organic electrochemistry as a tool for synthesis. Electrochem. Soc. Interface, 2002, 11(4), 36-42.;
(b) Moeller, K.; Tang, F.; Chen, C. Electrochemistry and umpolung reactions: New tools for solving synthetic challenges of structure and location. Synthesis, 2007, 2007(21), 3411-3420.
[http://dx.doi.org/10.1055/s-2007-990835]
[23]
(a) Yoshida, J.I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev., 2008, 108(7), 2265-2299.
[http://dx.doi.org/10.1021/cr0680843];
(b) Francke, R.; Little, R.D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev., 2014, 43(8), 2492-2521.
[http://dx.doi.org/10.1039/C3CS60464K];
(c) Sperry, J.B.; Wright, D.L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules. Chem. Soc. Rev., 2006, 35(7), 605-621.
[http://dx.doi.org/10.1039/B512308A];
(d) Frontana-Uribe, B.A.; Little, R. D Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem., 2010, 12, 2099-2119.
[http://dx.doi.org/10.1039/C0GC00382D];
(e) Ogawa, K.A.; Boydston, A.J. Recent developments in organocatalyzed electroorganic chemistry. Chem. Lett., 2015, 44(1), 10-16.
[http://dx.doi.org/10.1246/cl.140915]
[24]
Bernard, A.; Frontana-Uribe, R.; Daniel, L.; Jorge, G.; banez, I.; Agustin, P.; Ruben, V. M. Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem., 2010, 12, 2099-2119.
[http://dx.doi.org/10.1039/C0GC00382D]
[25]
(a) Aslam, S.; Rani, S.; Lal, K.; Fatima, M.; Hardwick, T.; Shirinfar, B.; Ahmed, N. Electrochemical hydrogen production: Sustainable hydrogen economy. Green Chem., 2023, 25, 9543-9573.
[http://dx.doi.org/10.1039/D3GC02849F];
(b) Vlad, A.; Chen, J.; Yao, Y. Organic electrode materials and engineering for electrochemical energy storage. Batteries & Supercaps., 2023, 6(5), e202300090.;
(c) Xu, C.; Zhang, X.; Duan, L.; Zhang, X.; Li, X.; Lü, W. A photo-assisted rechargeable battery: synergy, compatibility and stability of a TiO2/dye/Cu2S bifunctional composite electrode. Nanoscale, 2020, 12, 530-537.
[http://dx.doi.org/10.1039/C9NR09224B]
[26]
Ardakani, M.K.; Rostami, E.; Zare, A. Graphene oxide@polyaniline-FeF3 (GO@PANI-FeF3) as a novel and effectual catalyst for the construction of 4H-pyrimido[2,1-b]benzothiazoles. Adv. J. Chem., Section A., 2024, 7(3), 236-247.
[http://dx.doi.org/10.48309/ajca.2023.428749.1460]
[27]
Meghdadi, S.; Amirnasr, M.; Ford, P.C. A robust one-pot synthesis of benzothiazoles from carboxylic acids including examples with hydroxyl and amino substituents. Tetrahedron Lett., 2012, 53(51), 6950-6953.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.035]
[28]
Weekes, A.A.; Bagley, M.C.; Westwell, A.D. An efficient synthetic route to biologically relevant 2-phenylbenzothiazoles substituted on the benzothiazole ring. Tetrahedron, 2011, 67(40), 7743-7747.
[http://dx.doi.org/10.1016/j.tet.2011.08.004]
[29]
Cole, G.B.; Keum, G.; Liu, J.; Small, G.W.; Satyamurthy, N.; Kepe, V.; Barrio, J.R. Specific estrogen sulfotransferase (SULT1E1) substrates and molecular imaging probe candidates. Proc. Natl. Acad. Sci. USA, 2010, 107(14), 6222-6227.
[http://dx.doi.org/10.1073/pnas.0914904107] [PMID: 20304798]
[30]
Prajapati, N.P.; Vekariya, R.H.; Borad, M.A.; Patel, H.D. Recent advances in the synthesis of 2-substituted benzothiazoles: A review. RSC Advances, 2014, 4(104), 60176-60208.
[http://dx.doi.org/10.1039/C4RA07437H]
[31]
Zhang, M.; Lu, W.T.; Ruan, W.; Zhang, H.J.; Wen, T.B. Copper-catalyzed solvent-free redox condensation of benzothiazoles with aldehydes or benzylic alcohols. Tetrahedron Lett., 2014, 55(10), 1806-1809.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.120]
[32]
Maleki, B.; Salehabadi, H. Ammonium chloride; as a mild and efficient catalyst for the synthesis of some 2-arylbenzothiazoles and bisbenzothiazole derivatives. Eur. J. Chem., 2010, 1(4), 377-380.
[http://dx.doi.org/10.5155/eurjchem.1.4.377-380.165]
[33]
Maleki, B.; Salehabadi, H.; Moghaddam, M.K. Room-temperature synthesis of 2-arylbenzothiazoles using sulfuric acid immobilized on silica as a reusable catalyst under heterogeneous condition. Acta Chim. Slov., 2010, 57(3), 741-745.
[PMID: 24061824]
[34]
Hyvl, J.; Srogl, J. Copper‐catalyzed activation of disulfides as a key step in the synthesis of benzothiazole moieties. Eur. J. Org. Chem., 2010, 2010(15), 2849-2851.
[http://dx.doi.org/10.1002/ejoc.201000174]
[35]
Weekes, A.A.; Frydrych, J.; Westwell, A.D. Convenient synthesis of substituted 2-phenylbenzothiazoles using solid-supported triphenylphosphine. Synth. Commun., 2013, 43(19), 2656-2662.
[http://dx.doi.org/10.1080/00397911.2012.730648]
[36]
Liu, B.; Zhu, N.; Hong, H.; Han, L. Novel synthesis of benzothiazole by self-redox tandem reaction of disulfide with aldehyde. Tetrahedron, 2015, 71(49), 9287-9292.
[http://dx.doi.org/10.1016/j.tet.2015.10.029]
[37]
Ray, S.; Das, P.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. Piperazinylpyrimidine modified MCM-41 for the ecofriendly synthesis of benzothiazoles by the simple cleavage of disulfide in the presence of molecular O2. RSC Advances, 2015, 5(89), 72745-72754.
[http://dx.doi.org/10.1039/C5RA14894D]
[38]
Hutchinson, I.; Chua, M.S.; Browne, H.L.; Trapani, V.; Bradshaw, T.D.; Westwell, A.D.; Stevens, M.F.G. Antitumor benzothiazoles. 14. Synthesis and in vitro biological properties of fluorinated 2-(4-aminophenyl)benzothiazoles. J. Med. Chem., 2001, 44(9), 1446-1455.
[http://dx.doi.org/10.1021/jm001104n] [PMID: 11311068]
[39]
Shi, D.Q.; Rong, S.F.; Dou, G.L. Efficient synthesis of 2-arylbenzothiazole derivatives with the aid of a low-valent titanium reagent. Synth. Commun., 2010, 40(15), 2302-2310.
[http://dx.doi.org/10.1080/00397910903227230]
[40]
Wang, Z.; Tang, R.; Xiao, Q. Na2S2O4‐mediated cyclocondensations of 2,2′‐disulfanediyldi‐ anilines with aldehydes: A facile and inexpensive method for the synthesis of 2‐substituted benzothiazoles. Chin. J. Chem., 2011, 29(2), 314-320.
[http://dx.doi.org/10.1002/cjoc.201190084]
[41]
Srogl, J.; Hývl, J.; Révész, Á.; Schröder, D. Mechanistic insights into a copper-disulfide interaction in oxidation of imines by disulfides. Chem. Commun. (Camb.), 2009, 23(23), 3463-3465.
[http://dx.doi.org/10.1039/b904403e] [PMID: 19503905]