Background: Implants made of titanium are significant in the orthopedic and dental fields. Strong osteointegration can only be achieved by surface modification technologies. The benefits of titanium are numerous, but its inert state prevents it from integrating with human cell's biologically. The titanium implant’s surface is crucial for osseointegration and implant success; hence this is necessary. How to apply osteoconductive coatings or increase the surface roughness of titanium dental implants has been investigated. Surface treatments include grit blasting, acid etching, anodizing, and coatings with calcium phosphate. Clinical efficacy has been demonstrated for most marketed surfaces (>95%). The exact involvement of surface topography and chemical reactions in early dental implant osseointegration is still unclear.
Methods: Sixteen implant samples were made with different parameters. Each one has 5 parameters, including Sandblast Pressure (SP), Sandblast Cycle (SC), Anodizing Time (AT), Anodizing Voltage (AV), and Etching Time (ET). Physical and chemical characterization was used to identify optimized samples. SEM, EDS, XRD, Biodegradation, Contact Angle, Microhardness, MTT, Real-Time PCR, and Antibacterial tests were taken from the samples.
Results: Different surface treatments showed that all surfaces were roughened and micro-nano structures had been shaped. The microhardness of some samples increased during surface treatment. Sample number 14 has potentially antibacterial activities.
Conclusion: Future dental implants may be able to detect tissue formation and cellular attachment, which could facilitate medication release. The future of flexible, multipurpose dental implants lies in additive manufacturing, biosensing, and triggered drug-release technologies.
Keywords: Titanium, dental implants, sandblast, anodization, surface modification.