Journal of Current Toxicology and Venomics

Author(s): Abin V. Geevarghese*, Aleeta Maria Jolly and Jaya Thomas

DOI: 10.2174/0129505704316054240801071448

DownloadDownload PDF Flyer Cite As
Exploring the Current Potential of Snake Venom Disintegrins as Chemotherapeutic Agents: A Narrative Update on their Clinical Translational Potential

Article ID: e29505704316054 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

A potential source of multiple enzymatic and nonenzymatic molecules that protect the host is snake venom. In these venoms, several kinds of peptides that have significant beneficial effects were discovered and characterized. Disintegrins act by blocking integrins on transmembrane cell surfaces, inhibiting tumor cells from adhering, migrating, forming new blood vessels, and spreading. This has an important effect on delaying the development, neovascularization, and growth of tumors. These cells are ideal candidates for novel therapies for the management of malignancies due to their tumor selectivity and decreased size. As research findings in various in vivo & in vitro, disintegrin proteins are low-molecular-weight polypeptides that are found in the venom of vipers and rattle snakes. They act by blocking the β1 and β3 integrin receptors. Angiogenesis and metastatic processes in cancer are mediated through β1 and β3 integrins. Hence, blocking β1 and β3 integrin receptors plays a prominent role in blocking the progression of cancer, and disintegrins seem to be promising candidates for antineoplastic therapies. The disintegrins with anticancer properties include Crotatroxin 2, Alternagin-C, Rubistatin, Leucurogin, Mojastin- 1, Contortrostatin, Acostatin, Vicrostatin, Tzabcan, Eristostatin, Purpureomaculatus, Saxatilin, Lebein, Salmosin, and Rhodostomin. The above mentioned disintegrins were considered in this study. This review is based on the origins of these disintegrins, their modes of targeting, their categorization, and their inherent anticancer potential.

Keywords: Anti-cancer, disintegrins, metastasis, polypeptides, chemotherapeutic agents, enzymatic and nonenzymatic molecules.

[1]
Akef, H.M. Snake venom: kill and cure. Toxin Rev., 2019, 38(1), 21-40.
[http://dx.doi.org/10.1080/15569543.2017.1399278]
[2]
Dutertre, S.; Jin, A-H.; Vetter, I.; Hamilton, B.; Sunagar, K.; Lavergne, V.; Dutertre, V.; Fry, B.G.; Antunes, A.; Venter, D.J.; Alewood, P.F.; Lewis, R.J. Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nat. Commun., 2014, 5(1), 3521.
[http://dx.doi.org/10.1038/ncomms4521]
[3]
Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorg. Med. Chem., 2018, 26(10), 2738-2758.
[http://dx.doi.org/10.1016/j.bmc.2017.09.029] [PMID: 28988749]
[4]
Ruder, T.; Ali, S.A.; Ormerod, K.; Brust, A.; Roymanchadi, M.L.; Ventura, S.; Undheim, E.A.B.; Jackson, T.N.W.; Mercier, A.J.; King, G.F.; Alewood, P.F.; Fry, B.G. Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms. Peptides, 2013, 47, 71-76.
[http://dx.doi.org/10.1016/j.peptides.2013.07.002] [PMID: 23850991]
[5]
Utkin, Y.N. Animal venom studies: Current benefits and future developments. World J. Biol. Chem., 2015, 6(2), 28-33.
[http://dx.doi.org/10.4331/wjbc.v6.i2.28] [PMID: 26009701]
[6]
Waheed, H.; Moin, S.F.; Choudhary, M.I. Snake venom: from deadly toxins to life-saving therapeutics. Curr. Med. Chem., 2017, 24(17), 1874-1891.
[PMID: 28578650]
[7]
Otvos,, R.A. Analytical workflow for rapid screening and purification of bioactives from venom proteomes. Toxicon 76, 270–281. Med., 2013, 213, 71-79.
[8]
Simoes-Silva, R.; Alfonso, J.; Gomez, A.; Holanda, R.J.; Sobrinho, J.C.; Zaqueo, K.D.; Moreira-Dill, L.S.; Kayano, A.M.; Grabner, F.P.; da Silva, S.L.; Almeida, J.R.; Stabeli, R.G.; Zuliani, J.P.; Soares, A.M. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives. Curr. Pharm. Biotechnol., 2018, 19(4), 308-335.
[http://dx.doi.org/10.2174/1389201019666180620111025] [PMID: 29929461]
[9]
Thangam, R.; Gunasekaran, P.; Kaveri, K.; Sridevi, G.; Sundarraj, S.; Paulpandi, M.; Kannan, S. A novel disintegrin protein from Naja naja venom induces cytotoxicity and apoptosis in human cancer cell lines in vitro. Process Biochem., 2012, 47(8), 1243-1249.
[http://dx.doi.org/10.1016/j.procbio.2012.04.020]
[10]
Del Brutto, O.H.; Del Brutto, V.J. Neurological complications of venomous snake bites: a review. Acta Neurol. Scand., 2012, 125(6), 363-372.
[http://dx.doi.org/10.1111/j.1600-0404.2011.01593.x] [PMID: 21999367]
[11]
Georgieva, D.; Arni, R.K.; Betzel, C. Proteome analysis of snake venom toxins: pharmacological insights. Expert Rev. Proteomics, 2008, 5(6), 787-797.
[http://dx.doi.org/10.1586/14789450.5.6.787] [PMID: 19086859]
[12]
Munawar, A. Analysis of the low molecular weight peptides of selected snake venoms. Dissertation, University of Hamburg,, 2012.
[13]
Arruda Macêdo, J.; Fox, J.; Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci., 2015, 16(6), 532-548.
[http://dx.doi.org/10.2174/1389203716666150515125002] [PMID: 26031306]
[14]
Kong, Y.; Wang, Y.; Yang, W.; Xie, Z.; Li, Z. LX0702, a novel snake venom peptide derivative, inhibits thrombus formation via affecting the binding of fibrinogen with GPIIb/IIIa. J. Pharmacol. Sci., 2015, 127(4), 462-466.
[http://dx.doi.org/10.1016/j.jphs.2015.03.010] [PMID: 25913760]
[15]
Vyas, V.K.; Brahmbhatt, K.; Bhatt, H.; Parmar, U. Therapeutic potential of snake venom in cancer therapy: current perspectives. Asian Pac. J. Trop. Biomed., 2013, 3(2), 156-162.
[http://dx.doi.org/10.1016/S2221-1691(13)60042-8] [PMID: 23593597]
[16]
Koh, C.Y.; Kini, R.M. From snake venom toxins to therapeutics – Cardiovascular examples. Toxicon, 2012, 59(4), 497-506.
[http://dx.doi.org/10.1016/j.toxicon.2011.03.017] [PMID: 21447352]
[17]
Samy, R.P.; Gopalakrishnakone, P.; Stiles, B.G.; Girish, K.S.; Swamy, S.N.; Hemshekhar, M.; Tan, K.S.; Rowan, E.G.; Sethi, G.; Chow, V.T. Snake venom phospholipases A(2): a novel tool against bacterial diseases. Curr. Med. Chem., 2012, 19(36), 6150-6162.
[http://dx.doi.org/10.2174/0929867311209066150] [PMID: 22963667]
[18]
Wen, Y.L.; Wu, B.J.; Kao, P.H.; Fu, Y.S.; Chang, L.S. Antibacterial and membrane‐damaging activities of β ‐bungarotoxin B chain. J. Pept. Sci., 2013, 19(1), 1-8.
[http://dx.doi.org/10.1002/psc.2463] [PMID: 23136049]
[19]
Mohamed Abd El-Aziz, T.; Soares, A.G.; Stockand, J.D. Snake venoms in drug discovery: valuable therapeutic tools for life saving. Toxins (Basel), 2019, 11(10), 564.
[http://dx.doi.org/10.3390/toxins11100564] [PMID: 31557973]
[20]
Markland, F.S.; Shieh, K.; Zhou, Q.; Golubkov, V.; Sherwin, R.P.; Richters, V.; Sposto, R. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis, 2001, 31(3-6), 183-191.
[PMID: 11910184]
[21]
Li, L.; Huang, J.; Lin, Y. Snake Venoms in Cancer Therapy: Past, Present and Future. Toxins (Basel), 2018, 10(9), 346.
[http://dx.doi.org/10.3390/toxins10090346] [PMID: 30158426]
[22]
Shanbhag, Applications of snake venoms in treatment of cancer. Asian Pac. J. Trop. Biomed., 2015, 5(4), 275-276.
[http://dx.doi.org/10.1016/S2221-1691(15)30344-0]
[23]
Chaisakul, J.; Hodgson, W.C.; Kuruppu, S.; Prasongsook, N. Effects of Animal Venoms and Toxins on Hallmarks of Cancer. J. Cancer, 2016, 7(11), 1571-1578.
[http://dx.doi.org/10.7150/jca.15309] [PMID: 27471574]
[24]
Da Silva, S.L.; Rowan, E.G.; Albericio, F.; Stábeli, R.G.; Calderon, L.A.; Soares, A.M. Animal toxins and their advantages in biotechnology and pharmacology. BioMed Res. Int., 2014, 2014, 1-2.
[http://dx.doi.org/10.1155/2014/951561] [PMID: 24977166]
[25]
Lipps, B.V. Novel Snake Venom Proteins Cytolytic To Cancer Cells in vitro and in vivo Systems. J. Venom. Anim. Toxins, 1999, 5(2), 172-183.
[http://dx.doi.org/10.1590/S0104-79301999000200005]
[26]
Khusro, A.; Aarti, C.; Barbabosa-Pliego, A.; Rivas-Cáceres, R.R.; Cipriano-Salazar, M. Venom as therapeutic weapon to combat dreadful diseases of 21st century: A systematic review on cancer, TB, and HIV/AIDS. Microb. Pathog., 2018, 125, 96-107.
[http://dx.doi.org/10.1016/j.micpath.2018.09.003] [PMID: 30195644]
[27]
Huang, T.F.; Holt, J.C.; Lukasiewicz, H.; Niewiarowski, S. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J. Biol. Chem., 1987, 262(33), 16157-16163.
[http://dx.doi.org/10.1016/S0021-9258(18)47710-1] [PMID: 3680247]
[28]
McLane, M.A.; Marcinkiewicz, C.; Vijay-Kumar, S.; Wierzbicka-Patynowski, I.; Niewiarowski, S. Viper venom disintegrins and related molecules. Exp. Biol. Med. (Maywood), 1998, 219(2), 109-119.
[http://dx.doi.org/10.3181/00379727-219-44322] [PMID: 9790167]
[29]
Trachootham, Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803]
[30]
Huang, T.F.; Hsu, C.C.; Kuo, Y.J. Anti-thrombotic agents derived from snake venom proteins. Thromb. J., 2016, 14(S1)(Suppl. 1), 18.
[http://dx.doi.org/10.1186/s12959-016-0113-1] [PMID: 27766044]
[31]
Jiang, J. We Are IntechOpen, the World ’ s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%. Intech, 2010, 34(8), 57-67.https://www.intechopen.com/books/advanced-biometrictechnologies/ liveness-detection-in-biometrics%0A10.1016/j.compmedimag. 2010.07.003
[http://dx.doi.org/10.1007/s12559-021-09926-6]
[32]
Yamane, E.S.; Bizerra, F.C.; Oliveira, E.B.; Moreira, J.T.; Rajabi, M.; Nunes, G.L.C.; de Souza, A.O.; da Silva, I.D.C.G.; Yamane, T.; Karpel, R.L.; Silva, P.I., Jr; Hayashi, M.A.F. Unraveling the antifungal activity of a South American rattlesnake toxin crotamine. Biochimie, 2013, 95(2), 231-240.
[http://dx.doi.org/10.1016/j.biochi.2012.09.019] [PMID: 23022146]
[33]
Calvete, J.J. The continuing saga of snake venom disintegrins. Toxicon, 2013, 62, 40-49.
[http://dx.doi.org/10.1016/j.toxicon.2012.09.005] [PMID: 23010163]
[34]
Topol, E.J.; Byzova, T.V.; Plow, E.F. Platelet GPIIb-IIIa blockers. Lancet, 1999, 353(9148), 227-231.
[http://dx.doi.org/10.1016/S0140-6736(98)11086-3] [PMID: 9923894]
[35]
Chan, Y.S.; Cheung, R.C.F.; Xia, L.; Wong, J.H.; Ng, T.B.; Chan, W.Y. Snake venom toxins: toxicity and medicinal applications. Appl. Microbiol. Biotechnol., 2016, 100(14), 6165-6181.
[http://dx.doi.org/10.1007/s00253-016-7610-9] [PMID: 27245678]
[36]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[37]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[38]
Urra, F.A. Putting the Brakes on Tumorigenesis with Snake Venom Toxins: New Molecular Insights for Cancer Drug Discovery. Seminars in Cancer Biology; Elsevier, 2020.
[39]
Kuo, Y.J.; Chung, C.H.; Huang, T.F. From discovery of snake venom disintegrins to a safer therapeutic antithrombotic agent. Toxins (Basel), 2019, 11(7), 372.
[http://dx.doi.org/10.3390/toxins11070372] [PMID: 31247995]
[40]
Swenson, S.; Costa, F.; Ernst, W.; Fujii, G.; Markland, F.S. Contortrostatin, a snake venom disintegrin with anti-angiogenic and anti-tumor activity. Pathophysiol. Haemost. Thromb., 2005, 34(4-5), 169-176.
[http://dx.doi.org/10.1159/000092418] [PMID: 16707922]
[41]
Swenson, Cell migration inhibition activity of a non-rgd disintegrin from crotalus durissus collilineatus venom. J. Venom. Anim. Toxins Incl. Trop. Dis., 2018, 24(1), 1-10.
[42]
Akhtar, B.; Muhammad, F.; Sharif, A.; Anwar, M.I. Mechanistic insights of snake venom disintegrins in cancer treatment. Eur. J. Pharmacol., 2021, 899, 174022.
[http://dx.doi.org/10.1016/j.ejphar.2021.174022] [PMID: 33727054]
[43]
Jain, D.; Kumar, S. Snake venom: a potent anticancer agent. Cancer, 2012, 13(10), 4855-4860.
[PMID: 23244070]
[44]
Alves, P.; Rodrigues, S.; Guedes, I.F. Innovare Academic Sciences. Int. J. Pharm. Pharm. Sci., 2014, 6(10), 19-22.
[45]
Juhasz, I.; Murphy, G.F.; Yan, H.C.; Herlyn, M.; Albelda, S.M. Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am. J. Pathol., 1993, 143(5), 1458-1469.
[PMID: 7694470]
[46]
Aarti, C.; Khusro, A. Snake venom as anticancer agent-current perspective. Int. J. Pure App. Biosci., 2013, 1(6), 24-29.
[47]
Calderon, L.A.; Sobrinho, J.C.; Zaqueo, K.D.; de Moura, A.A.; Grabner, A.N.; Mazzi, M.V.; Marcussi, S.; Nomizo, A.; Fernandes, C.F.C.; Zuliani, J.P.; Carvalho, B.M.A.; da Silva, S.L.; Stábeli, R.G.; Soares, A.M. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed Res. Int., 2014, 2014, 1-19.
[http://dx.doi.org/10.1155/2014/203639] [PMID: 24683541]
[48]
Robert, G. Disintegrins : A Family of Lntegrin Inhibitory. Exp. Biol. Med., 1990, 195, 3-6.
[49]
McDowall, A.; Inwald, D.; Leitinger, B.; Jones, A.; Liesner, R.; Klein, N.; Hogg, N. A novel form of integrin dysfunction involving β1, β2, and β3 integrins. J. Clin. Invest., 2003, 111(1), 51-60.
[http://dx.doi.org/10.1172/JCI200314076] [PMID: 12511588]
[50]
Mezu-Ndubuisi, O.J.; Maheshwari, A. The role of integrins in inflammation and angiogenesis. Pediatr. Res., 2021, 89(7), 1619-1626.
[http://dx.doi.org/10.1038/s41390-020-01177-9] [PMID: 33027803]
[51]
Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol., 2007, 8(5), 215.
[http://dx.doi.org/10.1186/gb-2007-8-5-215] [PMID: 17543136]
[52]
Hamidi, H.; Pietilä, M.; Ivaska, J. The complexity of integrins in cancer and new scopes for therapeutic targeting. Br. J. Cancer, 2016, 115(9), 1017-1023.
[http://dx.doi.org/10.1038/bjc.2016.312] [PMID: 27685444]
[53]
Hynes, R. Integrins: A family of cell surface receptors. Cell, 1987, 48(4), 549-554.
[http://dx.doi.org/10.1016/0092-8674(87)90233-9] [PMID: 3028640]
[54]
Calvete, J.; Marcinkiewicz, C.; Sanz, L. KTS and RTS-Disintegrins: Anti-Angiogenic Viper Venom Peptides Specifically Targeting the α1β1; 1 Integrin. Curr. Pharm. Des., 2007, 13(28), 2853-2859.
[http://dx.doi.org/10.2174/138161207782023766] [PMID: 17979730]
[55]
Fénichel, P.; Durand-Clément, M. Role of integrins during fertilization in mammals. Hum. Reprod., 1998, 13(Suppl. 4), 31-46.
[http://dx.doi.org/10.1093/humrep/13.suppl_4.31] [PMID: 10091056]
[56]
Streuli, C.H. Integrins as architects of cell behavior. Mol. Biol. Cell, 2016, 27(19), 2885-2888.
[http://dx.doi.org/10.1091/mbc.E15-06-0369] [PMID: 27687254]
[57]
Rádis-Baptista, G. Integrins, cancer and snake toxins (mini-review). J. Venom. Anim. Toxins Incl. Trop. Dis., 2005, 11(3), 217-241.
[http://dx.doi.org/10.1590/S1678-91992005000300002]
[58]
Tian, J.; Paquette-Straub, C.; Sage, E.H.; Funk, S.E.; Patel, V.; Galileo, D.; McLane, M.A. Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin. Toxicon, 2007, 49(7), 899-908.
[http://dx.doi.org/10.1016/j.toxicon.2006.12.013] [PMID: 17316731]
[59]
Rivas-Mercado, E.A.; Garza-Ocañas, L. Disintegrins obtained from snake venom and their pharmacological potential. Med. Univ., 2017, 19(74), 32-37.
[http://dx.doi.org/10.1016/j.rmu.2017.02.004]
[60]
Xiong, J.P.; Stehle, T.; Zhang, R.; Joachimiak, A.; Frech, M.; Goodman, S.L.; Arnaout, M.A. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science, 2002, 296(5565), 151-155.
[http://dx.doi.org/10.1126/science.1069040] [PMID: 11884718]
[61]
Gan, Z.R.; Gould, R.J.; Jacobs, J.W.; Friedman, P.A.; Polokoff, M.A. Echistatin. A potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J. Biol. Chem., 1988, 263(36), 19827-19832.
[http://dx.doi.org/10.1016/S0021-9258(19)77710-2] [PMID: 3198653]
[62]
Monleón, D.; Esteve, V.; Kovacs, H.; Calvete, J.J.; Celda, B. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR. Biochem. J., 2005, 387(1), 57-66.
[http://dx.doi.org/10.1042/BJ20041343] [PMID: 15535803]
[63]
Juárez, P.; Comas, I.; González-Candelas, F.; Calvete, J.J. Evolution of snake venom disintegrins by positive Darwinian selection. Mol. Biol. Evol., 2008, 25(11), 2391-2407.
[http://dx.doi.org/10.1093/molbev/msn179] [PMID: 18701431]
[64]
Saviola, A.J.; Burns, P.D.; Mukherjee, A.K.; Mackessy, S.P. The disintegrin tzabcanin inhibits adhesion and migration in melanoma and lung cancer cells. Int. J. Biol. Macromol., 2016, 88, 457-464.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.008] [PMID: 27060015]
[65]
Assumpcao, T.C.F.; Ribeiro, J.M.C.; Francischetti, I.M.B. Disintegrins from hematophagous sources. Toxins (Basel), 2012, 4(5), 296-322.
[http://dx.doi.org/10.3390/toxins4050296] [PMID: 22778902]
[66]
Walsh, E.M.; Marcinkiewicz, C. Non-RGD-containing snake venom disintegrins, functional and structural relations. Toxicon, 2011, 58(4), 355-362.
[http://dx.doi.org/10.1016/j.toxicon.2011.07.004] [PMID: 21801741]
[67]
Marcinkiewicz, C.; Calvete, J.J.; Marcinkiewicz, M.M.; Raida, M.; Vijay-Kumar, S.; Huang, Z.; Lobb, R.R.; Niewiarowski, S. EC3, a novel heterodimeric disintegrin from Echis carinatus venom, inhibits alpha4 and alpha5 integrins in an RGD-independent manner. J. Biol. Chem., 1999, 274(18), 12468-12473.
[http://dx.doi.org/10.1074/jbc.274.18.12468] [PMID: 10212222]
[68]
Swenson, S.D. Methods for Evaluation of a Snake Venom-Derived Disintegrin in Animal Models of Human Cancer, Snake and Spider Toxins; Springer, 2020, pp. 185-204.
[69]
Swenson, S.; Ramu, S.; Markland, F. Anti-angiogenesis and RGD-containing snake venom disintegrins. Curr. Pharm. Des., 2007, 13(28), 2860-2871.
[http://dx.doi.org/10.2174/138161207782023793] [PMID: 17979731]
[70]
Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol., 1996, 12(1), 697-715.
[http://dx.doi.org/10.1146/annurev.cellbio.12.1.697] [PMID: 8970741]
[71]
Sheu, J.R.; Lin, C.H.; Peng, H.C.; Huang, T.F. Triflavin, an Arg-Gly-Asp-containing peptide, inhibits the adhesion of tumor cells to matrix proteins via binding to multiple integrin receptors expressed on human hepatoma cells. Exp. Biol. Med. (Maywood), 1996, 213(1), 71-79.
[http://dx.doi.org/10.3181/00379727-213-44038] [PMID: 8820826]
[72]
Hartmann, M.; Herrlich, A.; Herrlich, P. Who decides when to cleave an ectodomain? Trends Biochem. Sci., 2013, 38(3), 111-120.
[http://dx.doi.org/10.1016/j.tibs.2012.12.002] [PMID: 23298902]
[73]
Lichtenthaler, S.F.; Lemberg, M.K.; Fluhrer, R. Proteolytic ectodomain shedding of membrane proteins in mammals—hardware, concepts, and recent developments. EMBO J., 2018, 37(15), e99456.
[http://dx.doi.org/10.15252/embj.201899456] [PMID: 29976761]
[74]
Scharfenberg, F.; Helbig, A.; Sammel, M.; Benzel, J.; Schlomann, U.; Peters, F.; Wichert, R.; Bettendorff, M.; Schmidt-Arras, D.; Rose-John, S.; Moali, C.; Lichtenthaler, S.F.; Pietrzik, C.U.; Bartsch, J.W.; Tholey, A.; Becker-Pauly, C. Degradome of soluble ADAM10 and ADAM17 metalloproteases. Cell. Mol. Life Sci., 2020, 77(2), 331-350.
[http://dx.doi.org/10.1007/s00018-019-03184-4] [PMID: 31209506]
[75]
Weber, S. Ectodomain shedding and ADAMs in development. Development, 2012, 139(20), 3693-3709.
[http://dx.doi.org/10.1242/dev.076398]
[76]
Anthony, J. Disintegrins of crotalus simus tzabcan venom: Isolation, characterization and evaluation of the cytotoxic and anti-adhesion activities of tzabcanin, a new rgd disintegrin. Biochimie, 2015, 116, 92-102.
[http://dx.doi.org/10.1016/j.biochi.2015.07.005]
[77]
Rivas Mercado, E.; Neri Castro, E.; Bénard Valle, M.; Rucavado-Romero, A.; Olvera Rodríguez, A.; Zamudio Zuñiga, F.; Alagón Cano, A.; Garza Ocañas, L. Disintegrins extracted from totonacan rattlesnake (Crotalus totonacus) venom and their anti-adhesive and anti-migration effects on MDA-MB-231 and HMEC-1 cells. Toxicol. In Vitro, 2020, 65, 104809.
[http://dx.doi.org/10.1016/j.tiv.2020.104809] [PMID: 32087267]
[78]
Rabelo, L.F.G.; Ferreira, B.A.; Deconte, S.R.; Tomiosso, T.C.; dos Santos, P.K.; Andrade, S.P.; Selistre de Araújo, H.S.; Araújo, F.A. Alternagin-C, a disintegrin-like protein from Bothrops alternatus venom, attenuates inflammation and angiogenesis and stimulates collagen deposition of sponge-induced fibrovascular tissue in mice. Int. J. Biol. Macromol., 2019, 140, 653-660.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.171] [PMID: 31442506]
[79]
Cominetti, M.R.; Terruggi, C.H.B.; Ramos, O.H.P.; Fox, J.W.; Mariano-Oliveira, A.; De Freitas, M.S.; Figueiredo, C.C.; Morandi, V.; Selistre-de-Araujo, H.S. Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro. J. Biol. Chem., 2004, 279(18), 18247-18255.
[http://dx.doi.org/10.1074/jbc.M311771200] [PMID: 14766757]
[80]
dos Santos, P.K.; Altei, W.F.; Danilucci, T.M.; Lino, R.L.B.; Pachane, B.C.; Nunes, A.C.C.; Selistre-de-Araujo, H.S. Alternagin-C (ALT-C), a disintegrin-like protein, attenuates alpha2beta1 integrin and VEGF receptor 2 signaling resulting in angiogenesis inhibition. Biochimie, 2020, 174, 144-158.
[http://dx.doi.org/10.1016/j.biochi.2020.04.023] [PMID: 32360415]
[81]
Carey, C.M.; Bueno, R.; Gutierrez, D.A.; Petro, C.; Lucena, S.E.; Sanchez, E.E.; Soto, J.G. Recombinant rubistatin (r-Rub), an MVD disintegrin, inhibits cell migration and proliferation, and is a strong apoptotic inducer of the human melanoma cell line SK-Mel-28. Toxicon, 2012, 59(2), 241-248.
[http://dx.doi.org/10.1016/j.toxicon.2011.12.002] [PMID: 22192732]
[82]
Higuchi, D.A.; Almeida, M.C.; Barros, C.C.; Sanchez, E.F.; Pesquero, P.R.; Lang, E.A.S.; Samaan, M.; Araujo, R.C.; Pesquero, J.B.; Pesquero, J.L. Leucurogin, a new recombinant disintegrin cloned from Bothrops leucurus (white-tailed-jararaca) with potent activity upon platelet aggregation and tumor growth. Toxicon, 2011, 58(1), 123-129.
[http://dx.doi.org/10.1016/j.toxicon.2011.05.013] [PMID: 21641921]
[83]
Almeida, M.C.; Santos, I.C.; Paschoalin, T.; Travassos, L.R.; Mauch, C.; Zigrino, P.; Pesquero, J.B.; Pesquero, J.L.; Higuchi, D.A. Leucurogin and melanoma therapy. Toxicon, 2019, 159, 22-31.
[http://dx.doi.org/10.1016/j.toxicon.2018.12.005] [PMID: 30611825]
[84]
Angulo, Y. Isolation and characterization of four medium-size disintegrins from the venoms of central American viperid snakes of the genera atropoides, bothrops, cerrophidion and crotalus. Biochimie, 2014, 107, 376-384.
[http://dx.doi.org/10.1016/j.biochi.2014.10.010]
[85]
Lucena, S.; Castro, R.; Lundin, C.; Hofstetter, A.; Alaniz, A.; Suntravat, M.; Sánchez, E.E. Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon, 2015, 93, 136-143.
[http://dx.doi.org/10.1016/j.toxicon.2014.11.228] [PMID: 25450798]
[86]
Swenson, S.; Costa, F.; Minea, R.; Sherwin, R.P.; Ernst, W.; Fujii, G.; Yang, D.; Markland, F.S., Jr Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol. Cancer Ther., 2004, 3(4), 499-511.
[http://dx.doi.org/10.1158/1535-7163.499.3.4] [PMID: 15078994]
[87]
Ghazaryan, N.; Movsisyan, N.; Macedo, J.C.; Vaz, S.; Ayvazyan, N.; Pardo, L.; Logarinho, E. The antitumor efficacy of monomeric disintegrin obtustatin in S-180 sarcoma mouse model. Invest. New Drugs, 2019, 37(5), 1044-1051.
[http://dx.doi.org/10.1007/s10637-019-00734-2] [PMID: 30680583]
[88]
Moiseeva, N.; Bau, R.; Swenson, S.D.; Markland, F.S., Jr; Choe, J.Y.; Liu, Z.J.; Allaire, M. Structure of acostatin, a dimeric disintegrin from Southern copperhead (Agkistrodon contortrix contortrix), at 1.7 Å resolution. Acta Crystallogr. D Biol. Crystallogr., 2008, 64(4), 466-470.
[http://dx.doi.org/10.1107/S0907444908002370] [PMID: 18391413]
[89]
Minea, R.O.; Helchowski, C.M.; Zidovetzki, S.J.; Costa, F.K.; Swenson, S.D.; Markland, F.S. Jr Vicrostatin - an anti-invasive multi-integrin targeting chimeric disintegrin with tumor anti-angiogenic and pro-apoptotic activities. PLoS One, 2010, 5(6), e10929.
[http://dx.doi.org/10.1371/journal.pone.0010929] [PMID: 20532165]
[90]
Tan, C.H.; Liew, J.L.; Navanesan, S.; Sim, K.S.; Tan, N.H.; Tan, K.Y. Cytotoxic and anticancer properties of the Malaysian mangrove pit viper (Trimeresurus purpureomaculatus) venom and its disintegrin (purpureomaculin). J. Venom. Anim. Toxins Incl. Trop. Dis., 2020, 26, e20200013.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-2020-0013] [PMID: 32742279]
[91]
Jang, Y.J.; Jeon, O.H.; Kim, D.S. Saxatilin, a snake venom disintegrin, regulates platelet activation associated with human vascular endothelial cell migration and invasion. J. Vasc. Res., 2007, 44(2), 129-137.
[http://dx.doi.org/10.1159/000098519] [PMID: 17215584]
[92]
Hong, S.Y.; Koh, Y.S.; Chung, K.H.; Kim, D.S. Snake venom disintegrin, saxatilin, inhibits platelet aggregation, human umbilical vein endothelial cell proliferation, and smooth muscle cell migration. Thromb. Res., 2002, 105(1), 79-86.
[http://dx.doi.org/10.1016/S0049-3848(01)00416-9] [PMID: 11864711]
[93]
Choi, H.J.; Kim, N.E.; Kwon, I.; Choi, D.; Kim, J.; Heo, J.H. Fc-saxatilin inhibits VEGF-induced permeability by regulating claudin-5 expression in human brain microvascular endothelial cells. Microvasc. Res., 2020, 128, 103953.
[http://dx.doi.org/10.1016/j.mvr.2019.103953] [PMID: 31715125]
[94]
Zakraoui, O.; Marcinkiewicz, C.; Aloui, Z.; Othman, H.; Grépin, R.; Haoues, M.; Essafi, M.; Srairi-Abid, N.; Gasmi, A.; Karoui, H.; Pagès, G.; Essafi-Benkhadir, K. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression. Mol. Carcinog., 2017, 56(1), 18-35.
[http://dx.doi.org/10.1002/mc.22470] [PMID: 26824338]
[95]
Shin, J.; Hong, S.Y.; Chung, K.; Kang, I.; Jang, Y.; Kim, D.; Lee, W. Solution structure of a novel disintegrin, salmosin, from Agkistrondon halys venom. Biochemistry, 2003, 42(49), 14408-14415.
[http://dx.doi.org/10.1021/bi0300276] [PMID: 14661951]
[96]
Kang, I.C.; Lee, Y.D.; Kim, D.S. A novel disintegrin salmosin inhibits tumor angiogenesis. Cancer Res., 1999, 59(15), 3754-3760.
[PMID: 10446992]
[97]
Yeh, C.H.; Peng, H.C.; Yang, R.S.; Huang, T.F. Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective alpha(v)beta(3) blockade of endothelial cells. Mol. Pharmacol., 2001, 59(5), 1333-1342.
[http://dx.doi.org/10.1124/mol.59.5.1333] [PMID: 11306719]
[98]
Danilucci, T.M.; Santos, P.K.; Pachane, B.C.; Pisani, G.F.D.; Lino, R.L.B.; Casali, B.C.; Altei, W.F.; Selistre-de-Araujo, H.S. Recombinant RGD-disintegrin DisBa-01 blocks integrin αvβ3 and impairs VEGF signaling in endothelial cells. Cell Commun. Signal., 2019, 17(1), 27.
[http://dx.doi.org/10.1186/s12964-019-0339-1] [PMID: 30894182]
[99]
Suntravat, M.; Helmke, T.J.; Atphaisit, C.; Cuevas, E.; Lucena, S.E.; Uzcátegui, N.L.; Sánchez, E.E.; Rodriguez-Acosta, A. Expression, purification, and analysis of three recombinant ECD disintegrins (r-colombistatins) from P-III class snake venom metalloproteinases affecting platelet aggregation and SK-MEL-28 cell adhesion. Toxicon, 2016, 122, 43-49.
[http://dx.doi.org/10.1016/j.toxicon.2016.09.007] [PMID: 27641750]
[100]
Siqueira, R.A.G.B.; Calabria, P.A.L.; Caporrino, M.C.; Tavora, B.C.L.F.; Barbaro, K.C.; Faquim-Mauro, E.L.; Della-Casa, M.S.; Magalhães, G.S. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell. Toxicon, 2019, 168, 40-48.
[http://dx.doi.org/10.1016/j.toxicon.2019.06.225] [PMID: 31251993]
[101]
Ferraz, C.R.; Arrahman, A.; Xie, C.; Casewell, N.R.; Lewis, R.J.; Kool, J.; Cardoso, F.C. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front. Ecol. Evol., 2019, 7(JUN), 218.
[http://dx.doi.org/10.3389/fevo.2019.00218]
[102]
Bordon, K.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; Ferreira, I.G.; Oliveira, I.S.; Boldrini-França, J.; Pucca, M.B.; Baldo, M.A.; Arantes, E.C. From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front. Pharmacol., 2020, 11, 1132.
[http://dx.doi.org/10.3389/fphar.2020.01132 ] [PMID: 32848750]