Current Pharmaceutical Design

Author(s): Kirti Sharma, Manjinder Singh* and Sumesh C. Sharma

DOI: 10.2174/0113816128322226240815063730

DownloadDownload PDF Flyer Cite As
Revolutionizing Antiviral Therapeutics: In silico Approaches for Emerging and Neglected RNA Viruses

Page: [3276 - 3290] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

The 21st century has shown us how rapidly the pandemic can evolve and devastate the life of human beings without differentiating between the continents. Even after the global investment of billions of dollars into the healthcare sector, we are still lacking multiple therapeutics against emerging viruses. World Health Organization (WHO) has listed a number of viruses that could take the form of pandemics at anytime, depending upon their mutations. Among those listed, the SARS-CoV, Ebola, Zika, Nipah, and Chikungunya virus (CHIKV) are the most known viruses in terms of their number of outbreaks. The common feature among these viruses is their RNA-based genome. Developing a new therapeutic candidate for these RNA viruses in a short period of time is challenging. In silico drug designing techniques offer a simple solution to these problems by implementing supercomputers and complicated algorithms that can evaluate the inhibition activity of proposed synthetic compounds without actually doing the bioassays. A vast collection of protein crystal structures and the data on binding affinity are useful tools in this process. Taking this into account, we have summarized the in silico based therapeutic advances against SARS-CoV, Ebola, Zika, Nipah, and CHIKV viruses by encapsulating state-of-art research articles into different sections. Specifically, we have shown that computer- aided drug design (CADD) derived synthetic molecules are the pillars of upcoming therapeutic strategies against emerging and neglected viruses.

Keywords: Ebola, Zika, Nipah, CHIKV, RNA viruses, SARS-CoV.

[1]
Sankaran N, Weiss RA. Viruses: Impact on Science and Society Encyclopedia of Virolog. Amsterdam: Elsevier 2021.
[2]
Domingo E. Introduction to virus origins and their role in biological evolution. Virus Populat 2020; 2020: 1-3.
[3]
Durmuş S, Ülgen KÖ. Comparative interactomics for virus-human protein-protein interactions: DNA viruses versus RNA viruses. FEBS Open Bio 2017; 7(1): 96-107.
[http://dx.doi.org/10.1002/2211-5463.12167] [PMID: 28097092]
[4]
Ryu WS. Molecular Virology of Human Pathogenic Viruses. (1st ed.), Amsterdam: Elsevier 2017.
[5]
Dimitrov DS. Virus entry: Molecular mechanisms and biomedical applications. Nat Rev Microbiol 2004; 2(2): 109-22.
[http://dx.doi.org/10.1038/nrmicro817] [PMID: 15043007]
[6]
Richman DD, Nathanson N. Antiviral therapy Viral Pathogenesis. Amsterdam: Elsevier 2016; pp. 271-87.
[7]
Bray M. Highly pathogenic RNA viral infections: Challenges for antiviral research. Antiviral Res 2008; 78(1): 1-8.
[http://dx.doi.org/10.1016/j.antiviral.2007.12.007] [PMID: 18243346]
[8]
(8)Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 2011; 9(12): 860-75.
[http://dx.doi.org/10.1038/nrmicro2655] [PMID: 22002165]
[9]
Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun 2020; 109: 102434.
[http://dx.doi.org/10.1016/j.jaut.2020.102434] [PMID: 32143990]
[10]
Yang W, Kandula S, Huynh M, et al. Estimating the infection-fatality risk of SARS-CoV-2 in New York city during the spring 2020 pandemic wave: A model-based analysis. Lancet Infect Dis 2021; 21(2): 203-12.
[http://dx.doi.org/10.1016/S1473-3099(20)30769-6] [PMID: 33091374]
[11]
Liu WB, Li ZX, Du Y, Cao GW. Ebola virus disease: From epidemiology to prophylaxis. Mil Med Res 2015; 2(1): 7.
[http://dx.doi.org/10.1186/s40779-015-0035-4] [PMID: 26000173]
[12]
Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Med Mal Infect 2014; 44(7): 302-7.
[http://dx.doi.org/10.1016/j.medmal.2014.04.008] [PMID: 25001879]
[13]
Sharma V, Kaushik S, Kumar R, Yadav JP, Kaushik S. Emerging trends of Nipah virus: A review. Rev Med Virol 2019; 29(1): e2010.
[http://dx.doi.org/10.1002/rmv.2010] [PMID: 30251294]
[14]
WHO Media Centre Chikungunya 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/chikungunya
[15]
Gibney KB, Fischer M, Prince HE, et al. Chikungunya fever in the United States: A fifteen year review of cases. Clin Infect Dis 2011; 52(5): e121-6.
[http://dx.doi.org/10.1093/cid/ciq214] [PMID: 21242326]
[16]
Carrasco-Hernandez R, Jácome R, López Vidal Y, Ponce de León S. Are RNA viruse candidate agents for the next global pandemic? A review. ILAR J 2017; 58(3): 343-58.
[http://dx.doi.org/10.1093/ilar/ilx026] [PMID: 28985316]
[17]
Wongsurawat T, Jenjaroenpun P, Taylor MK, et al. Rapid sequencing of multiple RNA viruses in their native form. Front Microbiol 2019; 10: 260.
[http://dx.doi.org/10.3389/fmicb.2019.00260] [PMID: 30858830]
[18]
Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: From classical to artificial intelligence. Front Chem 2020; 8: 343.
[http://dx.doi.org/10.3389/fchem.2020.00343] [PMID: 32411671]
[19]
Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr. Computational methods in drug discovery. Pharmacol Rev 2014; 66(1): 334-95.
[http://dx.doi.org/10.1124/pr.112.007336] [PMID: 24381236]
[20]
Morawietz T, Artrith N. Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications. J Comput Aided Mol Des 2021; 35(4): 557-86.
[http://dx.doi.org/10.1007/s10822-020-00346-6] [PMID: 33034008]
[21]
Ivanov J, Polshakov D, Kato-Weinstein J, et al. Quantitative structure–activity relationship machine learning models and their applications for identifying viral 3CLpro-and RdRp-targeting compounds as potential therapeutics for COVID-19 and related viral infections. ACS Omega 2020; 5(42): 27344-58.
[http://dx.doi.org/10.1021/acsomega.0c03682] [PMID: 33134697]
[22]
Cavasotto CN, Adler NS, Aucar MG. Quantum chemical approaches in structure-based virtual screening and lead optimization. Front Chem 2018; 6: 188.
[http://dx.doi.org/10.3389/fchem.2018.00188] [PMID: 29896472]
[23]
Batra K, Zorn KM, Foil DH, et al. Machine learning algorithms for drug discovery applications. J Chem Inf Model 2021; 61(6): 2641-7.
[http://dx.doi.org/10.1021/acs.jcim.1c00166] [PMID: 34032436]
[24]
Lo YC, Rensi SE, Torng W, Altman RB. Machine learning in chemoinformatics and drug discovery. Drug Discov Today 2018; 23(8): 1538-46.
[http://dx.doi.org/10.1016/j.drudis.2018.05.010] [PMID: 29750902]
[25]
Danishuddin, Khan AU. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov Today 2016; 21(8): 1291-302.
[http://dx.doi.org/10.1016/j.drudis.2016.06.013] [PMID: 27326911]
[26]
Menendez-Arias L, Gago F. Antiviral agents: Structural basis of action and rational design. Subcell Biochem 2013; 68: 599-630.
[http://dx.doi.org/10.1007/978-94-007-6552-8_20]
[27]
Monod A, Swale C, Tarus B, et al. Learning from structure-based drug design and new antivirals targeting the ribonucleoprotein complex for the treatment of influenza. Expert Opin Drug Discov 2015; 10(4): 345-71.
[http://dx.doi.org/10.1517/17460441.2015.1019859] [PMID: 25792362]
[28]
Frecer V, Miertus S. Antiviral agents against COVID-19: Structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease. RSC Advances 2020; 10(66): 40244-63.
[http://dx.doi.org/10.1039/D0RA08304F]
[29]
Aparoy P, Kumar Reddy K, Reddanna P. Structure and ligand based drug design strategies in the development of novel 5-LOX inhibitors. Curr Med Chem 2012; 19(22): 3763-78.
[http://dx.doi.org/10.2174/092986712801661112] [PMID: 22680930]
[30]
Yu W, MacKerell AD Jr. Computer-aided drug design methods. Methods Mol Biol 2017; 1520: 85-106.
[http://dx.doi.org/10.1007/978-1-4939-6634-9_5] [PMID: 27873247]
[31]
Neves BJ, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH. QSAR-based virtual screening: Advances and applications in drug discovery. Front Pharmacol 2018; 9: 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[32]
Yang Y, Zhu Z, Wang X, et al. Ligand-based approach for predicting drug targets and for virtual screening against COVID-19. Brief Bioinform 2021; 22: 1053-64.
[33]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[34]
van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[35]
Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog 2020; 16(8): e1008762.
[36]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[37]
Zhu Y, Li J, Pang Z. Recent insights for the emerging COVID-19: Drug discovery, therapeutic options and vaccine development. Asian J Pharmaceut Sci 2021; 16(1): 4-23.
[http://dx.doi.org/10.1016/j.ajps.2020.06.001] [PMID: 32837565]
[38]
Mody V, Ho J, Wills S, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol 2021; 4(1): 93.
[http://dx.doi.org/10.1038/s42003-020-01577-x] [PMID: 33473151]
[39]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[40]
Ju X, Zhu Y, Wang Y, et al. A novel cell culture system modeling the SARS-CoV-2 life cycle. PLoS Pathog 2021; 17(3): e1009439.
[http://dx.doi.org/10.1371/journal.ppat.1009439] [PMID: 33711082]
[41]
Mostafa-Hedeab G. ACE2 as drug target of COVID-19 virus treatment, simplified updated review. Rep Biochem Mol Biol 2020; 9(1): 97-105.
[http://dx.doi.org/10.29252/rbmb.9.1.97] [PMID: 32821757]
[42]
Huang Y, Yang C, Xu X, et al. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol Sin 2020; 41(9): 1141-9.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[43]
Williams-Noonan BJ, Todorova N, Kulkarni K, Aguilar MI, Yarovsky I. An active site inhibitor induces conformational penalties for ACE2 recognition by the spike protein of SARS-CoV-2. J Phys Chem B 2021; 125(10): 2533-50.
[http://dx.doi.org/10.1021/acs.jpcb.0c11321] [PMID: 33657325]
[44]
Jaiswal G, Kumar V. In silico design of a potential inhibitor of SARS-CoV-2 S protein. PLoS One 2020; 15(10): e0240004.
[http://dx.doi.org/10.1371/journal.pone.0240004] [PMID: 33002032]
[45]
Han Y, Král P. Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano 2020; 14(4): 5143-7.
[http://dx.doi.org/10.1021/acsnano.0c02857] [PMID: 32286790]
[46]
Yuan H, Ma Q, Ye L, Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016; 21(5): 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[47]
Borse S, Joshi M, Saggam A, et al. Ayurveda botanicals in COVID-19 management: An in silico multi-target approach. PLoS One 2021; 16(6): e0248479.
[http://dx.doi.org/10.1371/journal.pone.0248479] [PMID: 34115763]
[48]
Basu A, Sarkar A, Maulik U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV-2 spike protein and human ACE2. Sci Rep 2020; 10(1): 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[49]
Kumar S, Sharma PP, Shankar U, et al. Rathi, Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation, and structure-activity relationship studies. J Chem Inf Model 2020; 60(12): 5754-70.
[http://dx.doi.org/10.1021/acs.jcim.0c00326] [PMID: 32551639]
[50]
Shawan MMAK, Halder SK, Hasan MA. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak. Bull Natl Res Cent 2021; 45(1): 27.
[http://dx.doi.org/10.1186/s42269-020-00479-6] [PMID: 33495684]
[51]
Ritzmann F, Chitirala P, Krüger N, et al. Therapeutic application of alpha-1 antitrypsin in COVID-19. Am J Respir Crit Care Med 2021; 204(2): 224-7.
[http://dx.doi.org/10.1164/rccm.202104-0833LE] [PMID: 33961754]
[52]
Patil SM, Martiz RM, Ramu R, et al. In silico identification of novel benzophenone–coumarin derivatives as SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) inhibitors. J Biomol Struct Dyn 2022; 40(23): 13032-48.
[http://dx.doi.org/10.1080/07391102.2021.1978322] [PMID: 34632942]
[53]
Alkhimova LE, Babashkina MG, Safin DA. Computational analysis of aspirin. J Mol Struct 2022; 1251: 131975.
[http://dx.doi.org/10.1016/j.molstruc.2021.131975]
[54]
Abdizadeh R, Hadizadeh F, Abdizadeh T. In silico analysis and identification of antiviral coumarin derivatives against 3-chymotrypsin-like main protease of the novel coronavirus SARS-CoV-2. Mol Divers 2022; 26(2): 1053-76.
[http://dx.doi.org/10.1007/s11030-021-10230-6] [PMID: 34213728]
[55]
Higashi-Kuwata N, Tsuji K, Hayashi H, et al. Identification of SARS-CoV-2 Mpro inhibitors containing P1′ 4-fluorobenzothiazole moiety highly active against SARS-CoV-2. Nat Commun 2023; 14(1): 1076.
[http://dx.doi.org/10.1038/s41467-023-36729-0] [PMID: 36841831]
[56]
Sweiti H, Ekwunife O, Jaschinski T, Lhachimi SK. Repurposed therapeutic agents targeting the Ebola virus: A systematic review. Curr Ther Res Clin Exp 2017; 84: 10-21.
[http://dx.doi.org/10.1016/j.curtheres.2017.01.007] [PMID: 28761574]
[57]
Coltart CEM, Lindsey B, Ghinai I, Johnson AM, Heymann DL. The Ebola outbreak, 2013-2016: Old lessons for new epidemics. Philos Trans R Soc Lond B Biol Sci 2017; 372(1721): 20160297.
[58]
Aruna A, Mbala P, Minikulu L, et al. Ebola Virus Disease Outbreak — Democratic Republic of the Congo, August 2018–November 2019. MMWR Morb Mortal Wkly Rep 2019; 68(50): 1162-5.
[http://dx.doi.org/10.15585/mmwr.mm6850a3] [PMID: 31856146]
[59]
Feldmann H, Jones S, Klenk HD, Schnittler HJ. Ebola virus: From discovery to vaccine. Nat Rev Immunol 2003; 3(8): 677-85.
[http://dx.doi.org/10.1038/nri1154] [PMID: 12974482]
[60]
Zhu W, Banadyga L, Emeterio K, Wong G, Qiu X. The roles of Ebola virus soluble glycoprotein in replication, pathogenesis, and countermeasure development. Viruses 2019; 11(11): 999.
[http://dx.doi.org/10.3390/v11110999] [PMID: 31683550]
[61]
Hoenen T, Groseth A, Feldmann H. Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 2019; 17(10): 593-606.
[http://dx.doi.org/10.1038/s41579-019-0233-2] [PMID: 31341272]
[62]
Mirza MU, Vanmeert M, Ali A, Iman K, Froeyen M, Idrees M. Perspectives towards antiviral drug discovery against Ebola virus. J Med Virol 2019; 91(12): 2029-48.
[http://dx.doi.org/10.1002/jmv.25357] [PMID: 30431654]
[63]
Beniac DR, Booth TF. Structure of the Ebola virus glycoprotein spike within the virion envelope at 11 Å resolution. Sci Rep 2017; 7(1): 46374.
[http://dx.doi.org/10.1038/srep46374] [PMID: 28397863]
[64]
Brown CS, Lee MS, Leung DW, et al. In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. J Mol Biol 2014; 426(10): 2045-58.
[http://dx.doi.org/10.1016/j.jmb.2014.01.010] [PMID: 24495995]
[65]
Rai S, Raj U, Varadwaj PK. Systems biology: A powerful tool for drug development. Curr Top Med Chem 2018; 18(20): 1745-54.
[http://dx.doi.org/10.2174/1568026618666181025113226] [PMID: 30360720]
[66]
Mirza M, Ikram N. Integrated computational approach for virtual hit identification against Ebola viral proteins VP35 and VP40. Int J Mol Sci 2016; 17(11): 1748.
[http://dx.doi.org/10.3390/ijms17111748] [PMID: 27792169]
[67]
Easton V, McPhillie M, Garcia-Dorival I, et al. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening. Antiviral Res 2018; 156: 46-54.
[68]
Khaiboullina S, Uppal T, Martynova E, Rizvanov A, Baranwal M, Verma SC. History of ZIKV infections in India and management of disease outbreaks. Front Microbiol 2018; 9: 2126.
[http://dx.doi.org/10.3389/fmicb.2018.02126] [PMID: 30258421]
[69]
Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev 2016; 29(3): 487-524.
[http://dx.doi.org/10.1128/CMR.00072-15] [PMID: 27029595]
[70]
Calvez E, Mousson L, Vazeille M, et al. Zika virus outbreak in the Pacific: Vector competence of regional vectors. PLoS Negl Trop Dis 2018; 12(7): e0006637.
[http://dx.doi.org/10.1371/journal.pntd.0006637] [PMID: 30016372]
[71]
Heinz FX, Stiasny K. The antigenic structure of Zika virus and its relation to other flaviviruses: Implications for infection and immunoprophylaxis. Microbiol Mol Biol Rev 2017; 81(1): e00055-16.
[http://dx.doi.org/10.1128/MMBR.00055-16] [PMID: 28179396]
[72]
White MK, Wollebo HS, David Beckham J, Tyler KL, Khalili K. Zika virus: An emergent neuropathological agent. Ann Neurol 2016; 80(4): 479-89.
[http://dx.doi.org/10.1002/ana.24748] [PMID: 27464346]
[73]
Tan TY, Fibriansah G, Kostyuchenko VA, et al. Capsid protein structure in Zika virus reveals the flavivirus assembly process. Nat Commun 2020; 11(1): 895.
[http://dx.doi.org/10.1038/s41467-020-14647-9] [PMID: 32060358]
[74]
Millies B, von Hammerstein F, Gellert A, et al. Proline-based allosteric inhibitors of Zika and Dengue virus NS2B/NS3 proteases. J Med Chem 2019; 62(24): 11359-82.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01697] [PMID: 31769670]
[75]
Choudhry H, Alzahrani FA, Hassan MA, et al. Zika virus targeting by screening inhibitors against NS2B/NS3 protease. BioMed Res Int 2019; 2019: 3947245.
[76]
Ramharack P, Soliman MES. Zika virus NS5 protein potential inhibitors: An enhanced in silico approach in drug discovery. J Biomol Struct Dyn 2018; 36(5): 1118-33.
[http://dx.doi.org/10.1080/07391102.2017.1313175] [PMID: 28351337]
[77]
Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv Transl Res 2020; 10(2): 354-67.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[78]
Mohd A, Zainal N, Tan KK, AbuBakar S. Resveratrol affects Zika virus replication in vitro. Sci Rep 2019; 9(1): 14336.
[http://dx.doi.org/10.1038/s41598-019-50674-3] [PMID: 31586088]
[79]
Abrams RPM, Yasgar A, Teramoto T, et al. Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors. Proc Natl Acad Sci USA 2020; 117(49): 31365-75.
[http://dx.doi.org/10.1073/pnas.2005463117] [PMID: 33229545]
[80]
Buendia-Atencio C, Pieffet GP, Montoya-Vargas S, et al. Inverse molecular docking study of NS3-helicase and NS5-RNA polymerase of Zika virus as possible therapeutic targets of ligands derived from Marcetia taxifolia and its implications to Dengue virus. ACS Omega 2021; 6(9): 6134-43.
[http://dx.doi.org/10.1021/acsomega.0c04719] [PMID: 33718704]
[81]
Singh RK, Dhama K, Chakraborty S, et al. Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - A comprehensive review. Vet Q 2019; 39(1): 26-55.
[http://dx.doi.org/10.1080/01652176.2019.1580827] [PMID: 31006350]
[82]
Ang BSP, Lim TCC, Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6): e01875-17.
[http://dx.doi.org/10.1128/JCM.01875-17] [PMID: 29643201]
[83]
Sen N, Kanitkar TR, Roy AA, et al. Predicting and designing therapeutics against the Nipah virus. PLoS Negl Trop Dis 2019; 13(12): e0007419.
[http://dx.doi.org/10.1371/journal.pntd.0007419] [PMID: 31830030]
[84]
Lipin R, Dhanabalan AK, Gunasekaran K, Solomon RV. Piperazine-substituted derivatives of favipiravir for Nipah virus inhibition: What do in silico studies unravel? SN Appl Sci 2021; 3(1): 110.
[http://dx.doi.org/10.1007/s42452-020-04051-9] [PMID: 33458565]
[85]
Ali MH, Anwar S, Kumar Roy P, Ashrafuzzaman M. Ashrafuzzaman, virtual screening for identification of small lead compound inhibitors of Nipah virus attachment glycoprotein. J Pharmacogenomics Pharmacoproteomics 2018; 9(2): 2153-0645.
[http://dx.doi.org/10.4172/2153-0645.1000180]
[86]
Yap ML, Klose T, Urakami A, Hasan SS, Akahata W, Rossmann MG. Structural studies of Chikungunya virus maturation. Proc Natl Acad Sci USA 2017; 114(52): 13703-7.
[http://dx.doi.org/10.1073/pnas.1713166114] [PMID: 29203665]
[87]
Hwu JR, Pradhan TK, Tsay S-C, et al. Antiviral agents towards chikungunya virus: Structures, syntheses, and isolation from natural sources, New Horizons of Process Chemistry. Singapore: Springer 2017; pp. 251-74.
[88]
de Bernardi Schneider A, Ochsenreiter R, Hostager R, Hofacker IL, Janies D, Wolfinger MT. Updated phylogeny of Chikungunya virus suggests lineage-specific RNA architecture. Viruses 2019; 11(9): 798.
[http://dx.doi.org/10.3390/v11090798] [PMID: 31470643]
[89]
Khan N, Bhat R, Patel AK, Ray P. Discovery of small molecule inhibitors of Chikungunya virus proteins (nsP2 and E1) using in silico approaches. J Biomol Struct Dyn 2021; 39(4): 1373-85.
[http://dx.doi.org/10.1080/07391102.2020.1731602] [PMID: 32072865]
[90]
Crunkhorn S. Targeting T cells to treat Chikungunya virus infections. Nat Rev Drug Discov 2017; 16(4): 237-7.
[http://dx.doi.org/10.1038/nrd.2017.49] [PMID: 28356592]
[91]
Hwu JR, Kapoor M, Tsay SC, et al. Benzouracil-coumarin-arene conjugates as inhibiting agents for Chikungunya virus. Antiviral Res 2015; 118: 103-9.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.013] [PMID: 25839734]
[92]
Bissoyi A, Agarwal T, Asthana S. Molecular modeling and docking study to elucidate novel Chikungunya virus nsP2 protease inhibitors. Indian J Pharm Sci 2015; 77(4): 453-60.
[http://dx.doi.org/10.4103/0250-474X.164769] [PMID: 26664062]
[93]
Ivanova MV, Zhong A, Turken A, Baldo JV, Dronkers NF. Functional contributions of the arcuate fasciculus to language processing. Front Hum Neurosci 2021; 15: 672665.
[http://dx.doi.org/10.3389/fnhum.2021.672665] [PMID: 34248526]
[94]
Jain J, Kumari A, Somvanshi P, Grover A, Pai S, Sunil S. In silico analysis of natural compounds targeting structural and nonstructural proteins of Chikungunya virus. F1000 Res 2017; 6: 1601.
[http://dx.doi.org/10.12688/f1000research.12301.2] [PMID: 29333236]
[95]
Kumar D, Meena MK, Kumari K, Patel R, Jayaraj A, Singh P. In silico prediction of novel drug-target complex of nsp3 of CHIKV through molecular dynamic simulation. Heliyon 2020; 6(8): e04720.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04720] [PMID: 32904235]
[96]
Seyedi SS, Shukri M, Hassandarvish P, et al. Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci Rep 2016; 6(1): 24027.
[http://dx.doi.org/10.1038/srep24027] [PMID: 27071308]
[97]
Oo A, Hassandarvish P, Chin SP, Lee VS, Abu Bakar S, Zandi K. In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ 2016; 4: e2602.
[http://dx.doi.org/10.7717/peerj.2602] [PMID: 27812412]
[98]
Hwu JR, Kapoor M, Gupta NK, et al. Synthesis and antiviral activities of quinazolinamine–coumarin conjugates toward Chikungunya and hepatitis C viruses. Eur J Med Chem 2022; 232: 114164.
[http://dx.doi.org/10.1016/j.ejmech.2022.114164] [PMID: 35176562]
[99]
Mahajan P, Kaushal J. Epidemic trend of COVID-19 transmission in India during lockdown-1 phase. J Community Health 2020; 45(6): 1291-300.
[http://dx.doi.org/10.1007/s10900-020-00863-3] [PMID: 32578006]
[100]
Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: A comprehensive review. Rev Neurosci 2021; 32(2): 219-34.
[http://dx.doi.org/10.1515/revneuro-2020-0070] [PMID: 33550782]