Abstract
Cancer is a disease that affects people of all ages, socioeconomic backgrounds, genders,
and demographics. It places a significant burden not just on those who are diagnosed but also
on their families and communities. Targeted therapeutic medications have surpassed more conventional
forms of chemotherapy in terms of both their effectiveness and safety, which leads to
their rapid ascent to the forefront of cancer treatment. A growing number of small molecules have
been created for the treatment of cancer, and several of these drugs have been approved to be sold
in the market by the Food and Drug Administration of the United States. Small molecule targeted
anticancer therapies have made significant progress in recent years, yet they continue to struggle
with a number of obstacles, including a low response rate and drug resistance. We have carried
out an exhaustive study on approved small-molecule targeted anticancer medications, as well as
important drug candidates. This review describes the significance of approved anticancer drugs
from 2021 to 2024, clinically active anticancer drugs, and the methods used for their synthesis.
Keywords:
Anticancer, Small molecules, FDA, Synthesis, Drugs, New molecules.
Graphical Abstract
[9]
Wang, J.; Wang, Y.; Qin, Y. Synthesis of Tivozanib. Carol. J. Pharm., 2013, 44, 541-544.
[11]
Lanman, B.A.; Allen, J.R.; Allen, J.G.; Amegadzie, A.K.; Ashton, K.S.; Booker, S.K.; Chen, J.J.; Chen, N.; Frohn, M.J.; Goodman, G.; Kopecky, D.J.; Liu, L.; Lopez, P.; Low, J.D.; Ma, V.; Minatti, A.E.; Nguyen, T.T.; Nishimura, N.; Pickrell, A.J.; Reed, A.B.; Shin, Y.; Siegmund, A.C.; Tamayo, N.A.; Tegley, C.M.; Walton, M.C.; Wang, H.L.; Wurz, R.P.; Xue, M.; Yang, K.C.; Achanta, P.; Bartberger, M.D.; Canon, J.; Hollis, L.S.; McCarter, J.D.; Mohr, C.; Rex, K.; Saiki, A.Y.; San Miguel, T.; Volak, L.P.; Wang, K.H.; Whittington, D.A.; Zech, S.G.; Lipford, J.R.; Cee, V.J. Discovery of a Covalent Inhibitor of KRAS
G12C (AMG 510) for the Treatment of Solid Tumors.
J. Med. Chem., 2020,
63(1), 52-65.
[
http://dx.doi.org/10.1021/acs.jmedchem.9b01180] [PMID:
31820981]
[12]
Lanman, B.A.; Chen, J.; Reed, A.B.; Cee, V.J.; Liu, L.; Kopecky, D.J.; Lopez, P.; Wurz, R.P.; Nguyen, T.T.; Booker, S. Kras G12c Inhibitors and Methods of Using the Same. Patent WO 2018,217651, 2018.
[13]
Parsons, A.T.; Beaver, M. Improved synthesis of kras g12c inhibitor compound. Patent WO 2021,097212, 2021.
[51]
DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; Donnellan, W.; Fathi, A.T.; Pigneux, A.; Erba, H.P.; Prince, G.T.; Stein, A.S.; Uy, G.L.; Foran, J.M.; Traer, E.; Stuart, R.K.; Arellano, M.L.; Slack, J.L.; Sekeres, M.A.; Willekens, C.; Choe, S.; Wang, H.; Zhang, V.; Yen, K.E.; Kapsalis, S.M.; Yang, H.; Dai, D.; Fan, B.; Goldwasser, M.; Liu, H.; Agresta, S.; Wu, B.; Attar, E.C.; Tallman, M.S.; Stone, R.M.; Kantarjian, H.M. Durable Remissions with Ivosidenib in
IDH1 -Mutated Relapsed or Refractory AML.
N. Engl. J. Med., 2018,
378(25), 2386-2398.
[
http://dx.doi.org/10.1056/NEJMoa1716984] [PMID:
29860938]
[69]
Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; Tang, Z.; Song, H.; Guo, Y.; Liu, X.; Su, D.; Zhang, S.; Song, X.; Zhou, X.; Hong, Y.; Chen, S.; Cheng, Z.; Young, S.; Wei, Q.; Wang, H.; Wang, Q.; Lv, L.; Wang, F.; Xu, H.; Sun, H.; Xing, H.; Li, N.; Zhang, W.; Wang, Z.; Liu, G.; Sun, Z.; Zhou, D.; Li, W.; Liu, L.; Wang, L.; Wang, Z. Discovery of Zanubrutinib (BGB-3111), a Novel, Potent, and Selective Covalent Inhibitor of Bruton’s Tyrosine Kinase.
J. Med. Chem., 2019,
62(17), 7923-7940.
[
http://dx.doi.org/10.1021/acs.jmedchem.9b00687] [PMID:
31381333]
[81]
Wang, E.C. A New Route to N-Aryl 2-Alkenamides, N-Allyl N-Aryl 2-Alkenamides, and N-Aryl a, beta-Unsaturated gamma -Lactams from N-Aryl 3-(Phenylsulfonyl) propanamides. J. Chinese Chem. Soc., 2001, 48, 83-90.
[95]
Mardis, E.R.; Ding, L.; Dooling, D.J.; Larson, D.E.; McLellan, M.D.; Chen, K.; Koboldt, D.C.; Fulton, R.S.; Delehaunty, K.D.; McGrath, S.D.; Fulton, L.A.; Locke, D.P.; Magrini, V.J.; Abbott, R.M.; Vickery, T.L.; Reed, J.S.; Robinson, J.S.; Wylie, T.; Smith, S.M.; Carmichael, L.; Eldred, J.M.; Harris, C.C.; Walker, J.; Peck, J.B.; Du, F.; Dukes, A.F.; Sanderson, G.E.; Brummett, A.M.; Clark, E.; McMichael, J.F.; Meyer, R.J.; Schindler, J.K.; Pohl, C.S.; Wallis, J.W.; Shi, X.; Lin, L.; Schmidt, H.; Tang, Y.; Haipek, C.; Wiechert, M.E.; Ivy, J.V.; Kalicki, J.; Elliott, G.; Ries, R.E.; Payton, J.E.; Westervelt, P.; Tomasson, M.H.; Watson, M.A.; Baty, J.; Heath, S.; Shannon, W.D.; Nagarajan, R.; Link, D.C.; Walter, M.J.; Graubert, T.A.; DiPersio, J.F.; Wilson, R.K.; Ley, T.J. Recurring mutations found by sequencing an acute myeloid leukemia genome.
N. Engl. J. Med., 2009,
361(11), 1058-1066.
[
http://dx.doi.org/10.1056/NEJMoa0903840] [PMID:
19657110]
[116]
Levis, M. Quizartinib in acute myeloid leukemia. Clin. Adv. Hematol. Oncol., 2013, 11(9), 586-588.