Nanoscience & Nanotechnology-Asia

Author(s): Bhawna Sharma*, Gaurav Kumar, Iti Chauhan and Raj Kumar Tiwari

DOI: 10.2174/0122106812306524240821055519

DownloadDownload PDF Flyer Cite As
Empowering Natural Medicine: Nanocarrier-based Oral Delivery of Vigna radiata Extract for Effective Diabetes Management

Article ID: e22106812306524 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Poor solubility and low oral bioavailability are major challenges associated with the oral delivery of the antidiabetic drug Vigna radiata (VR). Nanostructured lipid carriers (NLCs) have emerged as a promising strategy to overcome these limitations and improve the therapeutic efficacy of VR. This study investigated the potential of NLCs for VR delivery and explored the influence of formulation parameters on NLC properties and drug release behavior.

Methods: NLCs loaded with VR were prepared using the melt emulsion ultrafiltration technique. The effect of two key formulation variables – the ratio of liquid lipid to solid lipid and the concentration of the surfactant were investigated in terms of particle size, zeta potential, and drug encapsulation efficiency. The in-vitro release profiles of the VR-NLC formulations were evaluated, and the optimal formulation was subjected to further analysis to investigate its release kinetics.

Results: The NLCs exhibited particle sizes ranging from 108.9 to 192.3 nm and all formulations possessed a negative zeta potential (-3.68 to -10.9 mV), indicating good stability and potential for resisting aggregation. Interestingly, the lowest solid lipid to liquid lipid ratio and the lowest surfactant concentration yielded the highest drug encapsulation efficiency, highlighting the complex interplay between these factors. All VR-NLC formulations exhibited a biphasic, time-dependent in-vitro release pattern, suggesting an initial burst release followed by a sustained release phase. This biphasic profile is promising for achieving both rapid onset of action and long-lasting glycemic control, which are crucial aspects of effective diabetes management.

The optimized NLC formulation showed an in-vitro release pattern that adhered to the Higuchi diffusion model, suggesting a controlled release mechanism where the drug diffuses steadily out of the NLC matrix. This finding indicates potentially predictable and consistent drug delivery in-vivo.

Conclusion: This study demonstrates the potential of NLCs as a promising platform for the controlled oral delivery of VR. NLCs can overcome the inherent limitations of VR and provide a convenient and effective oral antidiabetic option for patients. Further research is needed to confirm the efficacy and safety of NLC-encapsulated VR in-vivo using relevant animal models. This will pave the way for the development of a novel and potentially transformative treatment option for diabetes.

Keywords: NLC, Vigna radiata extract, in-vitro, in-vivo, anti-diabetic, ultrafiltration technique, one work fourier transform infrared, encapsulation efficiency (EE).

Graphical Abstract

[1]
He, W.; Wu, M.; Huang, S.; Yin, L. Matrix tablets for sustained release of repaglinide: Preparation, pharmacokinetics and hypoglycemic activity in beagle dogs. Int. J. Pharm., 2015, 478(1), 297-307.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.059] [PMID: 25434592]
[2]
Kramer, C.K.; Zinman, B.; Gross, J.L.; Canani, L.H.; Rodrigues, T.C.; Azevedo, M.J.; Retnakaran, R. Coronary artery calcium score prediction of all cause mortality and cardiovascular events in people with type 2 diabetes: systematic review and meta-analysis. BMJ, 2013, 346, f1654.
[http://dx.doi.org/10.1136/bmj.f1654] [PMID: 23529983]
[3]
Zhu, H.; Zhang, X.; Li, M.Z.; Xie, J.; Yang, X.L. Prevalence of Type 2 diabetes and pre‐diabetes among overweight or obese children in Tianjin, China. Diabet. Med., 2013, 30(12), 1457-1465.
[http://dx.doi.org/10.1111/dme.12269] [PMID: 23815511]
[4]
Chen, Y.; Wu, C.M.; Dai, R.J.; Li, L.; Yu, Y.H.; Li, Y.; Meng, W.W.; Zhang, L.; Zhang, Y.; Deng, Y.L. Combination of HPLC chromatogram and hypoglycemic effect identifies isoflavones as the principal active fraction of Belamcanda chinensis leaf extract in diabetes treatment. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(5-6), 371-378.
[http://dx.doi.org/10.1016/j.jchromb.2010.12.022] [PMID: 21239237]
[5]
Unuofin, J.O.; Lebelo, S.L. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxid. Med. Cell. Longev., 2020, 2020, 1356893.
[http://dx.doi.org/10.1155/2020/1356893]
[6]
Mace, T.A.; Ware, M.B.; King, S.A.; Loftus, S.; Farren, M.R.; McMichael, E.; Scoville, S.; Geraghty, C.; Young, G.; Carson, W.E., III; Clinton, S.K.; Lesinski, G.B. Soy isoflavones and their metabolites modulate cytokine-induced natural killer cell function. Sci. Rep., 2019, 9(1), 5068-5072.
[http://dx.doi.org/10.1038/s41598-019-41687-z] [PMID: 30911044]
[7]
Yao, Y.; Yang, X.; Tian, J.; Liu, C.; Cheng, X.; Ren, G. Antioxidant and antidiabetic activities of black mung bean (Vigna radiata L.). J. Agric. Food Chem., 2013, 61(34), 8104-8109.
[http://dx.doi.org/10.1021/jf401812z] [PMID: 23947804]
[8]
Tang, D.; Dong, Y.; Ren, H.; Li, L.; He, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J., 2014, 8(1), 4.
[http://dx.doi.org/10.1186/1752-153X-8-4] [PMID: 24386928]
[9]
Swidan, S.A.; Ghonaim, H.M.; Samy, A.M.; Ghorab, M.M. Efficacy and in-vitro cytotoxicity of nanostructured lipid carriers for paclitaxel delivery. J. Appl. Pharm. Sci., 2016, 6(9), 18-26.
[http://dx.doi.org/10.7324/JAPS.2016.60903]
[10]
Tamayo, J.W.; David, E.; Espiritu, R. Preparation and characterization of liprotides prepared from protein extracts of mung beans (Vigna radiata (L.)). ChemRxiv, 2024.
[http://dx.doi.org/10.26434/chemrxiv-2024-7kdxp]
[11]
Husni, P.; Dewi, E.M. Formulation of peel-off gel mask containing mung bean (Vigna radiata (L.) Wilczek) extract. Indones. J. Pharm., 2019, 1(2), 46-51.
[http://dx.doi.org/10.24198/idjp.v1i2.19894]
[12]
Pawar, P.; Maniyar, M.; More, V.; Shinde, K. African. J. Biol. Sci., 6(3), 1127-1135.
[http://dx.doi.org/10.48047/AFJBS.6.Si3.2024.1127-1135]
[13]
Whitner, T.C.; Bailey, H.S. Melting point determination of lard substitutes. J. Oil Fat Ind., 1922, 5(10), 30-32.
[http://dx.doi.org/10.1007/BF03040032]
[14]
Gaba, B.; Fazil, M.; Khan, S.; Ali, A.; Baboota, S.; Ali, J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull. Fac. Pharm. Cairo Univ., 2015, 53(2), 147-159.
[http://dx.doi.org/10.1016/j.bfopcu.2015.10.001]
[15]
Fernandes, A.V.; Pydi, C.R.; Verma, R.; Jose, J.; Kumar, L. Design, preparation and in-vitro characterizations of fluconazole loaded nanostructured lipid carriers. Braz. J. Pharm. Sci., 2020, 56, e18069.
[http://dx.doi.org/10.1590/s2175-97902019000318069]
[16]
Negi, L.M.; Jaggi, M.; Talegaonkar, S. Development of protocol for screening the formulation components and the assessment of common quality problems of nano-structured lipid carriers. Int. J. Pharm., 2014, 461(1-2), 403-410.
[http://dx.doi.org/10.1016/j.ijpharm.2013.12.006] [PMID: 24345574]
[17]
Manikandan, S.; Jose, P.A.; Karuppaiah, A.; Rahman, H. The effect of physical stability and modified gastrointestinal tract behaviour of resveratrol-loaded NLCs encapsulated alginate beads. Naunyn Schmiedeberg's Arch. Pharmacol., 2024, Jun 15:, 1-5.
[http://dx.doi.org/10.1007/s00210-024-03223-3]
[18]
Sharma, B.; Chauhan, I.; Singh, A.P. Development of NLC- based Sunscreen Gel of Lutein and its in-vitro and ex-vivo Characterisation. Drug Deliv. Lett., 2023, 13(1), 69-81.
[http://dx.doi.org/10.2174/2210303113666221227145210]
[19]
Uprit, S.; Kumar Sahu, R.; Roy, A.; Pare, A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm. J., 2013, 21(4), 379-385.
[http://dx.doi.org/10.1016/j.jsps.2012.11.005] [PMID: 24227958]
[20]
Patel, D.; Dasgupta, S.; Dey, S.; Ramani, Y.R.; Ray, S.; Mazumder, B. Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: preparation, characterization, and in-vivo evaluation. Sci. Pharm., 2012, 80(3), 749-764.
[http://dx.doi.org/10.3797/scipharm.1202-12] [PMID: 23008819]
[21]
Csányi, E.; Sütő, B.; Berkó, S.; Kozma, G.; Kukovecz, Á.; Budai-Szűcs, M.; Erős, G.; Kemény, L.; Sztojkov-Ivanov, A.; Gaspar, R. Development of ibuprofen-loaded nanostructured lipid carrier-based gels: characterization and investigation of in-vitro and in-vivo penetration through the skin. Int. J. Nanomedicine, 2016, 11, 1201-1212.
[http://dx.doi.org/10.2147/IJN.S99198] [PMID: 27099487]
[22]
Agrawal, Y.; Petkar, K.C.; Sawant, K.K. Development, evaluation and clinical studies of Acitretin loaded nanostructured lipid carriers for topical treatment of psoriasis. Int. J. Pharm., 2010, 401(1-2), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.007] [PMID: 20858539]
[23]
Shinde, S.; Ghorpade, K.; Gattani, S.G. Design and development of boswellic acid loaded nanostructured lipid carrier based anti psoriatic nano gel for dermal delivery. World J. Pharm. Res., 2019, 8(7), 1045-1061.
[http://dx.doi.org/10.20959/wjpr20197-14858]
[24]
Kabré, J.A.W.; Dah-Nouvlessounon, D.; Hama-Ba, F.; Agonkoun, A.; Guinin, F.; Sina, H.; Kohonou, A.; Tchogou, P.; Senou, M.; Savadogo, A.; Baba-Moussa, L. Mung bean (Vigna radiata (L.) R. wilczek) from burkina faso used as antidiabetic, antioxidant and antimicrobial agent. Plants, 2022, 11(24), 3556.
[http://dx.doi.org/10.3390/plants11243556] [PMID: 36559668]
[25]
Aslan, M.; Deliorman Orhan, D.; Orhan, N.; Sezik, E.; Yesilada, E. In-vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J. Ethnopharmacol., 2007, 109(1), 54-59.
[http://dx.doi.org/10.1016/j.jep.2006.07.001] [PMID: 16949229]
[26]
Singh, G.; Kumar, P.; Kumar, A. Characterization of Vigna radiata extract for its functional properties. Res. Crops, 2018, 19(1), 188-192.
[http://dx.doi.org/10.3389/fpls.2019.01508]
[27]
Senthilkumar, S.R.; Sivakumar, T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci., 2014, 6(6), 461-465.
[28]
Gilani, S.J.; Jumah, M.N.; Zafar, A.; Imam, S.S.; Yasir, M.; Khalid, M.; Alshehri, S.; Ghuneim, M.M.; Albohairy, F.M. Formulation and evaluation of nano lipid carrier-based ocular gel system: Optimization to antibacterial activity. Gels, 2022, 8(5), 255.
[http://dx.doi.org/10.3390/gels8050255] [PMID: 35621552]
[29]
Malik, D.S.; Kaur, G. Nanostructured gel for topical delivery of azelaic acid: Designing, characterization, and in-vitro evaluation. J. Drug Deliv. Sci. Technol., 2018, 47, 123-136.
[http://dx.doi.org/10.1016/j.jddst.2018.07.008]
[30]
Niculae, G.; Badea, N.; Meghea, A.; Oprea, O.; Lacatusu, I. Coencapsulation of butyl-methoxydibenzoylmethane and octocrylene into lipid nanocarriers: UV performance, photostability and in-vitro release. Photochem. Photobiol., 2013, 89(5), 1085-1094.
[http://dx.doi.org/10.1111/php.12117] [PMID: 23789784]
[31]
Imran, M.; Iqubal, M.K.; Imtiyaz, K.; Saleem, S.; Mittal, S.; Rizvi, M.M.A.; Ali, J.; Baboota, S. Topical nanostructured lipid carrier gel of quercetin and resveratrol: Formulation, optimization, in-vitro and ex-vivo study for the treatment of skin cancer. Int. J. Pharm., 2020, 587, 119705.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119705] [PMID: 32738456]
[32]
Lacatusu, I.; Badea, N.; Murariu, A.; Meghea, A. The encapsulation effect of UV molecular absorbers into biocompatible lipid nanoparticles. Nanoscale Res. Lett., 2011, 6(1), 73.
[http://dx.doi.org/10.1186/1556-276X-6-73] [PMID: 21711592]
[33]
Bhaskar, K.; Krishna Mohan, C.; Lingam, M.; Prabhakar Reddy, V.; Venkateswarlu, V.; Madhusudan Rao, Y. Development of nitrendipine controlled release formulations based on SLN and NLC for topical delivery: in-vitro and ex-vivo characterization. Drug Dev. Ind. Pharm., 2008, 34(7), 719-725.
[http://dx.doi.org/10.1080/03639040701842485] [PMID: 18612912]
[34]
Joseph, J. B N, V.H.; D, R.D. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. Eur. J. Pharm. Sci., 2018, 112, 38-51.
[http://dx.doi.org/10.1016/j.ejps.2017.10.032] [PMID: 29111151]
[35]
Sharma, B.; Chauhan, I.; Tiwari, R.K. Development of NLC-based sunscreen gel of green tea extract and its in-vitro characterization. Curr. Bioact. Compd., 2024, Jun 1 20(5), 31-42.
[http://dx.doi.org/10.2174/0115734072260785230920113339]
[36]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[37]
Akhtar, M.S.; Rafiullah, M.; Hossain, M.A.; Ali, M. Antidiabetic activity of Cichorium intybus L. Water extract against streptozotocin-induced diabetic rats. Journal of Umm Al-Qura University for Appl. Sci., 2023, 9(4), 565-571.
[http://dx.doi.org/10.1007/s43994-023-00066-1]
[38]
Global diabetes cases to soar from 529 million to 1.3 billion by 2050. Available from: https://www.healthdata.org/news-events/newsroom/news-releases/global-diabetes-cases-soar-529-million-13-billion-2050 (accessed on 30-7-2024)