Anti-Cancer Agents in Medicinal Chemistry

Author(s): Henry Döring, David Kreutzer, Jannis von Veh, Christoph A. Ritter and Andreas Hilgeroth*

DOI: 10.2174/0118715206331206240828111126

DownloadDownload PDF Flyer Cite As
Evaluation of Novel Diaza Cage Compounds as MRP Modulators in Cancer Cells

Page: [63 - 74] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Aim: Novel MRP modulators are needed to combat MRP-mediated multidrug resistance (MDR) in cancer cells.

Background: Anticancer drug resistance is the main problem in cancer therapy. Causative multidrug efflux pumps are attractive target structures for the development of inhibitors of their activity.

Objective: We synthesized novel cage dimeric 1,4-dihydropyridines to evaluate them as MRP modulators in cancer cells targeting MRP1, MRP2, and MRP4.

Methods: Cage compounds were synthesized by solution dimerization of monomeric 1,4-dihydropyridines and a final functionalization reaction. The MRP modulation was determined in cellular efflux assays by the use of the flow cytometry technique as well as cellular fluorescent measurements with each fluorescent substrate of the efflux pumps.

Results: Difluoro phenyl and methoxy or dimethoxy benzyl substitutions were most favourable for the MRP1 and MRP2 inhibition, whereas monofluor phenyl and dimethoxy benzyl substitutions were most favourable for the MRP4 inhibition.

Conclusion: Effective inhibitors were identified that were demonstrated to restore the respective cancer cell line sensitivity for the anticancer drug as a proof-of-concept that encourages further preclinical studies.

Keywords: Drug development, small-molecule inhibitors, substituent effects, MDR modulating activity, MRP4, cellular efflux assays.

Graphical Abstract

[2]
Yan, L.; Rosen, N.; Arteaga, C. Targeted cancer therapies. Chin. J. Cancer, 2011, 30(1), 1-4.
[http://dx.doi.org/10.5732/cjc.010.10553] [PMID: 21192839]
[3]
Sarkar, N.; Singh, A.; Kumar, P.; Kaushik, M. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition. Drug Res. (Stuttg.), 2023, 73(4), 189-199.
[http://dx.doi.org/10.1055/a-1989-1856] [PMID: 36822216]
[4]
Li, J.; Gong, C.; Zhou, H.; Liu, J.; Xia, X.; Ha, W.; Jiang, Y.; Liu, Q.; Xiong, H. Kinase inhibitors and kinase-targeted cancer therapies: recent advances and future perspectives. Int. J. Mol. Sci., 2024, 25(10), 5489.
[http://dx.doi.org/10.3390/ijms25105489] [PMID: 38791529]
[5]
Protein kinase inhibitors. 2024. Available from: https://brimr.org/protein-kinase-inhibitors/
[6]
Singha, M.; Pu, L.; Srivastava, G.; Ni, X.; Stanfield, B.A.; Uche, I.K.; Rider, P.J.F.; Kousoulas, K.G.; Ramanujam, J.; Brylinski, M. Unlocking the potential of kinase targets in cancer: Insights from canceromicsnet, an ai-driven approach to drug response prediction in cancer. Cancers (Basel), 2023, 15(16), 4050.
[http://dx.doi.org/10.3390/cancers15164050] [PMID: 37627077]
[7]
Kannaiyan, R.; Mahadevan, D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther., 2018, 18(12), 1249-1270.
[http://dx.doi.org/10.1080/14737140.2018.1527688] [PMID: 30259761]
[8]
Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies (Basel), 2020, 9(3), 34.
[http://dx.doi.org/10.3390/antib9030034] [PMID: 32698317]
[9]
Hernandez, I.; Bott, S.W.; Patel, A.S.; Wolf, C.G.; Hospodar, A.R.; Sampathkumar, S.; Shrank, W.H. Pricing of monoclonal antibody therapies: Higher if used for cancer? Am. J. Manag. Care, 2018, 24(2), 109-112.
[PMID: 29461857]
[10]
Lin, Y.F.; Liu, J.J.; Chang, Y.J.; Yu, C.S.; Yi, W.; Lane, H.Y.; Lu, C.H. Predicting anticancer drug resistance mediated by mutations. Pharmaceuticals (Basel), 2022, 15(2), 136.
[http://dx.doi.org/10.3390/ph15020136] [PMID: 35215249]
[11]
Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules, 2022, 27(3), 616.
[http://dx.doi.org/10.3390/molecules27030616] [PMID: 35163878]
[12]
Duan, C.; Yu, M.; Xu, J.; Li, B.Y.; Zhao, Y.; Kankala, R.K. Overcoming cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother., 2023, 162, 114643.
[http://dx.doi.org/10.1016/j.biopha.2023.114643] [PMID: 37031496]
[13]
Krchniakova, M.; Skoda, J.; Neradil, J.; Chlapek, P.; Veselska, R. Repurposing tyrosine kinase inhibitors to overcome multidrug resistance in cancer: a focus on transporters and lysosomal sequestration. Int. J. Mol. Sci., 2020, 21(9), 3157.
[http://dx.doi.org/10.3390/ijms21093157] [PMID: 32365759]
[14]
Wu, C.P.; Hsieh, C.H.; Wu, Y.S. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm., 2011, 8(6), 1996-2011.
[http://dx.doi.org/10.1021/mp200261n] [PMID: 21770407]
[15]
Ughachukwu, P.O.; Unekwe, P.C. Efflux pump-mediated resistance in chemotherapy. Ann. Med. Health Sci. Res., 2012, 2(2), 191-198.
[http://dx.doi.org/10.4103/2141-9248.105671] [PMID: 23439914]
[16]
Hilgeroth, A.; Hemmer, M.; Coburger, C. The impact of the induction of multidrug resistance transporters in therapies by used drugs: recent studies. Mini Rev. Med. Chem., 2012, 12(11), 1127-1134.
[http://dx.doi.org/10.2174/138955712802762130] [PMID: 22512559]
[17]
Zhang, Y.K.; Wang, Y.J.; Gupta, P.; Chen, Z.S. Multidrug Resistance Proteins (MRPs) and cancer therapy. AAPS J., 2015, 17(4), 802-812.
[http://dx.doi.org/10.1208/s12248-015-9757-1] [PMID: 25840885]
[18]
Yamada, A.; Ishikawa, T.; Ota, I.; Kimura, M.; Shimizu, D.; Tanabe, M.; Chishima, T.; Sasaki, T.; Ichikawa, Y.; Morita, S.; Yoshiura, K.; Takabe, K.; Endo, I. High expression of ATP-binding cassette transporter ABCC1 in breast tumors is associated with aggressive subtypes and low disease-free survival. Breast Cancer Res. Treat., 2013, 137(3), 773-782.
[http://dx.doi.org/10.1007/s10549-012-2398-5] [PMID: 23288347]
[19]
Young, L.C.; Campling, B.G.; Cole, S.P.; Deeley, R.G.; Gerlach, J.H. Multidrug resistance proteins MRP3, MRP1, and MRP2 in lung cancer: correlation of protein levels with drug response and messenger RNA levels. Clin. Cancer Res., 2001, 7(6), 1798-1804.
[PMID: 11410522]
[20]
Hlavata, I.; Mohelnikova-Duchonova, B.; Vaclavikova, R.; Liska, V.; Pitule, P.; Novak, P.; Bruha, J.; Vycital, O.; Holubec, L.; Treska, V.; Vodicka, P.; Soucek, P. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis, 2012, 27(2), 187-196.
[http://dx.doi.org/10.1093/mutage/ger075] [PMID: 22294766]
[21]
Driscoll, L.O´.; Walsh, N.; Larkin, A.; Ballot, J.; Ooi, W.S.; Gullo, G.; Connor, R.O´.; Clynes, M.; Crown, J.; Kennedy, S. MDR1/P-glycoprotein and MRP-1 drug efflux pumps in pancreatic carcinoma. Anticancer Res., 2007, 27(4B), 2115-2120.
[22]
Walsh, N.; Larkin, A.; Kennedy, S.; Connolly, L.; Ballot, J.; Ooi, W.; Gullo, G.; Crown, J.; Clynes, M.; O’Driscoll, L. Expression of multidrug resistance markers ABCB1 (MDR-1/P-gp) and ABCC1 (MRP-1) in renal cell carcinoma. BMC Urol., 2009, 9(1), 6.
[http://dx.doi.org/10.1186/1471-2490-9-6] [PMID: 19552816]
[23]
Li, Y.F.; Ji, H.H.; Zhang, Z.L.; Zhang, T.T.; Gan, W.; Zhang, S.F. Targeting MRP4 expression by anti-androgen treatment reverses MRP4-mediated docetaxel resistance in castration-resistant prostate cancer. Oncol. Lett., 2017, 14(2), 1748-1756.
[http://dx.doi.org/10.3892/ol.2017.6357] [PMID: 28789405]
[24]
Savaraj, N.; Wu, C.; Wangpaichitr, M.; Kuo, M.; Lampidis, T.; Robles, C.; Furst, A.; Feun, L. Overexpression of mutated MRP4 in cisplatin resistant small cell lung cancer cell line: Collateral sensitivity to azidothymidine. Int. J. Oncol., 2003, 23(1), 173-179.
[http://dx.doi.org/10.3892/ijo.23.1.173] [PMID: 12792791]
[25]
Zhang, Y.H.; Wu, Q.; Xiao, X.Y.; Li, D.W.; Wang, X.P. Silencing MRP4 by small interfering RNA reverses acquired DDP resistance of gastric cancer cell. Cancer Lett., 2010, 291(1), 76-82.
[http://dx.doi.org/10.1016/j.canlet.2009.10.003] [PMID: 19883972]
[26]
Oprea-Lager, D.E.; Bijnsdorp, I.V.; Van Moorselaar, R.J.; Van den Eertwegh, A.J.; Hoekstra, O.S.; Geldof, A.A. ABCC4 Decreases docetaxel and not cabazitaxel efficacy in prostate cancer cells in vitro. Anticancer Res., 2013, 33(2), 387-391.
[PMID: 23393328]
[27]
Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer, 2018, 18(7), 452-464.
[http://dx.doi.org/10.1038/s41568-018-0005-8] [PMID: 29643473]
[28]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[29]
Rottenberg, S.; Jaspers, J.E.; Kersbergen, A.; van der Burg, E.; Nygren, A.O.H.; Zander, S.A.L.; Derksen, P.W.B.; de Bruin, M.; Zevenhoven, J.; Lau, A.; Boulter, R.; Cranston, A.; O’Connor, M.J.; Martin, N.M.B.; Borst, P.; Jonkers, J. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA, 2008, 105(44), 17079-17084.
[http://dx.doi.org/10.1073/pnas.0806092105] [PMID: 18971340]
[30]
Pajic, M.; Iyer, J.K.; Kersbergen, A.; Van der Burg, E.; Nygren, A.O.H.; Jonkers, J.; Borst, P.; Rottenberg, S. Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Res., 2009, 69(16), 6396-6404.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0041] [PMID: 19654309]
[31]
Yu, X.; Weng, Z.; Zhao, Z.; Xu, J.; Qi, Z.; Liu, J. Assembly of protein cages for drug delivery. Pharmaceutics, 2022, 14(12), 2609.
[http://dx.doi.org/10.3390/pharmaceutics14122609] [PMID: 36559102]
[32]
Tapia, L.; Alfonso, I.; Solà, J. Molecular cages for biological applications. Org. Biomol. Chem., 2021, 19(44), 9527-9540.
[http://dx.doi.org/10.1039/D1OB01737C] [PMID: 34668919]
[33]
Ellis-Davies, G.C.R. Caged compounds: Photorelease technology for control of cellular chemistry and physiology. Nat. Methods, 2007, 4(8), 619-628.
[http://dx.doi.org/10.1038/nmeth1072] [PMID: 17664946]
[34]
Kreutzer, D.; Döring, H.; Werner, P.; Ritter, C.A.; Hilgeroth, A. Novel symmetrical cage compounds as inhibitors of the symmetrical mrp4-efflux pump for anticancer therapy. Int. J. Mol. Sci., 2021, 22, 5098.
[http://dx.doi.org/10.3390/ijms22105098] [PMID: 34065900]
[35]
Poźniak, B.; Pawlak, A.; Obmińska-Mrukowicz, B. Flow cytometric assessment of P-glycoprotein and multidrug resistance-associated protein activity and expression in canine lymphoma. In vivo, 2015, 29(1), 149-153.
[PMID: 25600546]
[36]
Eva, A.; Robbins, K.C.; Andersen, P.R.; Srinivasan, A.; Tronick, S.R.; Reddy, E.P.; Ellmore, N.W.; Galen, A.T.; Lautenberger, J.A.; Papas, T.S.; Westin, E.H.; Wong-Staal, F.; Gallo, R.C.; Aaronson, S.A. Cellular genes analogous to retroviral onc genes are transcribed in human tumour cells. Nature, 1982, 295(5845), 116-119.
[http://dx.doi.org/10.1038/295116a0] [PMID: 6173755]
[37]
Rius, M.; Nies, A.T.; Hummel-Eisenbeis, J.; Jedlitschky, G.; Keppler, D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology, 2003, 38(2), 374-384.
[http://dx.doi.org/10.1053/jhep.2003.50331]
[38]
Kim, H.S.; Min, Y.D.; Choi, C.H. Double-edged sword of chemosensitizer: Increase of multidrug resistance protein (MRP) in leukemic cells by an MRP inhibitor probenecid. Biochem. Biophys. Res. Commun., 2001, 283(1), 64-71.
[http://dx.doi.org/10.1006/bbrc.2001.4746] [PMID: 11322768]
[39]
Gollapudi, S.; Kim, C.H.; Tran, B.N.; Sangha, S.; Gupta, S. Probenecid reverses multidrug resistance in multidrug resistance-associated protein-overexpressing HL60/AR and H69/AR cells but not in P-glycoprotein-overexpressing HL60/Tax and P388/ADR cells. Cancer Chemother. Pharmacol., 1997, 40(2), 150-158.
[http://dx.doi.org/10.1007/s002800050640] [PMID: 9182837]
[40]
Isomura, S.; Anzai, M.; Kobayashi, C.; Okuno, Y.; Miyamoto, K.; Uchiyama, M.; Sato, Y. Chennat‐type synthesis of 1,4‐dihydropyridine derivatives in water: Role of a hydrogen‐bonding network. ChemistrySelect, 2020, 5(6), 2075-2077.
[http://dx.doi.org/10.1002/slct.201904144]
[41]
Dean, S.W.; Lane, M.; Ruddock, S.P.; Martin, C.N.; Kirkland, D.J.; Loprieno, N. Development of assays for the detection of photomutagenity of chemicals during exposure to UV light. Mutagenesis, 1991, 6, 335-341.
[http://dx.doi.org/10.1093/mutage/6.5.335] [PMID: 1795636]
[42]
Wang, C.; Lu, Z. Intermolecular [2 + 2] cycloaddition of 1,4-dihydropyridines with olefins via energy transfer. Org. Lett., 2017, 19(21), 5888-5891.
[http://dx.doi.org/10.1021/acs.orglett.7b02881] [PMID: 29048912]
[43]
Hollenstein, K.; Dawson, R.J.P.; Locher, K.P. Structure and mechanism of ABC transporter proteins. Curr. Opin. Struct. Biol., 2007, 17(4), 412-418.
[http://dx.doi.org/10.1016/j.sbi.2007.07.003] [PMID: 17723295]
[44]
Haimeur, A.; Conseil, G.; Deeley, R.; Cole, S. The MRP-related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation. Curr. Drug Metab., 2004, 5(1), 21-53.
[http://dx.doi.org/10.2174/1389200043489199] [PMID: 14965249]
[45]
Chen, Z.S.; Lee, K.; Kruh, G.D. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4. Resistance to 6-mercaptopurine and 6-thioguanine. J. Biol. Chem., 2001, 276(36), 33747-33754.
[http://dx.doi.org/10.1074/jbc.M104833200] [PMID: 11447229]
[46]
Van Aubel, R.A.M.H.; Smeets, P.H.E.; Peters, J.G.P.; Bindels, R.J.M.; Russel, F.G.M. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: Putative efflux pump for urinary cAMP and cGMP. J. Am. Soc. Nephrol., 2002, 13(3), 595-603.
[http://dx.doi.org/10.1681/ASN.V133595] [PMID: 11856762]