Journal of Current Toxicology and Venomics

Author(s): Hamid Reza Jamshidi, Mahdi Saadati and Fatemeh Saghafi*

DOI: 10.2174/0126661217306815240723070112

DownloadDownload PDF Flyer Cite As
The Protective Effects of Mito-TEMPO on Acetaminophen-induced Hepatotoxicity: A Systematic Review

Article ID: e26661217306815 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Acetaminophen overdose is a leading cause of acute liver failure globally. Current treatment options, primarily N-acetylcysteine (NAC), have limitations. Mito- TEMPO (Mito-T), a mitochondria-targeted antioxidant, has shown potential in preclinical studies. This systematic review evaluated the evidence for Mito-T's hepatoprotective effects against acetaminophen-induced liver injury.

Methods: We conducted a comprehensive search of databases and grey literature following PRISMA guidelines. Studies published between 2000 and 2023 on Mito-T and acetaminopheninduced hepatotoxicity in animal models were included. Data on study characteristics, interventions, outcomes, and risk of bias were extracted.

Results: Six high-quality studies were included. Mito-T administration significantly reduced serum alanine transaminase (ALT) levels, a marker of liver injury, compared to controls. Mito- T also protects against hepatocellular necrosis, apoptosis, and mitochondrial dysfunction. These effects were likely mediated by Mito-T's ability to scavenge reactive oxygen and nitrogen species within mitochondria.

Conclusion: This review provides strong evidence that Mito-T effectively protects against acetaminophen- induced liver injury in animal models. Mito-T’s mechanisms of action address a critical pathophysiological pathway in acetaminophen toxicity. While limitations, including the use of animal models and potential for publication bias, exist, the findings suggest Mito-T holds promise as a novel therapeutic option. Further studies are needed to assess Mito-T's safety, pharmacokinetics, and optimal dosing in humans. Clinical trials comparing Mito-T against NAC are warranted if toxicity profiles are favorable. Additionally, investigating Mito-T's potential in other diseases involving oxidative stress is crucial.

Keywords: Acetaminophen, hepatotoxicity, mito-TEMPO, mitochondria, oxidative stress, antioxidants, systematic review.

[1]
Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away? J. Hepatol., 2017, 67(6), 1324-1331.
[http://dx.doi.org/10.1016/j.jhep.2017.07.005] [PMID: 28734939]
[2]
Larson, A.M. Acetaminophen Hepatotoxicity. Clin. Liver Dis., 2007, 11(3), 525-548 vi.
[http://dx.doi.org/10.1016/j.cld.2007.06.006] [PMID: 17723918]
[3]
McGill, M.R.; Williams, C.D.; Xie, Y.; Ramachandran, A.; Jaeschke, H. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol., 2012, 264(3), 387-394.
[http://dx.doi.org/10.1016/j.taap.2012.08.015] [PMID: 22980195]
[4]
Cohen, S.D.; Pumford, N.R.; Khairallah, E.A. Selective protein covalent binding and target organ toxicity. Toxicol. Appl. Pharmacol., 1997, 143(1), 1-12.
[http://dx.doi.org/10.1006/taap.1996.8074] [PMID: 9073586]
[5]
Ramachandran, A.; Jaeschke, H. Acetaminophen hepatotoxicity: A mitochondrial perspective. Adv. Pharmacol., 2019, 85, 195-219.
[http://dx.doi.org/10.1016/bs.apha.2019.01.007] [PMID: 31307587]
[6]
Hinson, J.A.; Roberts, D.W.; James, L.P. Mechanisms of acetaminophen-induced liver necrosis. Handb. Exp. Pharmacol., 2010, 2010(196), 369-405.
[http://dx.doi.org/10.1007/978-3-642-00663-0_12]
[7]
McGill, M.R.; Jaeschke, H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res., 2013, 30(9), 2174-2187.
[http://dx.doi.org/10.1007/s11095-013-1007-6] [PMID: 23462933]
[8]
Smilkstein, M.J.; Knapp, G.L.; Kulig, K.W.; Rumack, B.H. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985). N. Engl. J. Med., 1988, 319(24), 1557-1562.
[http://dx.doi.org/10.1056/NEJM198812153192401] [PMID: 3059186]
[9]
Schwalfenberg, G.K. N‐acetylcysteine: a review of clinical usefulness (an old drug with new tricks). J. Nutr. Metab., 2021, 2021(1), 1-13.
[http://dx.doi.org/10.1155/2021/9949453] [PMID: 34221501]
[10]
Bunchorntavakul, C.; Reddy, K.R. Acetaminophen-related Hepatotoxicity. Clin. Liver Dis., 2013, 17(4), 587-607, viii.
[http://dx.doi.org/10.1016/j.cld.2013.07.005] [PMID: 24099020]
[11]
Jaeschke, H.; McGill, M.R.; Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev., 2012, 44(1), 88-106.
[http://dx.doi.org/10.3109/03602532.2011.602688] [PMID: 22229890]
[12]
Shetty, S.; Kumar, R.; Bharati, S. Mito-TEMPO, a mitochondria-targeted antioxidant, prevents N-nitrosodiethylamine-induced hepatocarcinogenesis in mice. Free Radic. Biol. Med., 2019, 136, 76-86.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.037] [PMID: 30946961]
[13]
Cover, C.; Mansouri, A.; Knight, T.R. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J. Pharmacol. Exp. Ther., 2005, 315(2), 879-887.
[http://dx.doi.org/10.1124/jpet.105.088898] [PMID: 16081675]
[14]
Barzegari, A.; Nouri, M.; Gueguen, V.; Saeedi, N.; Pavon-Djavid, G.; Omidi, Y. Mitochondria‐targeted antioxidant mito‐TEMPO alleviate oxidative stress induced by antimycin A in human mesenchymal stem cells. J. Cell. Physiol., 2020, 235(7-8), 5628-5636.
[http://dx.doi.org/10.1002/jcp.29495] [PMID: 31989645]
[15]
Abdullah-Al-Shoeb, M.; Sasaki, K.; Kikutani, S. The late-stage protective effect of Mito-TEMPO against acetaminophen-induced hepatotoxicity in mouse and three-dimensional cell culture models. Antioxidants, 2020, 9(10), 965.
[http://dx.doi.org/10.3390/antiox9100965] [PMID: 33050213]
[16]
Mohammad, AAS In vivo and in vitro protective effect of Mito-TEMPO against In vivoliver injury. 2020. Available from: http://www.file:///C:/Users/Test-1/Downloads/yakugaku_kou297youyaku%20(4).pdf
[17]
Wang, P.F.; Xie, K.; Cao, Y.X.; Zhang, A. Hepatoprotective effect of mitochondria-targeted antioxidant mito-tempo against lipopolysaccharide-induced liver injury in mouse. Mediators Inflamm., 2022, 2022(1), 1-14.
[http://dx.doi.org/10.1155/2022/6394199] [PMID: 35769207]
[18]
Studer, A.; Vogler, T. Applications of TEMPO in synthesis. Synthesis, 2008, 2008(13), 1979-1993.
[http://dx.doi.org/10.1055/s-2008-1078445]
[19]
Lin, M.; Li, S.; Yang, L. Plasma membrane vesicles of human umbilical cord mesenchymal stem cells ameliorate acetaminophen-induced damage in HepG2 cells: a novel stem cell therapy. Stem Cell Res. Ther., 2020, 11(1), 225.
[http://dx.doi.org/10.1186/s13287-020-01738-z] [PMID: 32513263]
[20]
Du, K.; Ramachandran, A.; Weemhoff, J.L. Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity. Arch. Toxicol., 2019, 93(1), 163-178.
[http://dx.doi.org/10.1007/s00204-018-2331-8] [PMID: 30324313]
[21]
Wang, Y.; Zhao, Y.; Wang, Z. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front. Immunol., 2021, 12652782
[http://dx.doi.org/10.3389/fimmu.2021.652782] [PMID: 34054813]
[22]
Kim, H.; Lee, J.H.; Park, J.W. IDH2 deficiency exacerbates acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced apoptosis. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2333-2341.
[http://dx.doi.org/10.1016/j.bbadis.2019.05.012] [PMID: 31121248]
[23]
Du, K.; Farhood, A.; Jaeschke, H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch. Toxicol., 2017, 91(2), 761-773.
[http://dx.doi.org/10.1007/s00204-016-1692-0] [PMID: 27002509]
[24]
Mustacich, D.; Powis, G. Thioredoxin reductase. Biochem. J., 2000, 346(1), 1-8.
[http://dx.doi.org/10.1042/bj3460001] [PMID: 10657232]
[25]
Young Park, S.; Lee, S.M.; Woo Shin, S.; Park, J.W. Inactivation of mitochondrial NADP + -dependent isocitrate dehydrogenase by hypochlorous acid. Free Radic. Res., 2008, 42(5), 467-473.
[http://dx.doi.org/10.1080/10715760802098834] [PMID: 18484410]
[26]
Maldonado, EN; Lemasters, JJ ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion , 2014, 19(Pt A), 78-84.
[http://dx.doi.org/10.1016/j.mito.2014.09.002] [PMID: 25229666]
[27]
Aritomi, K.; Ishitsuka, Y.; Tomishima, Y. Evaluation of three-dimensional cultured HepG2 cells in a nano culture plate system: an in vitro human model of acetaminophen hepatotoxicity. J. Pharmacol. Sci., 2014, 124(2), 218-229.
[http://dx.doi.org/10.1254/jphs.13135FP] [PMID: 24492462]
[28]
Seki, E.; Brenner, D.A.; Karin, M. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches. Gastroenterology, 2012, 143(2), 307-320.
[http://dx.doi.org/10.1053/j.gastro.2012.06.004] [PMID: 22705006]
[29]
Hanawa, N.; Shinohara, M.; Saberi, B.; Gaarde, W.A.; Han, D.; Kaplowitz, N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J. Biol. Chem., 2008, 283(20), 13565-13577.
[http://dx.doi.org/10.1074/jbc.M708916200] [PMID: 18337250]
[30]
Uzi, D.; Barda, L.; Scaiewicz, V. CHOP is a critical regulator of acetaminophen-induced hepatotoxicity. J. Hepatol., 2013, 59(3), 495-503.
[http://dx.doi.org/10.1016/j.jhep.2013.04.024] [PMID: 23665281]
[31]
Budnitz, D.S.; Lovegrove, M.C.; Crosby, A.E. Emergency department visits for overdoses of acetaminophen-containing products. Am. J. Prev. Med., 2011, 40(6), 585-592.
[http://dx.doi.org/10.1016/j.amepre.2011.02.026] [PMID: 21565648]
[32]
Nelson, S.D. Ed. Thieme Medical Publishers, Inc. , 1990.
[33]
LoGuidice, A.; Boelsterli, U.A. Acetaminophen overdose-induced liver injury in mice is mediated by peroxynitrite independently of the cyclophilin D-regulated permeability transition. Hepatology, 2011, 54(3), 969-978.
[http://dx.doi.org/10.1002/hep.24464] [PMID: 21626531]
[34]
Ramachandran, A.; Lebofsky, M.; Baines, C.P.; Lemasters, J.J.; Jaeschke, H. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic. Res., 2011, 45(2), 156-164.
[http://dx.doi.org/10.3109/10715762.2010.520319] [PMID: 20942566]
[35]
Jaeschke, H.; Williams, C.D.; Farhood, A. No evidence for caspase-dependent apoptosis in acetaminophen hepatotoxicity. Hepatology, 2011, 53(2), 718-719.
[http://dx.doi.org/10.1002/hep.23940] [PMID: 21274895]
[36]
Gujral, J.S.; Knight, T.R.; Farhood, A.; Bajt, M.L.; Jaeschke, H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol. Sci., 2002, 67(2), 322-328.
[http://dx.doi.org/10.1093/toxsci/67.2.322] [PMID: 12011492]
[37]
Shi, C.; Hao, B.; Yang, Y. JNK signaling pathway mediates acetaminophen-induced hepatotoxicity accompanied by changes of glutathione S-transferase A1 content and expression. Front. Pharmacol., 2019, 10, 1092.
[http://dx.doi.org/10.3389/fphar.2019.01092] [PMID: 31620005]
[38]
Chen, Y.; Park, H.J.; Park, J. Carbon monoxide ameliorates acetaminophen‐induced liver injury by increasing hepatic HO‐1 and Parkin expression. FASEB J., 2019, 33(12), 13905-13919.
[http://dx.doi.org/10.1096/fj.201901258RR] [PMID: 31645120]
[39]
Knight, T.R.; Kurtz, A.; Bajt, M.L.; Hinson, J.A.; Jaeschke, H. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol. Sci., 2001, 62(2), 212-220.
[http://dx.doi.org/10.1093/toxsci/62.2.212] [PMID: 11452133]
[40]
Du, K.; Williams, C.D.; McGill, M.R.; Jaeschke, H. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase. Toxicol. Appl. Pharmacol., 2014, 281(1), 58-66.
[http://dx.doi.org/10.1016/j.taap.2014.09.002] [PMID: 25218290]
[41]
Saito, C.; Zwingmann, C.; Jaeschke, H. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology, 2010, 51(1), 246-254.
[http://dx.doi.org/10.1002/hep.23267] [PMID: 19821517]
[42]
James, L.P.; McCullough, S.S.; Lamps, L.W.; Hinson, J.A. Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol. Sci., 2003, 75(2), 458-467.
[http://dx.doi.org/10.1093/toxsci/kfg181] [PMID: 12883092]
[43]
Agarwal, R.; MacMillan-Crow, L.A.; Rafferty, T.M. Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J. Pharmacol. Exp. Ther., 2011, 337(1), 110-118.
[http://dx.doi.org/10.1124/jpet.110.176321] [PMID: 21205919]
[44]
Hur, K.Y.; So, J.S.; Ruda, V. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity. J. Exp. Med., 2012, 209(2), 307-318.
[http://dx.doi.org/10.1084/jem.20111298] [PMID: 22291093]
[45]
Mobasher, M.A.; González-Rodríguez, Á.; Santamaría, B.; Ramos, S.; Martín, M.Á.; Goya, L. Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity. Cell Death Dis., 2013, 4(5), 626.
[46]
Liu, F.C.; Lee, H.C.; Liao, C.C.; Li, A.H.; Yu, H.P. Tropisetron protects against acetaminophen‐induced liver injury via suppressing hepatic oxidative stress and modulating the activation of JNK/ERK MAPK pathways. BioMed Res. Int., 2016, 2016(1), 1-9.
[http://dx.doi.org/10.1155/2016/1952947] [PMID: 27891510]
[47]
Yang, R.; Miki, K.; He, X.; Killeen, M.E.; Fink, M.P. Prolonged treatment with N-acetylcystine delays liver recovery from acetaminophen hepatotoxicity. Crit. Care, 2009, 13(2), R55.
[http://dx.doi.org/10.1186/cc7782] [PMID: 19358737]
[48]
Muldrew, K.L.; James, L.P.; Coop, L. Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab. Dispos., 2002, 30(4), 446-451.
[http://dx.doi.org/10.1124/dmd.30.4.446] [PMID: 11901099]
[49]
Bhushan, B.; Chavan, H.; Borude, P. Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice. Toxicol. Sci., 2017, 155(2), 363-378.
[http://dx.doi.org/10.1093/toxsci/kfw213] [PMID: 28123000]
[50]
Choi, Y.H.; Lee, H.S.; Chung, C.K.; Kim, E.J.; Kang, I.J. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells. Nutr. Res. Pract., 2017, 11(2), 97-104.
[http://dx.doi.org/10.4162/nrp.2017.11.2.97] [PMID: 28386382]
[51]
Xie, Y.; McGill, M.R.; Dorko, K. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes. Toxicol. Appl. Pharmacol., 2014, 279(3), 266-274.
[http://dx.doi.org/10.1016/j.taap.2014.05.010] [PMID: 24905542]