Nanoscience & Nanotechnology-Asia

Author(s): Syeda Farah Bukhari, Syed Nawazish Ali*, Saima Tauseef, Sabira Begum, Ambreen Zia, Husena Aamra and Erum Hassan

DOI: 10.2174/0122106812320717240820104655

DownloadDownload PDF Flyer Cite As
Asian Spice Nanotech: Illicium verum made Metal Nanoparticles for Potent Antibacterial and Catalytic Applications

Article ID: e22106812320717 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Asian spices are globally recognized for their rich phytochemical composition. The bioactive compounds of Asian spices have significant potential to extend the biological applications of metal nanomaterials by increasing their surface area, stability, dispersion, and ecofriendliness.

Method: The present study is designed to prepare novel iron oxide (Fe2O3) and copper oxide (CuO) nanoparticles using an aqueous extract of Illicium verum (star anise), a traditional Asian spice as a reducing, capping & stabilizing agent. The synthesized nanoparticles have been characterized to study their molecular environment using Fourier Transform Infrared Spectroscopy (FTIR). Elemental composition was examined through the Energy Dispersive X-ray Spectroscopy (EDS). Scanning Electron Microscopy (SEM) revealed the size, shape, and other morphological characteristics of nanoparticles. The optical properties have been tested through Ultraviolet-Visible (UV) spectroscopy and the band gap energies of both Fe2O3 and CuO nanoparticles have been calculated by using the Tauc plot method, which explores its semiconductor applications. The catalytic applications of obtained nanoparticles have shown significant potential in the degradation of aqueous methyl orange dye (MO).

Results: Results revealed that Fe2O3 and CuO nanoparticles significantly increased the rate of reaction by decreasing the reaction time to 45 mins and 40 mins, respectively in comparison to the NaBH4 (60 mins). This shows that CuO has a larger surface area and more absorption capacity than Fe2O3 NPs. To examine the cause of value healthcare, the obtained materials have also been applied against various Gram-positive and Gram-negative bacteria. The bactericidal activity was compared with gentamicin, which showed both nanometals are moderate to strongly active against tested microbes.

Conclusion: The successful eco-friendly synthesis of metallic nanoparticles by using Asian spices and their applications in physical and biological sciences opens the door for the scientific community to develop and apply more novel and green nanomaterials in industrial and commercial areas.

Keywords: Illicium verum, iron oxide, copper oxide, nanoparticles, antibacterial, photocatalyst.

Graphical Abstract

[1]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – a review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[2]
Rubió, L.; Motilva, M.J.; Romero, M.P. Recent advances in biologically active compounds in herbs and spices: A review of the most effective antioxidant and anti-inflammatory active principles. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 943-953.
[http://dx.doi.org/10.1080/10408398.2011.574802] [PMID: 23768186]
[3]
Parthasarathy, V.A.; Chempakam, B.; Zachariah, T.J. Chemistry of Spices; Cabi, 2008.
[http://dx.doi.org/10.1079/9781845934057.0000]
[4]
Sachan, A.; Kumar, S.; Kumari, K.; Singh, D. Medicinal uses of spices used in our traditional culture: Worldwide. J. Med. Plants Stud., 2018, 6(3), 116-122. Available from: https://www.plantsjournal.com/archives/2018/ vol6issue3/PartB/6-3-36-573.pdf
[5]
Krishnaswamy, K. Traditional Indian spices and their health significance. Asia Pac. J. Clin. Nutr., 2008, 17(S1), 265-268.
[PMID: 18296352]
[6]
Oriola, A.O.; Oyedeji, A.O. Plant-derived natural products as lead agents against common respiratory diseases. Molecules, 2022, 27(10), 3054.
[http://dx.doi.org/10.3390/molecules27103054] [PMID: 35630531]
[7]
Zachariah, T.J.; Leela, N. Spices: Secondary metabolites and medicinal properties. In: Indian Spices; , 2018; pp. 277-316.
[http://dx.doi.org/10.1007/978-3-319-75016-3_10]
[8]
Sharangi, A.B. Secondary metabolites in spices and medicinal plants: An overview. In: Plant Secondary Metabolites; Apple Academic Publishers, 2017; pp. 163-188.
[http://dx.doi.org/10.1201/9781315207506-5]
[9]
Rivera-Pérez, A.; Romero-González, R.; Garrido Frenich, A. Determination and occurrence of alkenylbenzenes, pyrrolizidine and tropane alkaloids in spices, herbs, teas, and other plant-derived food products using chromatographic methods: Review from 2010–2020. Food Rev. Int., 2023, 39(2), 1110-1136.
[http://dx.doi.org/10.1080/87559129.2021.1929300]
[10]
Datta, R.; Saxena, H.O.; Kakkar, A. Phytochemical evaluation and antibacterial activity of four Indian spices. Asian J. Pharm. Pharmacol., 2018, 4(6), 806-809.
[http://dx.doi.org/10.31024/ajpp.2018.4.6.14]
[11]
Ashokkumar, K.; Pandian, A.; Murugan, M.; Dhanya, M.K.; Sathyan, T.; Sivakumar, P.; Raj, S.; Warkentin, T.D. Profiling bioactive flavonoids and carotenoids in select south Indian spices and nuts. Nat. Prod. Res., 2020, 34(9), 1306-1310.
[http://dx.doi.org/10.1080/14786419.2018.1557179] [PMID: 30672326]
[12]
Aruna, G.; Baskaran, V. Comparative study on the levels of carotenoids lutein, zeaxanthin and β-carotene in Indian spices of nutritional and medicinal importance. Food Chem., 2010, 123(2), 404-409.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.056]
[13]
Lai, P.; Roy, J. Antimicrobial and chemopreventive properties of herbs and spices. Curr. Med. Chem., 2004, 11(11), 1451-1460.
[http://dx.doi.org/10.2174/0929867043365107] [PMID: 15180577]
[14]
Kadam, D.D.; Mane, P.C.; Chaudhari, R.D. Phytochemical screening and pharmacological applications of some selected Indian spices. Int. J. Sci. Res., 2015, 4(3), 704-706. Available from: https://www.ijsr.net/getabstract.php?paperid=SUB152143
[15]
Bieżanowska-Kopeć, R.; Piątkowska, E. Total polyphenols and antioxidant properties of selected fresh and dried herbs and spices. Appl. Sci. (Basel), 2022, 12(10), 4876.
[http://dx.doi.org/10.3390/app12104876]
[16]
Itoigawa, M.; Ito, C.; Tokuda, H.; Enjo, F.; Nishino, H.; Furukawa, H. Cancer chemopreventive activity of phenylpropanoids and phytoquinoids from Illicium plants. Cancer Lett., 2004, 214(2), 165-169.
[http://dx.doi.org/10.1016/j.canlet.2004.05.005] [PMID: 15363542]
[17]
Tanaka, T.; Orii, Y.; Nonaka, G-I.; Nishioka, I.; Kouno, I. Syzyginins A and B, two ellagitannins from Syzygium aromaticum. Phytochemistry, 1996, 43(6), 1345-1348.
[http://dx.doi.org/10.1016/S0031-9422(96)00508-0]
[18]
Cai, L.; Wu, C.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod., 1996, 59(10), 987-990.
[http://dx.doi.org/10.1021/np960451q] [PMID: 8904847]
[19]
Charles, R.; Garg, S.N.; Kumar, S. An orsellinic acid glucoside from Syzygium aromatica. Phytochemistry, 1998, 49(5), 1375-1376.
[http://dx.doi.org/10.1016/S0031-9422(98)00091-0]
[20]
Fukuyama, Y.; Huang, J-M. Chemistry and neurotrophic activity of secoprezizaane- and anislactone-type sesquiterpenes from Illicium species. Stud. Nat. Prod. Chem., 2005, 32, 395-427.
[http://dx.doi.org/10.1016/S1572-5995(05)80061-4]
[21]
Huang, Y.; Zhao, J.; Zhou, L.; Wang, J.; Gong, Y.; Chen, X.; Guo, Z.; Wang, Q.; Jiang, W. Antifungal activity of the essential oil of Illicium verum fruit and its main component transanethole. Molecules, 2010, 15(11), 7558-7569.
[http://dx.doi.org/10.3390/molecules15117558] [PMID: 21030909]
[22]
Singh, P.; Mishra, N.; Gupta, E. Phytochemistry and ethanopharmacology of Illicium verum (Staranise). In: Ethnopharmacological Investigation of Indian Spice; , 2020; pp. 93-105.
[http://dx.doi.org/10.4018/978-1-7998-2524-1.ch007]
[23]
Cock, I.E.; Cheesman, M. Plants of the genus Syzygium (Myrtaceae): A review on ethnobotany, medicinal properties and phytochemistry. In: Bioactive compounds of medicinal plants: Properties and potential for human health; Apple Academic Press,, 2018; pp. 35-84. Available from: https://www.researchgate.net/publication/325542367_PLANTS_OF_THE_GENUS_SYZYGIUM_MYRTACEAE_A_REVIEW_ON_ETHNOBOTANY_MEDICINAL_PROPERTIES_AND_PHYTOCHEMISTRY
[24]
Bukhari, S.F.; Ali, S.N.; Dildar, N.; Tauseef, S.; Khan, S.T. Sara; Zia, A.; Hasan, E.; Ali, S.; Shehzadi, M. Bio‐fabricated chromium (III) oxide nanorods for catalytic and bactericidal applications in water treatment. J. Chin. Chem. Soc. (Taipei), 2022, 69(9), 1628-1636.
[http://dx.doi.org/10.1002/jccs.202200299]
[25]
Arnez, M. Tobacco and kretek: Indonesian drugs in historical change. ASEAS, 2009, 2(1), 49-69.
[http://dx.doi.org/10.14764/10.ASEAS-2.1-4]
[26]
Javahery, S.; Nekoubin, H.; Moradlu, A.H. Effect of anaesthesia with clove oil in fish (review). Fish Physiol. Biochem., 2012, 38(6), 1545-1552.
[http://dx.doi.org/10.1007/s10695-012-9682-5] [PMID: 22752268]
[27]
Kamatou, G.P.; Vermaak, I.; Viljoen, A.M. Eugenol--from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules, 2012, 17(6), 6953-6981.
[http://dx.doi.org/10.3390/molecules17066953] [PMID: 22728369]
[28]
Meijer, T.M.; Schmid, H. On the constitution of eugenin. Helv. Chim. Acta, 1948, 31(6), 1603-1607.
[http://dx.doi.org/10.1002/hlca.19480310620] [PMID: 18104429]
[29]
Asha, M.K.; Prashanth, D.; Murali, B.; Padmaja, R.; Amit, A. Anthelmintic activity of essential oil of Ocimum sanctum and eugenol. Fitoterapia, 2001, 72(6), 669-670.
[http://dx.doi.org/10.1016/S0367-326X(01)00270-2] [PMID: 11543966]
[30]
Hernández-Hernández, A.A.; Aguirre-Álvarez, G.; Cariño-Cortés, R.; Mendoza-Huizar, L.H.; Jiménez-Alvarado, R. Iron oxide nanoparticles: Synthesis, functionalization, and applications in diagnosis and treatment of cancer. Chem. Pap., 2020, 74(11), 3809-3824.
[http://dx.doi.org/10.1007/s11696-020-01229-8]
[31]
Qumar, U.; Hassan, J.Z.; Bhatti, R.A.; Raza, A.; Nazir, G.; Nabgan, W.; Ikram, M. Photocatalysis vs adsorption by metal oxide nanoparticles. J. Mater. Sci. Technol., 2022, 131, 122-166.
[http://dx.doi.org/10.1016/j.jmst.2022.05.020]
[32]
Samrot, A.V.; Sahithya, C.S.; Selvarani, A. J.; Purayil, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem., 2021, 4, 100042.
[http://dx.doi.org/10.1016/j.crgsc.2020.100042]
[33]
Bustamante-Torres, M.; Romero-Fierro, D.; Estrella-Nuñez, J.; Arcentales-Vera, B.; Chichande-Proaño, E.; Bucio, E. Polymeric composite of magnetite iron oxide nanoparticles and their application in biomedicine: a review. Polymers (Basel), 2022, 14(4), 752.
[http://dx.doi.org/10.3390/polym14040752] [PMID: 35215665]
[34]
Nadar, A.; Banerjee, A.M.; Pai, M.R.; Meena, S.S.; Patra, A.K.; Sastry, P.U.; Singh, R.; Singh, M.K.; Tripathi, A.K. Immobilization of crystalline Fe2O3 nanoparticles over SiO2 for creating an active and stable catalyst: A demand for high temperature sulfuric acid decomposition. Appl. Catal. B, 2021, 283, 119610.
[http://dx.doi.org/10.1016/j.apcatb.2020.119610]
[35]
Kumar, S.; Kumar, M.; Singh, A. Synthesis and characterization of iron oxide nanoparticles (Fe2O3, Fe3O4): A brief review. Contemp. Phys., 2021, 62(3), 144-164.
[http://dx.doi.org/10.1080/00107514.2022.2080910]
[36]
Schmid, H.; Bolleter, A. About the ingredients of Eugenia caryophyllata (L.) Thunbg. IV. Isolation of isoeugenitol. Helv. Chim. Acta, 1949, 32(4), 1358-1360.
[http://dx.doi.org/10.1002/hlca.19490320429]
[37]
Schmid, H.; Bolleter, A. About the ingredients of Eugenia caryophyllata (L.) Thunbg. V. Isolation of isoeugenitin. Helv. Chim. Acta, 1950, 33(6), 1770-1772.
[http://dx.doi.org/10.1002/hlca.19500330645]
[38]
Narayanan, C.R.; Natu, A.A. Triterpene acids of indian clove buds. Phytochemistry, 1974, 13(9), 1999-2000.
[http://dx.doi.org/10.1016/0031-9422(74)85139-3]
[39]
Tanaka, T.; Orii, Y.; Nonaka, G.; Nishioka, I. Tannins and related compounds. CXXIII. Chromone, acetophenone and phenylpropanoid glycosides and their galloyl and/or hexahydroxydiphenoyl esters from the leaves of Syzygium aromaticum Merr. et Perry. Chem. Pharm. Bull. (Tokyo), 1993, 41(7), 1232-1237.
[http://dx.doi.org/10.1248/cpb.41.1232] [PMID: 8374992]
[40]
Bouafia, A.; Laouini, S.E.; Ouahrani, M.R. A review on green synthesis of CuO nanoparticles using plant extract and evaluation of antimicrobial activity. Asian J. Res. Chem, 2020, 13(1), 65-70.
[http://dx.doi.org/10.5958/0974-4150.2020.00014.0]
[41]
Mohamed, A.A.; Abu-Elghait, M.; Ahmed, N.E.; Salem, S.S. Eco-friendly mycogenic synthesis of ZnO and CuO nanoparticles for in vitro antibacterial, antibiofilm, and antifungal applications. Biol. Trace Elem. Res., 2021, 199(7), 2788-2799.
[http://dx.doi.org/10.1007/s12011-020-02369-4] [PMID: 32895893]
[42]
Nagaiah, H.P. Recent developments in one-dimensional polymeric nanocomposites for wound healing and infection control. In: One- Dimensional Polymeric Nanocomposites; , 2023; pp. 449-470.
[http://dx.doi.org/10.1201/9781003223764-25]
[43]
Chauhan, A.; Verma, R.; Batoo, K.M.; Kumari, S.; Kalia, R.; Kumar, R.; Hadi, M.; Raslan, E.H.; Imran, A. Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. J. Mater. Res., 2021, 36(7), 1496-1509.
[http://dx.doi.org/10.1557/s43578-021-00193-7]
[44]
Tommalieh, M.J. Gamma radiation assisted modification on electrical properties of polyvinyl pyrrolidone/polyethylene oxide blend doped by copper oxide nanoparticles. Radiat. Phys. Chem., 2021, 179, 109236.
[http://dx.doi.org/10.1016/j.radphyschem.2020.109236]
[45]
Jamal, M.; Billah, M.M.; Ayon, S.A. Opto-structural and magnetic properties of fluorine doped CuO nanoparticles: An experimental study. Ceram. Int., 2023, 49(6), 10107-10118.
[http://dx.doi.org/10.1016/j.ceramint.2022.11.194]
[46]
Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci., 2014, 60, 208-337.
[http://dx.doi.org/10.1016/j.pmatsci.2013.09.003]
[47]
Devi, A.B.; Moirangthem, D.S.; Talukdar, N.C.; Devi, M.D.; Singh, N.R.; Luwang, M.N. Novel synthesis and characterization of CuO nanomaterials: Biological applications. Chin. Chem. Lett., 2014, 25(12), 1615-1619.
[http://dx.doi.org/10.1016/j.cclet.2014.07.014]
[48]
Dagher, S.; Haik, Y.; Ayesh, A.I.; Tit, N. Synthesis and optical properties of colloidal CuO nanoparticles. J. Lumin., 2014, 151, 149-154.
[http://dx.doi.org/10.1016/j.jlumin.2014.02.015]
[49]
Radhakrishnan, A.A.; Beena, B.B. Structural and optical absorption analysis of CuO nanoparticles. Indian J. Adv. Chem. Sci, 2014, 2(2), 158-161. Available from: https://www.ijacskros.com/artcles/IJACS-M64.pdf
[50]
Grigore, M.; Biscu, E.; Holban, A.; Gestal, M.; Grumezescu, A. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel), 2016, 9(4), 75.
[http://dx.doi.org/10.3390/ph9040075] [PMID: 27916867]
[51]
Yadav, S.; Shakya, K.; Gupta, A.; Singh, D.; Chandran, A.R.; Varayil Aanappalli, A.; Goyal, K.; Rani, N.; Saini, K. A review on degradation of organic dyes by using metal oxide semiconductors. Environ. Sci. Pollut. Res. Int., 2022, 30(28), 71912-71932.
[http://dx.doi.org/10.1007/s11356-022-20818-6] [PMID: 35595896]
[52]
Choudhary, B.; Goyal, A.; Khokra, S.L. New visible spectrophotometric method for estimation of itopride hydrochloride from tablets formulations using methyl orange reagent. Int. J. Pharm. Pharm. Sci., 2009, 1(1), 159-162. [Available from https://www.researchgate.net/publication/26627137_New_visible_s pectrophotometric_ method_for_estimation_of_Itopride_hydrochloride_from_table ts_using_mordant_blue_3_reagent
[53]
Paul, R.; Geetha, R. Evaluation of anti-inflammatory action of Illicium verum -An in vitro study. Drug Invent. Today, 2018, 10(2)
[54]
Son, K-H.; Kwon, S. Kim, Hyun-Pyo.; Chang, H.; Kang, S. Constituents from Syzygium aromaticum Merr. et Perry. Nat. Prod. Sci., 1998, 4(4), 263-267. Available from https://www.semanticscholar.org/paper/Constituents-from- Syzygium-aromaticum-Merr.-et-Son- Kwon/4493e4d08b4c1c9835fc0b1fc73d398be98f242c
[55]
Brieskorn, C.H.; Münzhuber, K.; Unger, G. Crataegolic acid and steroid glucosides from flower buds of Syzygium aromaticum. Phytochemistry, 1975, 14(10), 2308-2309.
[http://dx.doi.org/10.1016/S0031-9422(00)91131-2]
[56]
Park, M-K. Chemical constituents of Eugenia caryophyllata. Yakhak Hoeji, 1997, 41(2), 149-152.
[57]
Luna, C.; Chávez, V.H.G.; Barriga-Castro, E.D.; Núñez, N.O.; Mendoza-Reséndez, R. Biosynthesis of silver fine particles and particles decorated with nanoparticles using the extract of Illicium verum (star anise) seeds. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 141, 43-50.
[http://dx.doi.org/10.1016/j.saa.2014.12.076] [PMID: 25659741]
[58]
Allen, S.P.; Steeves, T.; Fergusson, A.; Moore, D.; Davis, R.M.; Vlaisialjevich, E.; Meyer, C.H. Novel acoustic coupling bath using magnetite nanoparticles for MR‐guided transcranial focused ultrasound surgery. Med. Phys., 2019, 46(12), 5444-5453.
[http://dx.doi.org/10.1002/mp.13863] [PMID: 31605643]
[59]
Taghavi Fardood, S.; Moradnia, F.; Heidarzadeh, S.; Naghipour, A. Green synthesis, characterization, photocatalytic and antibacterial activities of copper oxide nanoparticles of copper oxide nanoparticles. Nanochem Res., 2023, 8(2), 134-140. [Available from https://www.nanochemres.org/article_168471_0ee4a05ee2dbdcf0b a0e18f4f396fed5.pdf
[60]
Puusepp, A. Study of optical absorption properties of cu-based nanoparticles for green photocatalytic and photovoltaic applications by UV-Vis spectroscopy.. Bachelor’s thesis Engineering Curriculum- Estonian University of Life Sciences, 2023. Available from:https://dspace.emu.ee/items/fd9c8f65-978d-4547-bf99-878dab1f5053
[61]
Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4_ts), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707 ]
[62]
Bin Mobarak, M.; Hossain, M.S.; Chowdhury, F.; Ahmed, S. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arab. J. Chem., 2022, 15(10), 104117.
[http://dx.doi.org/10.1016/j.arabjc.2022.104117]
[63]
Willardson, R.K.; Beer, A.C. Optical properties of III-V compounds; Academic Press. 1967. Available from: https://search.worldcat.org/title/Optical-properties-of-III-V-compounds/oclc/22393673
[64]
Basu, S.; Chakravorty, D. Optical properties of nanocomposites with iron core–iron oxide shell structure. J. Non-Cryst. Solids, 2006, 352(5), 380-385.
[http://dx.doi.org/10.1016/j.jnoncrysol.2006.01.006]
[65]
Madhavi, V.; Prasad, T.; Madhavi, G. Synthesis and spectral characterization of iron based micro and nanoparticles. Iran. J. Energy Environ., 2013, 4(4)
[http://dx.doi.org/10.5829/idosi.ijee.2013.04.04.10]
[66]
Navale, S.T.; Bandgar, D.K.; Nalge, S.R.; Mulik, R.N.; Pawar, S.A.; Chougule, M.A.; Patil, V.B. Novel process for synthesis of α-Fe2O3: Microstructural and optoelectronic investigations. J. Mater. Sci. Mater. Electron., 2013, 24(5), 1422-1430.
[http://dx.doi.org/10.1007/s10854-012-0944-x]
[67]
Sankar, R.; Prasath, B.B.; Nandakumar, R.; Santhanam, P.; Shivashangari, K.S.; Ravikumar, V. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles. Environ. Sci. Pollut. Res. Int., 2014, 21(24), 14232-14240.
[http://dx.doi.org/10.1007/s11356-014-3362-1] [PMID: 25074832]
[68]
Koffyberg, F.P.; Benko, F.A. A photoelectrochemical determination of the position of the conduction and valence band edges of p -type CuO. J. Appl. Phys., 1982, 53(2), 1173-1177.
[http://dx.doi.org/10.1063/1.330567]
[69]
Rehman, S.; Mumtaz, A.; Hasanain, S.K. Size effects on the magnetic and optical properties of CuO nanoparticles. J. Nanopart. Res., 2011, 13(6), 2497-2507.
[http://dx.doi.org/10.1007/s11051-010-0143-8]
[70]
Schmid, G. Nanoparticles: from theory to application; Wiley, 2010.
[http://dx.doi.org/10.1002/9783527631544]
[71]
Jeyasubramanian, K.; Gopalakrishnan Thoppey, U.U.; Hikku, G.S.; Selvakumar, N.; Subramania, A.; Krishnamoorthy, K. Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Advances, 2016, 6(19), 15451-15459.
[http://dx.doi.org/10.1039/C5RA23425E]
[72]
Arjaghi, S.K.; Alasl, M.K.; Sajjadi, N.; Fataei, E.; Rajaei, G.E. RETRACTED ARTICLE: Green synthesis of iron oxide nanoparticles by RS lichen extract and its application in removing heavy metals of lead and cadmium. Biol. Trace Elem. Res., 2021, 199(2), 763-768.
[http://dx.doi.org/10.1007/s12011-020-02170-3] [PMID: 32643097]
[73]
Luna, I.Z.; Hilary, L.N.; Chowdhury, A.M.S.; Gafur, M.A.; Khan, N.; Khan, R.A. Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. OAlib, 2015, 2(3), 1-8.
[http://dx.doi.org/10.4236/oalib.1101409]
[74]
Chen, L.J.; Li, G.S.; Li, L.P. CuO nanocrystals in thermal decomposition of ammonium perchlorate. J. Therm. Anal. Calorim., 2008, 91(2), 581-587.
[http://dx.doi.org/10.1007/s10973-007-8496-7]
[75]
Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ., 2014, 466-467, 210-213.
[http://dx.doi.org/10.1016/j.scitotenv.2013.07.022] [PMID: 23895784]
[76]
Alphandéry, E. Bio-synthesized iron oxide nanoparticles for cancer treatment. Int. J. Pharm., 2020, 586, 119472.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119472] [PMID: 32590095]
[77]
Caroling, G.; Priyadharshini, M.N.; Vinodhini, E.; Ranjitham, A.M.; Shanthi, P. Biosynthesis of copper nanoparticles using aqueous guava extract-characterisation and study of antibacterial effects. Int. J. Pharm. Biol. Sci., 2015, 5(2), 25-43.