Mini-Reviews in Medicinal Chemistry

Author(s): Abdur Rauf*, Ahmed Olatunde, Nabia Hafeez, Hassan A. Hemeg, Abdullah S.M. Aljohani, Waleed Al Abdulmonem and Giovanni Ribaudo*

DOI: 10.2174/0113895575320559240820113540

DownloadDownload PDF Flyer Cite As
From Traditional Use to Modern Evidence: The Medicinal Chemistry of Antimalarials from Genus Artemisia

Page: [208 - 218] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

While the use of plants in traditional medicine dates back to 1500 B.C., modern advancements led to the development of innovative therapeutic techniques. On the other hand, in the field of anti-infective agents, lack of efficacy and the onset of resistance stimulate the search for novel agents. Genus Artemisia is one of the most diverse among perennial plants with a variety of species, properties, and chemical components. The genus is known for its therapeutic values and, in particular, for its role in the origin of antimalarial agents derived from artemisinin. In this review, we aim to provide an updated overview of the evolution of natural and nature-inspired compounds related to the genus Artemisia that have been proven, in vitro and in vivo, to possess antimalarial properties. An overview of the chemical composition and a description of the ethnopharmacological aspects will be presented, as well as an updated report on in vitro and in vivo evidence that allowed the translation of artemisinin and its derivatives from traditional chemistry into modern medicinal chemistry. The biological and structural properties will be discussed, also dedicating attention to the challenging tasks that still are open, such as the identification of optimal combination strategies, the routes of administration, and the full assessment of the mechanism of action.

Keywords: Artemisia, artemisinin, antimalarial, medicinal chemistry, phytochemistry, docking.

Graphical Abstract

[1]
Chan, E.; Tan, M.; Xin, J.; Sudarsanam, S.; Johnson, D.E. Interactions between traditional Chinese medicines and Western therapeutics. Curr. Opin. Drug Discov. Devel., 2010, 13(1), 50-65.
[PMID: 20047146]
[2]
Cubukcu, B.; Bray, D.H.; Warhurst, D.C.; Mericli, A.H.; Ozhatay, N.; Sariyar, G. In vitro antimalarial activity of crude extracts and compounds from Artemisia abrotanum L. Phytother. Res., 1990, 4(5), 203-204.
[http://dx.doi.org/10.1002/ptr.2650040510]
[3]
Leonti, M.; Casu, L. Traditional medicines and globalization: Current and future perspectives in ethnopharmacology. Front. Pharmacol., 2013, 4, 92.
[http://dx.doi.org/10.3389/fphar.2013.00092] [PMID: 23898296]
[4]
Rana, P.K.; Kumar, P.; Singhal, V.K.; Rana, J.C. Uses of local plant biodiversity among the tribal communities of pangi valley of district chamba in cold desert Himalaya, India. ScientificWorldJournal, 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/753289] [PMID: 24696658]
[5]
Twaij, B.M.; Hasan, M.N. Bioactive secondary metabolites from plant sources: Types, synthesis, and their therapeutic uses. Int. J. Plant Biol., 2022, 13(1), 4-14.
[http://dx.doi.org/10.3390/ijpb13010003]
[6]
Obistioiu, D.; Cristina, R.T.; Schmerold, I.; Chizzola, R.; Stolze, K.; Nichita, I.; Chiurciu, V. Chemical characterization by GC-MS and in vitro activity against Candida albicans of volatile fractions prepared from Artemisia dracunculus, Artemisia abrotanum, Artemisia absinthium and Artemisia vulgaris. Chem. Cent. J., 2014, 8(1), 6.
[http://dx.doi.org/10.1186/1752-153X-8-6] [PMID: 24475951]
[7]
Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol., 2011, 49(1), 101-109.
[http://dx.doi.org/10.3109/13880209.2010.497815] [PMID: 20681755]
[8]
Willcox, M. Artemisia species: From traditional medicines to modern antimalarials--and back again. J. Altern. Complement. Med., 2009, 15(2), 101-109.
[http://dx.doi.org/10.1089/acm.2008.0327] [PMID: 19236169]
[9]
Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, genome evolution, biotechnological issues and research including applied perspectives in artemisia (Asteraceae). In: Advances in Botanical Research; Elsevier, 2011; 60, pp. 349-419.
[10]
Hussain, A. The genus Artemisia (Asteraceae): A review on its ethnomedicinal prominence and taxonomy with emphasis on foliar anatomy, morphology, and molecular phylogeny Proc. Pak. Acad. Sci.: B. Life Environ. Sci., 2020, 57, 1-28.
[11]
Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The artemisia L. Genus: A review of bioactive essential oils. Molecules, 2012, 17(3), 2542-2566.
[http://dx.doi.org/10.3390/molecules17032542] [PMID: 22388966]
[12]
Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.—importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants, 2020, 9(9), 1063.
[http://dx.doi.org/10.3390/plants9091063] [PMID: 32825178]
[13]
Lachenmeier, D.W. Wormwood (Artemisia absinthium L.)—A curious plant with both neurotoxic and neuroprotective properties? J. Ethnopharmacol., 2010, 131(1), 224-227.
[http://dx.doi.org/10.1016/j.jep.2010.05.062] [PMID: 20542104]
[14]
Klayman, D.L. Artemisia annua: from weed to respectable antimalarial plant; Human Medicinal Agents from Plants, 1993, 534, pp. 242-255.
[15]
Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P.; Selambarom, J.; Gasque, P. Artemisia annua, a traditional plant brought to light. Int. J. Mol. Sci., 2020, 21(14), 4986.
[http://dx.doi.org/10.3390/ijms21144986] [PMID: 32679734]
[16]
Ekiert, H.; Klimek-Szczykutowicz, M.; Rzepiela, A.; Klin, P.; Szopa, A. Artemisia species with high biological values as a potential source of medicinal and cosmetic raw materials. Molecules, 2022, 27(19), 6427.
[http://dx.doi.org/10.3390/molecules27196427] [PMID: 36234965]
[17]
Tadesse, M. Asteraceae compositae. In: Flora of Ethiopia and Eritrea; National Herbarium, Biology Department, Science Faculty, Univ., 2004; 4, pp. 222-223.
[18]
Ekiert, H.; Świątkowska, J.; Knut, E.; Klin, P.; Rzepiela, A.; Tomczyk, M.; Szopa, A. Artemisia dracunculus (Tarragon): A review of its traditional uses, phytochemistry and pharmacology. Front. Pharmacol., 2021, 12, 653993.
[http://dx.doi.org/10.3389/fphar.2021.653993] [PMID: 33927629]
[19]
Anibogwu, R.; Jesus, K.D.; Pradhan, S.; Pashikanti, S.; Mateen, S.; Sharma, K. Extraction, isolation and characterization of bioactive compounds from Artemisia and their biological significance: A review. Molecules, 2021, 26(22), 6995.
[http://dx.doi.org/10.3390/molecules26226995] [PMID: 34834086]
[20]
Ballero, M.; Poli, F.; Sacchetti, G.; Loi, M.C. Ethnobotanical research in the territory of Fluminimaggiore (south-Western Sardinia). Fitoterapia, 2001, 72(7), 788-801.
[http://dx.doi.org/10.1016/S0367-326X(01)00334-3] [PMID: 11677018]
[21]
Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun., 2019, 14(7)
[22]
Moerman, D.E. Native american ethnobotany; Timber press, 1998.
[23]
Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus Artemisia. Arch. Pharm. Res., 2021, 44(5), 439-474.
[http://dx.doi.org/10.1007/s12272-021-01328-4] [PMID: 33893998]
[24]
Trifan, A.; Zengin, G.; Sinan, K.I.; Sieniawska, E.; Sawicki, R.; Maciejewska-Turska, M.; Skalikca-Woźniak, K.; Luca, S.V. Unveiling the phytochemical profile and biological potential of five artemisia species. Antioxidants, 2022, 11(5), 1017.
[http://dx.doi.org/10.3390/antiox11051017]
[25]
Martínez-Díaz, R.A.; Ibáñez-Escribano, A.; Burillo, J.; Heras, L.; Prado, G.; Agulló-Ortuño, M.T.; Julio, L.F.; González-Coloma, A. Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Mem. Inst. Oswaldo Cruz, 2015, 110(5), 693-699.
[http://dx.doi.org/10.1590/0074-02760140129] [PMID: 26107187]
[26]
Singh, B. Triterpenoids from Phyllanthus niruri. Indian J. Chem., 1989, 28, 319-321.
[27]
Aj, A. Artemisia: A Medicinally Important Genus; JCMAH, 2018, p. 7.
[28]
Tabanca, N.; Demirci, B.; Blythe, E.K.; Bernier, U.R.; Ali, A.; Wedge, D.E.; Khan, I.A.; Başer, K.H.C. Composition of Artemisia abrotanum and A. pontica essential oils and their repellent activity against Aedes aegypti. Planta Med., 2011, 77(12), 52.
[http://dx.doi.org/10.1055/s-0031-1282383]
[29]
Lee, J.Y.; Chang, E.J.; Kim, H.J.; Park, J.H.; Choi, S.W. Antioxidative flavonoids from leaves of Carthamus tinctorius. Arch. Pharm. Res., 2002, 25(3), 313-319.
[http://dx.doi.org/10.1007/BF02976632] [PMID: 12135103]
[30]
Ferreira, J.F.S.; Luthria, D.L.; Sasaki, T.; Heyerick, A. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules, 2010, 15(5), 3135-3170.
[http://dx.doi.org/10.3390/molecules15053135] [PMID: 20657468]
[31]
Li, Y. Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacol. Sin., 2012, 33(9), 1141-1146.
[http://dx.doi.org/10.1038/aps.2012.104] [PMID: 22922345]
[32]
Wang, J.; Xu, C.; Wong, Y.K.; Li, Y.; Liao, F.; Jiang, T.; Tu, Y. Artemisinin, the magic drug discovered from traditional Chinese medicine. Engineering (Beijing), 2019, 5(1), 32-39.
[http://dx.doi.org/10.1016/j.eng.2018.11.011]
[33]
O’Neill, P.M. The therapeutic potential of semi-synthetic artemisinin and synthetic endoperoxide antimalarial agents. Expert Opin. Investig. Drugs, 2005, 14(9), 1117-1128.
[http://dx.doi.org/10.1517/13543784.14.9.1117] [PMID: 16144496]
[34]
Sarder, A.; Pokharel, Y.R. Synthetic derivatives of artemisinin and cancer. Int. J. Med. Biomed. Sci., 2016, 1(3), 12-16.
[http://dx.doi.org/10.55530/ijmbiosnepal.v1i3.19]
[35]
Czechowski, T.; Rinaldi, M.A.; Famodimu, M.T.; Van Veelen, M.; Larson, T.R.; Winzer, T.; Rathbone, D.A.; Harvey, D.; Horrocks, P.; Graham, I.A. Flavonoid versus artemisinin anti-malarial activity in Artemisia annua whole-leaf extracts. Front. Plant Sci., 2019, 10, 984.
[http://dx.doi.org/10.3389/fpls.2019.00984] [PMID: 31417596]
[36]
Rasoanaivo, P.; Wright, C.W.; Willcox, M.L.; Gilbert, B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J., 2011, 10, 1-12.
[http://dx.doi.org/10.1186/1475-2875-10-S1-S4] [PMID: 21411015]
[37]
Tan, R.; Zheng, W.; Tang, H. Biologically active substances from the genus Artemisia. Planta Med., 1998, 64(4), 295-302.
[http://dx.doi.org/10.1055/s-2006-957438] [PMID: 9619108]
[38]
Coghi, P.; Yang, L.J.; Ng, J.P.L.; Haynes, R.K.; Memo, M.; Gianoncelli, A.; Wong, V.K.W.; Ribaudo, G. A drug repurposing approach for antimalarials interfering with SARS-COV-2 spike protein receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2). Pharmaceuticals, 2021, 14(10), 954.
[http://dx.doi.org/10.3390/ph14100954] [PMID: 34681178]
[39]
Ribaudo, G.; Coghi, P.; Yang, L.J.; Ng, J.P.L.; Mastinu, A.; Memo, M.; Wong, V.K.W.; Gianoncelli, A. Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD). Nat. Prod. Res., 2022, 36(20), 5358-5363.
[http://dx.doi.org/10.1080/14786419.2021.1925894] [PMID: 33977847]
[40]
Kong, L.Y.; Tan, R.X. Artemisinin, a miracle of traditional Chinese medicine. Nat. Prod. Rep., 2015, 32(12), 1617-1621.
[http://dx.doi.org/10.1039/C5NP00133A] [PMID: 26561737]
[41]
Su, X.Z.; Miller, L.H. The discovery of artemisinin and the nobel prize in physiology or medicine. Sci. China Life Sci., 2015, 58(11), 1175-1179.
[http://dx.doi.org/10.1007/s11427-015-4948-7] [PMID: 26481135]
[42]
Monroe, A.; Williams, N.A.; Ogoma, S.; Karema, C.; Okumu, F. Reflections on the 2021 World malaria report and the future of malaria control. Malar. J., 2022, 21(1), 154.
[http://dx.doi.org/10.1186/s12936-022-04178-7] [PMID: 35624483]
[43]
Poespoprodjo, J.R.; Douglas, N.M.; Ansong, D.; Kho, S.; Anstey, N.M. Malaria. Lancet, 2023, 402(10419), 2328-2345.
[http://dx.doi.org/10.1016/S0140-6736(23)01249-7] [PMID: 37924827]
[44]
Gupta, H.; Sharma, S.; Gilyazova, I.; Satyamoorthy, K. Molecular tools are crucial for malaria elimination. Mol. Biol. Rep., 2024, 51(1), 555.
[http://dx.doi.org/10.1007/s11033-024-09496-4] [PMID: 38642192]
[45]
Duffy, P.E. Current approaches to malaria vaccines. Curr. Opin. Microbiol., 2022, 70, 102227.
[http://dx.doi.org/10.1016/j.mib.2022.102227] [PMID: 36343566]
[46]
Daily, J.P.; Minuti, A.; Khan, N. Diagnosis, treatment, and prevention of malaria in the US. JAMA, 2022, 328(5), 460-471.
[http://dx.doi.org/10.1001/jama.2022.12366] [PMID: 35916842]
[47]
Milner, D.A. Malaria pathogenesis. Cold Spring Harb. Perspect. Med., 2018, 8(1), a025569.
[http://dx.doi.org/10.1101/cshperspect.a025569] [PMID: 28533315]
[48]
Meibalan, E.; Marti, M. Biology of malaria transmission. Cold Spring Harb. Perspect. Med., 2017, 7(3), a025452.
[http://dx.doi.org/10.1101/cshperspect.a025452] [PMID: 27836912]
[49]
Udagama, P.V.; Bamunuarachchi, G.S.; Ratnasooriya, W.D.; Premakumara, S. Antimalarial properties of Artemisia vulgaris L. ethanolic leaf extract in a Plasmodium berghei murine malaria model. J. Vector Borne Dis., 2013, 50(4), 278-284.
[http://dx.doi.org/10.4103/0972-9062.126413] [PMID: 24499850]
[50]
Wright, C.W.; Linley, P.A.; Brun, R.; Wittlin, S.; Hsu, E. Ancient Chinese methods are remarkably effective for the preparation of artemisinin-rich extracts of Qing Hao with potent antimalarial activity. Molecules, 2010, 15(2), 804-812.
[http://dx.doi.org/10.3390/molecules15020804] [PMID: 20335947]
[51]
Mueller, M.S.; Karhagomba, I.B.; Hirt, H.M.; Wemakor, E. The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: Agricultural, chemical and clinical aspects. J. Ethnopharmacol., 2000, 73(3), 487-493.
[http://dx.doi.org/10.1016/S0378-8741(00)00289-0] [PMID: 11091003]
[52]
Salaroli, R.; Andreani, G.; Bernardini, C.; Zannoni, A.; La Mantia, D.; Protti, M.; Forni, M.; Mercolini, L.; Isani, G. Anticancer activity of an Artemisia annua L. hydroalcoholic extract on canine osteosarcoma cell lines. Res. Vet. Sci., 2022, 152, 476-484.
[http://dx.doi.org/10.1016/j.rvsc.2022.09.012] [PMID: 36156377]
[53]
Zarrelli, A.; Pollio, A.; Aceto, S.; Romanucci, V.; Carella, F.; Stefani, P.; De Natale, A.; De Vico, G. Optimisation of artemisinin and scopoletin extraction from Artemisia annua with a new modern pressurised cyclic solid–liquid (PCSL) extraction technique. Phytochem. Anal., 2019, 30(5), 564-571.
[http://dx.doi.org/10.1002/pca.2853] [PMID: 31238388]
[54]
Gruessner, B.M.; Weathers, P.J. In vitro analyses of Artemisia extracts on Plasmodium falciparum suggest a complex antimalarial effect. PLoS One, 2021, 16(3), e0240874.
[http://dx.doi.org/10.1371/journal.pone.0240874] [PMID: 33651845]
[55]
Panda, S.; Rout, J.R.; Pati, P.; Ranjit, M.; Sahoo, S.L. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J. Parasit. Dis., 2018, 42(1), 22-27.
[http://dx.doi.org/10.1007/s12639-017-0956-9] [PMID: 29491554]
[56]
Carlton, J.M.; Angiuoli, S.V.; Suh, B.B.; Kooij, T.W.; Pertea, M.; Silva, J.C.; Ermolaeva, M.D.; Allen, J.E.; Selengut, J.D.; Koo, H.L.; Peterson, J.D.; Pop, M.; Kosack, D.S.; Shumway, M.F.; Bidwell, S.L.; Shallom, S.J.; van Aken, S.E.; Riedmuller, S.B.; Feldblyum, T.V.; Cho, J.K.; Quackenbush, J.; Sedegah, M.; Shoaibi, A.; Cummings, L.M.; Florens, L.; Yates, J.R.; Raine, J.D.; Sinden, R.E.; Harris, M.A.; Cunningham, D.A.; Preiser, P.R.; Bergman, L.W.; Vaidya, A.B.; van Lin, L.H.; Janse, C.J.; Waters, A.P.; Smith, H.O.; White, O.R.; Salzberg, S.L.; Venter, J.C.; Fraser, C.M.; Hoffman, S.L.; Gardner, M.J.; Carucci, D.J. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 2002, 419(6906), 512-519.
[http://dx.doi.org/10.1038/nature01099] [PMID: 12368865]
[57]
Kodippili, K.; Ratnasooriya, W.D.; Premakumara, S.; Udagama, P.V. An investigation of the antimalarial activity of artemisia vulgaris leaf extract in a rodent malaria model. Int. J. Green Pharm., 2011, 5(4), 276.
[58]
Afshar, F.H.; Delazar, A.; Janneh, O.; Nazemiyeh, H.; Pasdaran, A.; Nahar, L.; Sarker, S.D. Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. spicigera, Asteraceae. Rev. Bras. Farmacogn., 2011, 21(6), 986-990.
[http://dx.doi.org/10.1590/S0102-695X2011005000144]
[59]
Noori, S.; Taghikhani, M.; Hassan, Z.M.; Allameha, A.; Mostafaei, A. Tehranolide molecule modulates the immune response, reduce regulatory T cell and inhibits tumor growth in vivo. Mol. Immunol., 2010, 47(7-8), 1579-1584.
[http://dx.doi.org/10.1016/j.molimm.2010.01.007] [PMID: 20138670]
[60]
Nahrevania, H.; Rustaiyan, A.; Zamani, Z.; Taherkhani, M.; Iravani, A. An investigation on Anti-malarial effects of tehranolide isolated from Artemisia diffusa against human malaria parasite, Plasmodium falciparum in vitro. J. Parasitol., 2015, 10(2), 73-78.
[http://dx.doi.org/10.3923/jp.2015.73.78]
[61]
Mojarrab, M.; Shiravand, A.; Delazar, A.; Heshmati Afshar, F. Evaluation of in vitro antimalarial activity of different extracts of Artemisia aucheri Boiss. and A. armeniaca Lam. and fractions of the most potent extracts. ScientificWorldJournal, 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/825370] [PMID: 24558335]
[62]
Mojarrab, M.; Naderi, R.; Heshmati Afshar, F. Screening of different extracts from artemisia species for their potential antimalarial activity. Iran. J. Pharm. Res., 2015, 14(2), 603-608.
[PMID: 25901169]
[63]
Liu, N.Q.; Cao, M.; Frédérich, M.; Choi, Y.H.; Verpoorte, R.; van der Kooy, F. Metabolomic investigation of the ethnopharmacological use of Artemisia afra with NMR spectroscopy and multivariate data analysis. J. Ethnopharmacol., 2010, 128(1), 230-235.
[http://dx.doi.org/10.1016/j.jep.2010.01.020] [PMID: 20079415]
[64]
Suberu, J.O.; Gorka, A.P.; Jacobs, L.; Roepe, P.D.; Sullivan, N.; Barker, G.C.; Lapkin, A.A. Anti-plasmodial polyvalent interactions in Artemisia annua L. aqueous extract--possible synergistic and resistance mechanisms. PLoS One, 2013, 8(11), e80790.
[http://dx.doi.org/10.1371/journal.pone.0080790] [PMID: 24244716]
[65]
Elfawal, M.A.; Towler, M.J.; Reich, N.G.; Golenbock, D.; Weathers, P.J.; Rich, S.M. Dried whole plant Artemisia annua as an antimalarial therapy. PLoS One, 2012, 7(12), e52746.
[http://dx.doi.org/10.1371/journal.pone.0052746] [PMID: 23289055]
[66]
Wan, Y.D.; Zang, Q.Z.; Wang, J.S. Studies on the antimalarial action of gelatin capsule of Artemisia annua. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 1992, 10(4), 290-294.
[PMID: 1303339]
[67]
Mirjalili, M.H.; Tabatabaei, S.M.F.; Hadian, J.; Ebrahimi, S.N.; Sonboli, A. Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran. J. Essent. Oil Res., 2007, 19(4), 326-329.
[http://dx.doi.org/10.1080/10412905.2007.9699294]
[68]
Zafab, M.M.; Hamdard, M.E.; Hameed, A. Screening of Artemisia absinthium for antimalarial effects on Plasmodium berghei in mice: A preliminary report. J. Ethnopharmacol., 1990, 30(2), 223-226.
[http://dx.doi.org/10.1016/0378-8741(90)90011-H] [PMID: 2255213]
[69]
Fernández-Calienes Valdés, A.; Mendiola Martínez, J.; Scull Lizama, R.; Vermeersch, M.; Cos, P.; Maes, L. In vitro anti-microbial activity of the Cuban medicinal plants Simarouba glauca DC, Melaleuca leucadendron L and Artemisia absinthium L. Mem. Inst. Oswaldo Cruz, 2008, 103(6), 615-618.
[http://dx.doi.org/10.1590/S0074-02762008000600019] [PMID: 18949336]
[70]
Arya, A.; Kojom Foko, L.P.; Chaudhry, S.; Sharma, A.; Singh, V. Artemisinin-based combination therapy (ACT) and drug resistance molecular markers: A systematic review of clinical studies from two malaria endemic regions – India and sub-Saharan Africa. Int. J. Parasitol. Drugs Drug Resist., 2021, 15, 43-56.
[http://dx.doi.org/10.1016/j.ijpddr.2020.11.006] [PMID: 33556786]
[71]
Snow, R.W.; Guerra, C.A.; Noor, A.M.; Myint, H.Y.; Hay, S.I. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature, 2005, 434(7030), 214-217.
[http://dx.doi.org/10.1038/nature03342] [PMID: 15759000]
[72]
Chu, W.Y.; Dorlo, T.P.C. Pyronaridine: A review of its clinical pharmacology in the treatment of malaria. J. Antimicrob. Chemother., 2023, 78(10), 2406-2418.
[http://dx.doi.org/10.1093/jac/dkad260] [PMID: 37638690]
[73]
Siqueira-Neto, J.L.; Wicht, K.J.; Chibale, K.; Burrows, J.N.; Fidock, D.A.; Winzeler, E.A. Antimalarial drug discovery: Progress and approaches. Nat. Rev. Drug Discov., 2023, 22(10), 807-826.
[http://dx.doi.org/10.1038/s41573-023-00772-9] [PMID: 37652975]
[74]
Sinha, S.; Sharma, S.; Singh, K.; Swarnkar, D.; Ahmed, N.; Rajput, P.; Srivastava, B.; Anvikar, A.R. Efficacy and safety of Artemisinin Combination Therapy for the treatment of uncomplicated Plasmodium falciparum malaria across international borders of India. J. Vector Borne Dis., 2024, 61(1), 81-89.
[http://dx.doi.org/10.4103/0972-9062.392254] [PMID: 38648409]
[75]
Kayentao, K.; Ongoiba, A.; Preston, A.C.; Healy, S.A.; Hu, Z.; Skinner, J.; Doumbo, S.; Wang, J.; Cisse, H.; Doumtabe, D.; Traore, A.; Traore, H.; Djiguiba, A.; Li, S.; Peterson, M.E.; Telscher, S.; Idris, A.H.; Adams, W.C.; McDermott, A.B.; Narpala, S.; Lin, B.C.; Serebryannyy, L.; Hickman, S.P.; McDougal, A.J.; Vazquez, S.; Reiber, M.; Stein, J.A.; Gall, J.G.; Carlton, K.; Schwabl, P.; Traore, S.; Keita, M.; Zéguimé, A.; Ouattara, A.; Doucoure, M.B.; Dolo, A.; Murphy, S.C.; Neafsey, D.E.; Portugal, S.; Djimdé, A.; Traore, B.; Seder, R.A.; Crompton, P.D. Subcutaneous administration of a monoclonal antibody to prevent malaria. N. Engl. J. Med., 2024, 390(17), 1549-1559.
[http://dx.doi.org/10.1056/NEJMoa2312775] [PMID: 38669354]
[76]
Maafoh, C.; Onyedibe, K. Alternative first-line malaria treatment. Ann. Afr. Med., 2024, 23(1), 5-12.
[http://dx.doi.org/10.4103/aam.aam_35_23] [PMID: 38358164]
[77]
Kokori, E.; Olatunji, G.; Akinboade, A.; Akinoso, A.; Egbunu, E.; Aremu, S.A.; Okafor, C.E.; Oluwole, O.; Aderinto, N. Triple artemisinin-based combination therapy (TACT): Advancing malaria control and eradication efforts. Malar. J., 2024, 23(1), 25.
[http://dx.doi.org/10.1186/s12936-024-04844-y] [PMID: 38238781]
[78]
Nosten, F.; White, N.J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg., 2007, 77(6_Suppl)(Suppl.), 181-192.
[http://dx.doi.org/10.4269/ajtmh.2007.77.181] [PMID: 18165491]
[79]
Dobaño, C.; Nhabomba, A.J.; Manaca, M.N.; Berthoud, T.; Aguilar, R.; Quintó, L.; Barbosa, A.; Rodríguez, M.H.; Jiménez, A.; Groves, P.L.; Santano, R.; Bassat, Q.; Aponte, J.J.; Guinovart, C.; Doolan, D.L.; Alonso, P.L. A balanced proinflammatory and regulatory cytokine signature in young African children is associated with lower risk of clinical malaria. Clin. Infect. Dis., 2019, 69(5), 820-828.
[http://dx.doi.org/10.1093/cid/ciy934] [PMID: 30380038]
[80]
Eastman, R.T.; Fidock, D.A. Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol., 2009, 7(12), 864-874.
[http://dx.doi.org/10.1038/nrmicro2239] [PMID: 19881520]
[81]
Sharifi-Rad, J.; Herrera-Bravo, J.; Semwal, P.; Painuli, S.; Badoni, H.; Ezzat, S.M.; Farid, M.M.; Merghany, R.M.; Aborehab, N.M.; Salem, M.A. Artemisia Spp.: An update on its chemical composition. In: Pharmacological and Toxicological Profiles; Oxidative Medicine and Cellular Longevity, 2022, 2022, p. 5628601.
[82]
Leblanc, C.; Vasse, C.; Minodier, P.; Mornand, P.; Naudin, J.; Quinet, B.; Siriez, J.Y.; Sorge, F.; de Suremain, N.; Thellier, M.; Kendjo, E.; Faye, A.; Imbert, P. Management and prevention of imported malaria in children. Update of the French guidelines. Med. Mal. Infect., 2020, 50(2), 127-140.
[http://dx.doi.org/10.1016/j.medmal.2019.02.005] [PMID: 30885541]
[83]
Pull, L.; Lupoglazoff, J.M.; Beardmore, M.; Michel, J.F.; Buffet, P.; Bouchaud, O.; Siriez, J.Y. Artenimol–piperaquine in children with uncomplicated imported falciparum malaria: Experience from a prospective cohort. Malar. J., 2019, 18(1), 419.
[http://dx.doi.org/10.1186/s12936-019-3047-9] [PMID: 31843017]
[84]
Ballard, S.B.; Salinger, A.; Arguin, P.M.; Desai, M.; Tan, K.R. Updated CDC recommendations for using artemether-lumefantrine for the treatment of uncomplicated malaria in pregnant women in the United States. MMWR Morb. Mortal. Wkly. Rep., 2018, 67(14), 424-431.
[http://dx.doi.org/10.15585/mmwr.mm6714a4] [PMID: 29649190]
[85]
Daddy, N.B.; Kalisya, L.M.; Bagire, P.G.; Watt, R.L.; Towler, M.J.; Weathers, P.J. Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports. Phytomedicine, 2017, 32, 37-40.
[http://dx.doi.org/10.1016/j.phymed.2017.04.006] [PMID: 28732806]
[86]
Munyangi, J.; Cornet-Vernet, L.; Idumbo, M.; Lu, C.; Lutgen, P.; Perronne, C.; Ngombe, N.; Bianga, J.; Mupenda, B.; Lalukala, P.; Mergeai, G.; Mumba, D.; Towler, M.; Weathers, P. RETRACTED: Artemisia annua and Artemisia afra tea infusions vs. artesunate-amodiaquine (ASAQ) in treating Plasmodium falciparum malaria in a large scale, double blind, randomized clinical trial. Phytomedicine, 2019, 57, 49-56.
[http://dx.doi.org/10.1016/j.phymed.2018.12.002] [PMID: 30668322]
[87]
Posadino, A.M.; Giordo, R.; Pintus, G.; Mohammed, S.A.; Orhan, I.E.; Fokou, P.V.T.; Sharopov, F.; Adetunji, C.O.; Gulsunoglu-Konuskan, Z.; Ydyrys, A.; Armstrong, L.; Sytar, O.; Martorell, M.; Razis, A.F.A.; Modu, B.; Calina, D.; Habtemariam, S.; Sharifi-Rad, J.; Cho, W.C. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed. Pharmacother., 2023, 163, 114866.
[http://dx.doi.org/10.1016/j.biopha.2023.114866] [PMID: 37182516]
[88]
Warsame, M.; Gyapong, M.; Mpeka, B.; Rodrigues, A.; Singlovic, J.; Babiker, A.; Mworozi, E.; Agyepong, I.; Ansah, E.; Azairwe, R.; Biai, S.; Binka, F.; Folb, P.; Gyapong, J.; Kimbute, O.; Machinda, Z.; Kitua, A.; Lutalo, T.; Majaha, M.; Mamadu, J.; Mrango, Z.; Petzold, M.; Rujumba, J.; Ribeiro, I.; Gomes, M. Pre-referral rectal artesunate treatment by community-based treatment providers in ghana, guinea-bissau, Tanzania, and Uganda (Study 18): A cluster-randomized trial. Clin. Infect. Dis., 2016, 63(Suppl. 5), S312-S321.
[http://dx.doi.org/10.1093/cid/ciw631] [PMID: 27941110]
[89]
Dondorp, A.M.; Fanello, C.I.; Hendriksen, I.C.E.; Gomes, E.; Seni, A.; Chhaganlal, K.D.; Bojang, K.; Olaosebikan, R.; Anunobi, N.; Maitland, K.; Kivaya, E.; Agbenyega, T.; Nguah, S.B.; Evans, J.; Gesase, S.; Kahabuka, C.; Mtove, G.; Nadjm, B.; Deen, J.; Mwanga-Amumpaire, J.; Nansumba, M.; Karema, C.; Umulisa, N.; Uwimana, A.; Mokuolu, O.A.; Adedoyin, O.T.; Johnson, W.B.R.; Tshefu, A.K.; Onyamboko, M.A.; Sakulthaew, T.; Ngum, W.P.; Silamut, K.; Stepniewska, K.; Woodrow, C.J.; Bethell, D.; Wills, B.; Oneko, M.; Peto, T.E.; von Seidlein, L.; Day, N.P.J.; White, N.J. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): An open-label, randomised trial. Lancet, 2010, 376(9753), 1647-1657.
[http://dx.doi.org/10.1016/S0140-6736(10)61924-1] [PMID: 21062666]
[90]
O’Neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin--the debate continues. Molecules, 2010, 15(3), 1705-1721.
[http://dx.doi.org/10.3390/molecules15031705] [PMID: 20336009]
[91]
Quadros, H.C.; Silva, M.C.B.; Moreira, D.R.M. The role of the iron protoporphyrins heme and hematin in the antimalarial activity of endoperoxide drugs. Pharmaceuticals, 2022, 15(1), 60.
[http://dx.doi.org/10.3390/ph15010060] [PMID: 35056117]
[92]
Meshnick, S.R. Artemisinin: Mechanisms of action, resistance and toxicity. Int. J. Parasitol., 2002, 32(13), 1655-1660.
[http://dx.doi.org/10.1016/S0020-7519(02)00194-7] [PMID: 12435450]
[93]
De Donno, A.; Grassi, T.; Idolo, A.; Guido, M.; Papadia, P.; Caccioppola, A.; Villanova, L.; Merendino, A.; Bagordo, F.; Fanizzi, F.P. First-time comparison of the in vitro antimalarial activity of Artemisia annua herbal tea and artemisinin. Trans. R. Soc. Trop. Med. Hyg., 2012, 106(11), 696-700.
[http://dx.doi.org/10.1016/j.trstmh.2012.07.008] [PMID: 22986092]
[94]
Golenser, J.; Waknine, J.H.; Krugliak, M.; Hunt, N.H.; Grau, G.E. Current perspectives on the mechanism of action of artemisinins. Int. J. Parasitol., 2006, 36(14), 1427-1441.
[http://dx.doi.org/10.1016/j.ijpara.2006.07.011] [PMID: 17005183]
[95]
Eckstein-Ludwig, U.; Webb, R.J.; van Goethem, I.D.A.; East, J.M.; Lee, A.G.; Kimura, M.; O’Neill, P.M.; Bray, P.G.; Ward, S.A.; Krishna, S. Artemisinins target the SERCA of Plasmodium falciparum. Nature, 2003, 424(6951), 957-961.
[http://dx.doi.org/10.1038/nature01813] [PMID: 12931192]
[96]
Garcia, L.C. A review of Artemisia Annua L.: Its genetics, biochemical characteristics, and anti-malarial efficacy. Int J Sci Technol, 2015, 5, 38-46.
[97]
Byakika-Kibwika, P.; Lamorde, M.; Mayanja-Kizza, H.; Khoo, S.; Merry, C.; Van geertruyden, J.P. Artemether-lumefantrine combination therapy for treatment of uncomplicated malaria: The potential for complex interactions with antiretroviral drugs in hiv-infected individuals. Malar. Res. Treat., 2011, 2011, 1-5.
[http://dx.doi.org/10.4061/2011/703730] [PMID: 22312573]
[98]
Wang, J.; Zhang, C.J.; Chia, W.N.; Loh, C.C.Y.; Li, Z.; Lee, Y.M.; He, Y.; Yuan, L.X.; Lim, T.K.; Liu, M.; Liew, C.X.; Lee, Y.Q.; Zhang, J.; Lu, N.; Lim, C.T.; Hua, Z.C.; Liu, B.; Shen, H.M.; Tan, K.S.W.; Lin, Q. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun., 2015, 6(1), 10111.
[http://dx.doi.org/10.1038/ncomms10111] [PMID: 26694030]
[99]
Gaur, R.; Cheema, H.S.; Kumar, Y.; Singh, S.P.; Yadav, D.K.; Darokar, M.P.; Khan, F.; Bhakuni, R.S. In vitro antimalarial activity and molecular modeling studies of novel artemisinin derivatives. RSC Advances, 2015, 5(59), 47959-47974.
[http://dx.doi.org/10.1039/C5RA07697H]
[100]
Mahapatra, R.K.; Behera, N.; Naik, P.K. Molecular modeling and evaluation of binding mode and affinity of artemisinin-quinine hybrid and its congeners with Fe-protoporphyrin-IX as a putative receptor. Bioinformation, 2012, 8(8), 369-380.
[http://dx.doi.org/10.6026/97320630008369] [PMID: 22570518]
[101]
Ferreira, J.; Figueiredo, A.; Barbosa, J.; Cristino, M.; Macedo, W.; Silva, O.; Malheiros, B.; Serra, R.; Ciriaco-Pinheiro, J. A study of new antimalarial artemisinins through molecular modeling and multivariate analysis. J. Serb. Chem. Soc., 2010, 75(11), 1533-1548.
[http://dx.doi.org/10.2298/JSC100126124F]
[102]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]