Mini-Reviews in Medicinal Chemistry

Author(s): Miao Liu, Wei Peng* and Xingyue Ji*

DOI: 10.2174/0113895575311618240820103549

DownloadDownload PDF Flyer Cite As
Repurposing of CDK Inhibitors as Host Targeting Antivirals: A Mini- Review

Page: [178 - 189] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Most of the antiviral drugs in the market are designed to target viral proteins directly. They are generally considered safe for human use. However, they also suffer from several inherent limitations, in particular, narrow-spectrum antiviral profiles and liability to drug resistance. The other strategy for antiviral drug development is targeting host factors, which are highly involved at different stages in the viral life cycle. In contrast to direct-acting antiviral agents, host-targeting antiviral ones normally exhibit broad-spectrum antiviral properties along with a much higher genetic barrier to drug resistance. Cyclin-dependent kinases (CDKs) represent one such host factor. In this review, we summarized a number of CDK inhibitors (CDKIs) of varied chemical scaffolds with demonstrated antiviral activity. Challenges and issues associated with the repurposing of CDKIs as antiviral agents were also discussed.

Keywords: CDK inhibitors, host targeting antiviral agents, COVID-19, broad-spectrum antiviral agents, drug resistance, SAR.

Graphical Abstract

[1]
Ji, X.; Li, Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med. Res. Rev., 2020, 40(5), 1519-1557.
[http://dx.doi.org/10.1002/med.21664] [PMID: 32060956]
[2]
Mason, S.; Devincenzo, J.P.; Toovey, S.; Wu, J.Z.; Whitley, R.J. Comparison of antiviral resistance across acute and chronic viral infections. Antiviral Res., 2018, 158, 103-112.
[http://dx.doi.org/10.1016/j.antiviral.2018.07.020] [PMID: 30086337]
[3]
Rogo, T.; DeLong, A.K.; Chan, P.; Kantor, R. Antiretroviral treatment failure, drug resistance, and subtype diversity in the only pediatric HIV clinic in Rhode Island. Clin. Infect. Dis., 2015, 60(9), 1426-1435.
[http://dx.doi.org/10.1093/cid/civ058] [PMID: 25637585]
[4]
Woollard, S.M.; Kanmogne, G.D. Maraviroc: A review of its use in HIV infection and beyond. Drug Des. Devel. Ther., 2015, 9, 5447-5468.
[PMID: 26491256]
[5]
Ramírez-Olivencia, G.; Estébanez, M.; Membrillo, F.J.; Ybarra, M.D.C. Use of ribavirin in viruses other than hepatitis C. A review of the evidence. Enferm. Infecc. Microbiol. Clin., 2019, 37(9), 602-608.
[http://dx.doi.org/10.1016/j.eimc.2018.05.008] [PMID: 38620198]
[6]
Wang, Y.; Jin, F.; Wang, R.; Li, F.; Wu, Y.; Kitazato, K.; Wang, Y. HSP90: A promising broad-spectrum antiviral drug target. Arch. Virol., 2017, 162(11), 3269-3282.
[http://dx.doi.org/10.1007/s00705-017-3511-1] [PMID: 28780632]
[7]
Schor, S.; Einav, S. Repurposing of kinase inhibitors as broad-spectrum antiviral drugs. DNA Cell Biol., 2018, 37(2), 63-69.
[http://dx.doi.org/10.1089/dna.2017.4033] [PMID: 29148875]
[8]
Caputo, A.T.; Alonzi, D.S.; Kiappes, J.L.; Struwe, W.B.; Cross, A.; Basu, S.; Darlot, B.; Roversi, P.; Zitzmann, N. Structural insights into the broad-spectrum antiviral target endoplasmic reticulum alpha-glucosidase II. Adv. Exp. Med. Biol., 2018, 1062, 265-276.
[http://dx.doi.org/10.1007/978-981-10-8727-1_19] [PMID: 29845539]
[9]
Rossignol, J.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Res., 2014, 110, 94-103.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.014] [PMID: 25108173]
[10]
Mahmoud, D.B.; Shitu, Z.; Mostafa, A. Drug repurposing of nitazoxanide: Can it be an effective therapy for COVID-19? J. Genet. Eng. Biotechnol., 2020, 18(1), 35-35.
[http://dx.doi.org/10.1186/s43141-020-00055-5] [PMID: 32725286]
[11]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[12]
Heptinstall, A.B.; Adiyasa, I.W.S.; Cano, C.; Hardcastle, I.R. Recent advances in CDK inhibitors for cancer therapy. Future Med. Chem., 2018, 10(11), 1369-1388.
[http://dx.doi.org/10.4155/fmc-2017-0246] [PMID: 29846081]
[13]
Qin, A.; Reddy, H.G.; Weinberg, F.D.; Kalemkerian, G.P. Cyclin-dependent kinase inhibitors for the treatment of lung cancer. Expert Opin. Pharmacother., 2020, 21(8), 941-952.
[http://dx.doi.org/10.1080/14656566.2020.1738385] [PMID: 32164461]
[14]
Schang, L.M.; St Vincent, M.R.; Lacasse, J.J. Five years of progress on cyclin-dependent kinases and other cellular proteins as potential targets for antiviral drugs. Antivir. Chem. Chemother., 2006, 17(6), 293-320.
[http://dx.doi.org/10.1177/095632020601700601] [PMID: 17249245]
[15]
Cheng, P.H.; Rao, X.M.; McMasters, K.M.; Zhou, H.S. Molecular basis for viral selective replication in cancer cells: Activation of CDK2 by adenovirus-induced cyclin E. PLoS One, 2013, 8(2), e57340.
[http://dx.doi.org/10.1371/journal.pone.0057340] [PMID: 23437375]
[16]
Gearhart, T.L.; Bouchard, M.J. The hepatitis B virus X protein modulates hepatocyte proliferation pathways to stimulate viral replication. J. Virol., 2010, 84(6), 2675-2686.
[http://dx.doi.org/10.1128/JVI.02196-09] [PMID: 20053744]
[17]
Németh, G.; Varga, Z.; Greff, Z.; Bencze, G.; Sipos, A.; Szántai-Kis, C.; Baska, F.; Gyuris, A.; Kelemenics, K.; Szathmáry, Z.; Minárovits, J.; Kéri, G.; Orfi, L. Novel, selective CDK9 inhibitors for the treatment of HIV infection. Curr. Med. Chem., 2011, 18(3), 342-358.
[http://dx.doi.org/10.2174/092986711794839188] [PMID: 21143121]
[18]
Durand, L.O.; Roizman, B. Role of CDK9 in the optimization of expression of the genes regulated by ICP22 of herpes simplex virus 1. J. Virol., 2008, 82(21), 10591-10599.
[http://dx.doi.org/10.1128/JVI.01242-08] [PMID: 18753202]
[19]
Schang, L.M. Cyclin-dependent kinases as cellular targets for antiviral drugs. J. Antimicrob. Chemother., 2002, 50(6), 779-792.
[http://dx.doi.org/10.1093/jac/dkf227] [PMID: 12460995]
[20]
Chao, S.H.; Fujinaga, K.; Marion, J.E.; Taube, R.; Sausville, E.A.; Senderowicz, A.M.; Peterlin, B.M.; Price, D.H. Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. J. Biol. Chem., 2000, 275(37), 28345-28348.
[http://dx.doi.org/10.1074/jbc.C000446200] [PMID: 10906320]
[21]
Ou, M.; Sandri-Goldin, R.M. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription. PLoS One, 2013, 8(10), e79007.
[http://dx.doi.org/10.1371/journal.pone.0079007] [PMID: 24205359]
[22]
Perwitasari, O.; Yan, X.; O’Donnell, J.; Johnson, S.; Tripp, R.A. Repurposing kinase inhibitors as antiviral agents to control influenza A virus replication. Assay Drug Dev. Technol., 2015, 13(10), 638-649.
[http://dx.doi.org/10.1089/adt.2015.0003.drrr] [PMID: 26192013]
[23]
Sanchez, V.; McElroy, A.K.; Yen, J.; Tamrakar, S.; Clark, C.L.; Schwartz, R.A.; Spector, D.H. Cyclin-dependent kinase activity is required at early times for accurate processing and accumulation of the human cytomegalovirus UL122-123 and UL37 immediate-early transcripts and at later times for virus production. J. Virol., 2004, 78(20), 11219-11232.
[http://dx.doi.org/10.1128/JVI.78.20.11219-11232.2004] [PMID: 15452241]
[24]
Prasad, V.; Suomalainen, M.; Hemmi, S.; Greber, U.F. Cell cycle-dependent kinase CDK9 is a postexposure drug target against human adenoviruses. ACS Infect. Dis., 2017, 3(6), 398-405.
[http://dx.doi.org/10.1021/acsinfecdis.7b00009] [PMID: 28434229]
[25]
Taube, R.; Fujinaga, K.; Wimmer, J.; Barboric, M.; Peterlin, B.M. Tat transactivation: A model for the regulation of eukaryotic transcriptional elongation. Virology, 1999, 264(2), 245-253.
[http://dx.doi.org/10.1006/viro.1999.9944] [PMID: 10562489]
[26]
Nelson, P.J.; Gelman, I.H.; Klotman, P.E. Suppression of HIV-1 expression by inhibitors of cyclin-dependent kinases promotes differentiation of infected podocytes. J. Am. Soc. Nephrol., 2001, 12(12), 2827-2831.
[http://dx.doi.org/10.1681/ASN.V12122827] [PMID: 11729253]
[27]
Nelson, P.J.; D’Agati, V.D.; Gries, J.M.; Suarez, J.R.; Gelman, I.H. Amelioration of nephropathy in mice expressing HIV-1 genes by the cyclin-dependent kinase inhibitor flavopiridol. J. Antimicrob. Chemother., 2003, 51(4), 921-929.
[http://dx.doi.org/10.1093/jac/dkg175] [PMID: 12654740]
[28]
Xing, J.; Shankar, R.; Drelich, A.; Paithankar, S.; Chekalin, E.; Dexheimer, T.; Rajasekaran, S.; Tseng, C-T.K.; Chen, B. Reversal of infected host gene expression identifies repurposed drug candidates for COVID-19. BioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.07.030734]
[29]
Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Biernat, J.; Wu, Y.Z.; Mandelkow, E.M.; Eisenbrand, G.; Meijer, L. Indirubins inhibit glycogen synthase kinase-3 beta and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem., 2001, 276(1), 251-260.
[http://dx.doi.org/10.1074/jbc.M002466200] [PMID: 11013232]
[30]
Zhang, D.; Ji, X.; Gao, R.; Wang, H.; Meng, S.; Zhong, Z.; Li, Y.; Jiang, J.; Li, Z. Synthesis and antiviral activities of a novel class of thioflavone and flavonoid analogues. Acta Pharm. Sin. B, 2012, 2(6), 575-580.
[http://dx.doi.org/10.1016/j.apsb.2012.10.005]
[31]
De Azevedo, W.F.; Leclerc, S.; Meijer, L.; Havlicek, L.; Strnad, M.; Kim, S.H. Inhibition of cyclin-dependent kinases by purine analogues: Crystal structure of human CDK2 complexed with roscovitine. Eur. J. Biochem., 1997, 243(1-2), 518-526.
[http://dx.doi.org/10.1111/j.1432-1033.1997.0518a.x] [PMID: 9030780]
[32]
Kryštof, V.; McNae, I.W.; Walkinshaw, M.D.; Fischer, P.M.; Müller, P.; Vojtěšek, B.; Orság, M.; Havlíček, L.; Strnad, M. Antiproliferative activity of olomoucine II, a novel 2,6,9-trisubstituted purine cyclin-dependent kinase inhibitor. Cell. Mol. Life Sci., 2005, 62(15), 1763-1771.
[http://dx.doi.org/10.1007/s00018-005-5185-1] [PMID: 16003486]
[33]
Gray, N.S.; Wodicka, L.; Thunnissen, A.M.W.H.; Norman, T.C.; Kwon, S.; Espinoza, F.H.; Morgan, D.O.; Barnes, G.; LeClerc, S.; Meijer, L.; Kim, S.H.; Lockhart, D.J.; Schultz, P.G. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science, 1998, 281(5376), 533-538.
[http://dx.doi.org/10.1126/science.281.5376.533] [PMID: 9677190]
[34]
Holcakova, J.; Tomasec, P.; Bugert, J.J.; Wang, E.C.Y.; Wilkinson, G.W.G.; Hrstka, R.; Krystof, V.; Strnad, M.; Vojtesek, B. The inhibitor of cyclin-dependent kinases, olomoucine II, exhibits potent antiviral properties. Antivir. Chem. Chemother., 2010, 20(3), 133-142.
[http://dx.doi.org/10.3851/IMP1460] [PMID: 20054100]
[35]
Holcakova, J.; Muller, P.; Tomasec, P.; Hrstka, R.; Nekulova, M.; Krystof, V.; Strnad, M.; Wilkinson, G.W.G.; Vojtesek, B. Inhibition of post-transcriptional RNA processing by CDK inhibitors and its implication in anti-viral therapy. PLoS One, 2014, 9(2), e89228.
[http://dx.doi.org/10.1371/journal.pone.0089228] [PMID: 24586613]
[36]
Moffat, J.F.; McMichael, M.A.; Leisenfelder, S.A.; Taylor, S.L. Viral and cellular kinases are potential antiviral targets and have a central role in varicella zoster virus pathogenesis. Biochim. Biophys. Acta. Proteins Proteomics, 2004, 1697(1-2), 225-231.
[http://dx.doi.org/10.1016/j.bbapap.2003.11.026] [PMID: 15023363]
[37]
Wang, D.; de la Fuente, C.; Deng, L.; Wang, L.; Zilberman, I.; Eadie, C.; Healey, M.; Stein, D.; Denny, T.; Harrison, L.E.; Meijer, L.; Kashanchi, F. Inhibition of human immunodeficiency virus type 1 transcription by chemical cyclin-dependent kinase inhibitors. J. Virol., 2001, 75(16), 7266-7279.
[http://dx.doi.org/10.1128/JVI.75.16.7266-7279.2001] [PMID: 11461999]
[38]
Jordan, R.; Schang, L.; Schaffer, P.A. Transactivation of herpes simplex virus type 1 immediate-early gene expression by virion-associated factors is blocked by an inhibitor of cyclin-dependent protein kinases. J. Virol., 1999, 73(10), 8843-8847.
[http://dx.doi.org/10.1128/JVI.73.10.8843-8847.1999] [PMID: 10482641]
[39]
Diwan, P.; Lacasse, J.J.; Schang, L.M. Roscovitine inhibits activation of promoters in herpes simplex virus type 1 genomes independently of promoter-specific factors. J. Virol., 2004, 78(17), 9352-9365.
[http://dx.doi.org/10.1128/JVI.78.17.9352-9365.2004] [PMID: 15308730]
[40]
Orba, Y.; Sunden, Y.; Suzuki, T.; Nagashima, K.; Kimura, T.; Tanaka, S.; Sawa, H. Pharmacological CDK inhibitor R-Roscovitine suppresses JC virus proliferation. Virology, 2008, 370(1), 173-183.
[http://dx.doi.org/10.1016/j.virol.2007.08.034] [PMID: 17919676]
[41]
Xu, M.; Lee, E.M.; Wen, Z.; Cheng, Y.; Huang, W.K.; Qian, X.; Tcw, J.; Kouznetsova, J.; Ogden, S.C.; Hammack, C.; Jacob, F.; Nguyen, H.N.; Itkin, M.; Hanna, C.; Shinn, P.; Allen, C.; Michael, S.G.; Simeonov, A.; Huang, W.; Christian, K.M.; Goate, A.; Brennand, K.J.; Huang, R.; Xia, M.; Ming, G.; Zheng, W.; Song, H.; Tang, H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat. Med., 2016, 22(10), 1101-1107.
[http://dx.doi.org/10.1038/nm.4184] [PMID: 27571349]
[42]
Bresnahan, W.A.; Boldogh, I.; Chi, P.; Thompson, E.A.; Albrecht, T. Inhibition of cellular CDK2 activity blocks human cytomegalovirus replication. Virology, 1997, 231(2), 239-247.
[http://dx.doi.org/10.1006/viro.1997.8489] [PMID: 9168886]
[43]
Hale, B.G.; Knebel, A.; Botting, C.H.; Galloway, C.S.; Precious, B.L.; Jackson, D.; Elliott, R.M.; Randall, R.E. CDK/ERK-mediated phosphorylation of the human influenza A virus NS1 protein at threonine-215. Virology, 2009, 383(1), 6-11.
[http://dx.doi.org/10.1016/j.virol.2008.10.002] [PMID: 19007960]
[44]
Huang, Q.; Zhong, Y.; Li, J.; Ye, Y.; Wu, W.; Chen, L.; Feng, M.; Yang, J.; Liu, S. Kinase inhibitor roscovitine as a PB2 cap-binding inhibitor against influenza a virus replication. Biochem. Biophys. Res. Commun., 2020, 526(4), 1143-1149.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.034] [PMID: 32327257]
[45]
Le Tourneau, C.; Faivre, S.; Laurence, V.; Delbaldo, C.; Vera, K.; Girre, V.; Chiao, J.; Armour, S.; Frame, S.; Green, S.R.; Gianella-Borradori, A.; Diéras, V.; Raymond, E. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur. J. Cancer, 2010, 46(18), 3243-3250.
[http://dx.doi.org/10.1016/j.ejca.2010.08.001] [PMID: 20822897]
[46]
Schang, L.M. Effects of pharmacological cyclin-dependent kinase inhibitors on viral transcription and replication. Biochim. Biophys. Acta. Proteins Proteomics, 2004, 1697(1-2), 197-209.
[http://dx.doi.org/10.1016/j.bbapap.2003.11.024] [PMID: 15023361]
[47]
Kelso, T.W.R.; Baumgart, K.; Eickhoff, J.; Albert, T.; Antrecht, C.; Lemcke, S.; Klebl, B.; Meisterernst, M. Cyclin-dependent kinase 7 controls mRNA synthesis by affecting stability of preinitiation complexes, leading to altered gene expression, cell cycle progression, and survival of tumor cells. Mol. Cell. Biol., 2014, 34(19), 3675-3688.
[http://dx.doi.org/10.1128/MCB.00595-14] [PMID: 25047832]
[48]
Hutterer, C.; Eickhoff, J.; Milbradt, J.; Korn, K.; Zeitträger, I.; Bahsi, H.; Wagner, S.; Zischinsky, G.; Wolf, A.; Degenhart, C.; Unger, A.; Baumann, M.; Klebl, B.; Marschall, M. A novel CDK7 inhibitor of the Pyrazolotriazine class exerts broad-spectrum antiviral activity at nanomolar concentrations. Antimicrob. Agents Chemother., 2015, 59(4), 2062-2071.
[http://dx.doi.org/10.1128/AAC.04534-14] [PMID: 25624324]
[49]
Yamamoto, M.; Onogi, H.; Kii, I.; Yoshida, S.; Iida, K.; Sakai, H.; Abe, M.; Tsubota, T.; Ito, N.; Hosoya, T.; Hagiwara, M. CDK9 inhibitor FIT-039 prevents replication of multiple DNA viruses. J. Clin. Invest., 2014, 124(8), 3479-3488.
[http://dx.doi.org/10.1172/JCI73805] [PMID: 25003190]
[50]
Tanaka, T.; Okuyama-Dobashi, K.; Murakami, S.; Chen, W.; Okamoto, T.; Ueda, K.; Hosoya, T.; Matsuura, Y.; Ryo, A.; Tanaka, Y.; Hagiwara, M.; Moriishi, K. Inhibitory effect of CDK9 inhibitor FIT-039 on hepatitis B virus propagation. Antiviral Res., 2016, 133, 156-164.
[http://dx.doi.org/10.1016/j.antiviral.2016.08.008] [PMID: 27515132]
[51]
Nomura, T.; Sumi, E.; Egawa, G.; Nakajima, S.; Toichi, E.; Uozumi, R.; Tada, H.; Nakagawa, T.; Hagiwara, M.; Kabashima, K. The efficacy of a cyclin dependent kinase 9 (CDK9) inhibitor, FIT039, on verruca vulgaris: study protocol for a randomized controlled trial. Trials, 2019, 20(1), 489.
[http://dx.doi.org/10.1186/s13063-019-3570-6] [PMID: 31399147]
[52]
Sumi, E.; Nomura, T.; Asada, R.; Uozumi, R.; Tada, H.; Amino, Y.; Sawada, T.; Yonezawa, A.; Hagiwara, M.; Kabashima, K. Safety and plasma concentrations of a cyclin-dependent kinase 9 (CDK9) inhibitor, FIT039, administered by a single adhesive skin patch applied on normal skin and cutaneous Warts. Clin. Drug Investig., 2019, 39(1), 55-61.
[http://dx.doi.org/10.1007/s40261-018-0712-7] [PMID: 30284700]
[53]
Chen, P.; Lee, N.V.; Hu, W.; Xu, M.; Ferre, R.A.; Lam, H.; Bergqvist, S.; Solowiej, J.; Diehl, W.; He, Y.A.; Yu, X.; Nagata, A.; VanArsdale, T.; Murray, B.W. spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther., 2016, 15(10), 2273-2281.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0300] [PMID: 27496135]
[54]
Bakir, T.M. The role of SAMHD1 expression and its relation to HIV-2 (Vpx) gene production. Saudi Pharm. J., 2018, 26(6), 903-908.
[http://dx.doi.org/10.1016/j.jsps.2018.03.005] [PMID: 30202235]
[55]
Cribier, A.; Descours, B.; Valadão, A.L.C.; Laguette, N.; Benkirane, M. Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep., 2013, 3(4), 1036-1043.
[http://dx.doi.org/10.1016/j.celrep.2013.03.017] [PMID: 23602554]
[56]
White, T.E.; Brandariz-Nuñez, A.; Valle-Casuso, J.C.; Amie, S.; Nguyen, L.A.; Kim, B.; Tuzova, M.; Diaz-Griffero, F. The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation. Cell Host Microbe, 2013, 13(4), 441-451.
[http://dx.doi.org/10.1016/j.chom.2013.03.005] [PMID: 23601106]
[57]
St Gelais, C.; de Silva, S.; Hach, J.C.; White, T.E.; Diaz-Griffero, F.; Yount, J.S.; Wu, L. Identification of cellular proteins interacting with the retroviral restriction factor SAMHD1. J. Virol., 2014, 88(10), 5834-5844.
[http://dx.doi.org/10.1128/JVI.00155-14] [PMID: 24623419]
[58]
Pauls, E.; Badia, R.; Torres-Torronteras, J.; Ruiz, A.; Permanyer, M.; Riveira-Muñoz, E.; Clotet, B.; Marti, R.; Ballana, E.; Esté, J.A. Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity. AIDS, 2014, 28(15), 2213-2222.
[http://dx.doi.org/10.1097/QAD.0000000000000399] [PMID: 25036183]
[59]
Badia, R.; Angulo, G.; Riveira-Muñoz, E.; Pujantell, M.; Puig, T.; Ramirez, C.; Torres-Torronteras, J.; Martí, R.; Pauls, E.; Clotet, B.; Ballana, E.; Esté, J.A. Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1. J. Antimicrob. Chemother., 2016, 71(2), 387-394.
[http://dx.doi.org/10.1093/jac/dkv363] [PMID: 26542306]
[60]
Corona, S.P.; Generali, D. Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2– advanced breast cancer. Drug Des. Devel. Ther., 2018, 12, 321-330.
[http://dx.doi.org/10.2147/DDDT.S137783] [PMID: 29497278]
[61]
Castellví, M.; Felip, E. Pharmacological modulation of SAMHD1 activity by CDK4/6 inhibitors improves anticancer therapy. Cancers, 2020, 12(3), 713.
[http://dx.doi.org/10.3390/cancers12030713]
[62]
Jeon, S.; Ko, M.; Lee, J.; Choi, I.; Byun, S.Y.; Park, S.; Shum, D.; Kim, S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother., 2020, 64(7), e00819-20.
[http://dx.doi.org/10.1128/AAC.00819-20] [PMID: 32366720]
[63]
Sehgal, P.B.; Darnell, J.E., Jr; Tamm, I. The inhibition of DRB (5,6-dichloro-1-β-d-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Cell, 1976, 9(3), 473-480.
[http://dx.doi.org/10.1016/0092-8674(76)90092-1] [PMID: 1086720]
[64]
Baumli, S.; Endicott, J.A.; Johnson, L.N. Halogen bonds form the basis for selective P-TEFb inhibition by DRB. Chem. Biol., 2010, 17(9), 931-936.
[http://dx.doi.org/10.1016/j.chembiol.2010.07.012] [PMID: 20851342]
[65]
Mancebo, H.S.Y.; Lee, G.; Flygare, J.; Tomassini, J.; Luu, P.; Zhu, Y.; Peng, J.; Blau, C.; Hazuda, D.; Price, D.; Flores, O. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev., 1997, 11(20), 2633-2644.
[http://dx.doi.org/10.1101/gad.11.20.2633] [PMID: 9334326]
[66]
Townsend, L.B.; Devivar, R.V.; Turk, S.R.; Nassiri, M.R.; Drach, J.C. Design, synthesis, and antiviral activity of certain 2,5,6-trihalo-1-(beta-D-ribofuranosyl)benzimidazoles. J. Med. Chem., 1995, 38(20), 4098-4105.
[http://dx.doi.org/10.1021/jm00020a025] [PMID: 7562945]
[67]
Hoessel, R.; Leclerc, S.; Endicott, J.A.; Nobel, M.E.M.; Lawrie, A.; Tunnah, P.; Leost, M.; Damiens, E.; Marie, D.; Marko, D.; Niederberger, E.; Tang, W.; Eisenbrand, G.; Meijer, L. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol., 1999, 1(1), 60-67.
[http://dx.doi.org/10.1038/9035] [PMID: 10559866]
[68]
Cheng, X.; Merz, K.H.; Vatter, S.; Zeller, J.; Muehlbeyer, S.; Thommet, A.; Christ, J.; Wölfl, S.; Eisenbrand, G. identification of a water-soluble indirubin derivative as potent inhibitor of insulin-like growth factor 1 receptor through structural modification of the parent natural molecule. J. Med. Chem., 2017, 60(12), 4949-4962.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00324] [PMID: 28557430]
[69]
Heredia, A.; Davis, C.; Bamba, D.; Le, N.; Gwarzo, M.Y.; Sadowska, M.; Gallo, R.C.; Redfield, R.R. Indirubin-3′-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication. AIDS, 2005, 19(18), 2087-2095.
[http://dx.doi.org/10.1097/01.aids.0000194805.74293.11] [PMID: 16284457]
[70]
Mok, C.K.P.; Kang, S.S.R.; Chan, R.W.Y.; Yue, P.Y.K.; Mak, N.K.; Poon, L.L.M.; Wong, R.N.S.; Peiris, J.S.M.; Chan, M.C.W. Anti-inflammatory and antiviral effects of indirubin derivatives in influenza A (H5N1) virus infected primary human peripheral blood-derived macrophages and alveolar epithelial cells. Antiviral Res., 2014, 106, 95-104.
[http://dx.doi.org/10.1016/j.antiviral.2014.03.019] [PMID: 24717263]
[71]
Kwok, H.H.; Poon, P.Y.; Fok, S.P.; Ying-Kit Yue, P.; Mak, N.K.; Chan, M.C.W.; Peiris, J.S.M.; Wong, R.N.S. Anti-inflammatory effects of indirubin derivatives on influenza A virus-infected human pulmonary microvascular endothelial cells. Sci. Rep., 2016, 6(1), 18941-18941.
[http://dx.doi.org/10.1038/srep18941] [PMID: 26732368]
[72]
Chan, M.C.; Chan, R.W.; Mok, C.K.; Mak, N.K.; Wong, R.N. Indirubin-3'-oxime as an antiviral and immunomodulatory agent in treatment of severe human influenza virus infection. Hong Kong Med J, 2018, 24(Suppl 6)(5), 45-47.
[73]
Moon, M.J.; Lee, S.K.; Lee, J.W.; Song, W.K.; Kim, S.W.; Kim, J.I.; Cho, C.; Choi, S.J.; Kim, Y.C. Synthesis and structure–activity relationships of novel indirubin derivatives as potent anti-proliferative agents with CDK2 inhibitory activities. Bioorg. Med. Chem., 2006, 14(1), 237-246.
[http://dx.doi.org/10.1016/j.bmc.2005.08.008] [PMID: 16182537]
[74]
Polychronopoulos, P.; Magiatis, P.; Skaltsounis, A.L.; Myrianthopoulos, V.; Mikros, E.; Tarricone, A.; Musacchio, A.; Roe, S.M.; Pearl, L.; Leost, M.; Greengard, P.; Meijer, L. Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J. Med. Chem., 2004, 47(4), 935-946.
[http://dx.doi.org/10.1021/jm031016d] [PMID: 14761195]
[75]
Dan, N.T.; Quang, H.D.; Van Truong, V.; Huu Nghi, D.; Cuong, N.M.; Cuong, T.D.; Toan, T.Q.; Bach, L.G.; Anh, N.H.T.; Mai, N.T.; Lan, N.T.; Van Chinh, L.; Quan, P.M. Design, synthesis, structure, in vitro cytotoxic activity evaluation and docking studies on target enzyme GSK-3β of new indirubin-3ʹ-oxime derivatives. Sci. Rep., 2020, 10(1), 11429.
[http://dx.doi.org/10.1038/s41598-020-68134-8] [PMID: 32651416]
[76]
Alfhili, M.A.; Alsughayyir, J.; McCubrey, J.A.; Akula, S.M. GSK-3-associated signaling is crucial to virus infection of cells. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(10), 118767.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118767] [PMID: 32522661]
[77]
Criscitiello, C.; Viale, G.; Esposito, A.; Curigliano, G. Dinaciclib for the treatment of breast cancer. Expert Opin. Investig. Drugs, 2014, 23(9), 1305-1312.
[http://dx.doi.org/10.1517/13543784.2014.948152] [PMID: 25107301]
[78]
Hossain, D.M.S.; Javaid, S.; Cai, M.; Zhang, C.; Sawant, A.; Hinton, M.; Sathe, M.; Grein, J.; Blumenschein, W.; Pinheiro, E.M.; Chackerian, A. Dinaciclib induces immunogenic cell death and enhances anti-PD1–mediated tumor suppression. J. Clin. Invest., 2018, 128(2), 644-654.
[http://dx.doi.org/10.1172/JCI94586] [PMID: 29337311]
[79]
Chaurushiya, M.S.; Weitzman, M.D. Viral manipulation of DNA repair and cell cycle checkpoints. DNA Repair, 2009, 8(9), 1166-1176.
[http://dx.doi.org/10.1016/j.dnarep.2009.04.016] [PMID: 19473887]
[80]
Bouhaddou, M.; Memon, D.; Meyer, B.; White, K.M.; Rezelj, V.V.; Correa Marrero, M.; Polacco, B.J.; Melnyk, J.E.; Ulferts, S.; Kaake, R.M.; Batra, J.; Richards, A.L.; Stevenson, E.; Gordon, D.E.; Rojc, A.; Obernier, K.; Fabius, J.M.; Soucheray, M.; Miorin, L.; Moreno, E.; Koh, C.; Tran, Q.D.; Hardy, A.; Robinot, R.; Vallet, T.; Nilsson-Payant, B.E.; Hernandez-Armenta, C.; Dunham, A.; Weigang, S.; Knerr, J.; Modak, M.; Quintero, D.; Zhou, Y.; Dugourd, A.; Valdeolivas, A.; Patil, T.; Li, Q.; Hüttenhain, R.; Cakir, M.; Muralidharan, M.; Kim, M.; Jang, G.; Tutuncuoglu, B.; Hiatt, J.; Guo, J.Z.; Xu, J.; Bouhaddou, S.; Mathy, C.J.P.; Gaulton, A.; Manners, E.J.; Félix, E.; Shi, Y.; Goff, M.; Lim, J.K.; McBride, T.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S. De wit, E.; Leach, A.R.; Kortemme, T.; Shoichet, B.; Ott, M.; Saez-Rodriguez, J.; tenOever, B.R.; Mullins, R.D.; Fischer, E.R.; Kochs, G.; Grosse, R.; García-Sastre, A.; Vignuzzi, M.; Johnson, J.R.; Shokat, K.M.; Swaney, D.L.; Beltrao, P.; Krogan, N.J. The global phosphorylation landscape of SARS-CoV-2 infection. Cell, 2020, 182(3), 685-712.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.034] [PMID: 32645325]
[81]
Wyatt, P.G.; Woodhead, A.J.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Davis, D.J.; Devine, L.A.; Early, T.R.; Feltell, R.E.; Lewis, E.J.; McMenamin, R.L.; Navarro, E.F.; O’Brien, M.A.; O’Reilly, M.; Reule, M.; Saxty, G.; Seavers, L.C.A.; Smith, D.M.; Squires, M.S.; Trewartha, G.; Walker, M.T.; Woolford, A.J.A. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J. Med. Chem., 2008, 51(16), 4986-4999.
[http://dx.doi.org/10.1021/jm800382h] [PMID: 18656911]
[82]
Flores, O.; Lee, G.; Kessler, J.; Miller, M.; Schlief, W.; Tomassini, J.; Hazuda, D. Host-cell positive transcription elongation factor b kinase activity is essential and limiting for HIV type 1 replication. Proc. Natl. Acad. Sci. USA, 1999, 96(13), 7208-7213.
[http://dx.doi.org/10.1073/pnas.96.13.7208] [PMID: 10377393]
[83]
Buchmann, B.; Döhner, K.; Schirdewahn, T.; Sodeik, B.; Manns, M.P.; Wedemeyer, H.; Ciesek, S.; von Hahn, T. A screening assay for the identification of host cell requirements and antiviral targets for hepatitis D virus infection. Antiviral Res., 2017, 141, 116-123.
[http://dx.doi.org/10.1016/j.antiviral.2017.02.008] [PMID: 28223128]
[84]
Duan, Q.; Reid, S.P.; Clark, N.R.; Wang, Z.; Fernandez, N.F.; Rouillard, A.D.; Readhead, B.; Tritsch, S.R.; Hodos, R.; Hafner, M.; Niepel, M.; Sorger, P.K.; Dudley, J.T.; Bavari, S.; Panchal, R.G.; Ma’ayan, A. L1000CDS2: LINCS L1000 characteristic direction signatures search engine. NPJ Syst. Biol. Appl., 2016, 2(1), 16015.
[http://dx.doi.org/10.1038/npjsba.2016.15] [PMID: 28413689]
[85]
Ma, X.; Zhu, T.; Gu, Q.; Xi, R.; Wang, W.; Li, D. Structures and antiviral activities of butyrolactone derivatives isolated from Aspergillus terreus MXH-23. J. Ocean Univ. China, 2014, 13(6), 1067-1070.
[http://dx.doi.org/10.1007/s11802-014-2324-z]
[86]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015–2019). Bioorg. Med. Chem. Lett., 2019, 29(20), 126637.
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[87]
Cheng, W.; Yang, Z.; Wang, S.; Li, Y.; Wei, H.; Tian, X.; Kan, Q. Recent development of CDK inhibitors: An overview of CDK/inhibitor co-crystal structures. Eur. J. Med. Chem., 2019, 164, 615-639.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.003] [PMID: 30639897]
[88]
Wang, Y.; Chen, X.; Yan, Y.; Zhu, X.; Liu, M.; Liu, X. Discovery and SARs of 5-Chloro- N4 -phenyl- N2 -(pyridin-2-yl)pyrimidine-2,4-diamine derivatives as oral available and dual CDK 6 and 9 inhibitors with potent antitumor activity. J. Med. Chem., 2020, 63(6), 3327-3347.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02121] [PMID: 32129996]
[89]
Su, M.; Chen, Y.; Qi, S.; Shi, D.; Feng, L.; Sun, D. A mini-review on cell cycle regulation of coronavirus infection. Front. Vet. Sci., 2020, 7, 586826.
[http://dx.doi.org/10.3389/fvets.2020.586826] [PMID: 33251267]
[90]
Surjit, M.; Liu, B.; Chow, V.T.K.; Lal, S.K. The nucleocapsid protein of severe acute respiratory syndrome-coronavirus inhibits the activity of cyclin-cyclin-dependent kinase complex and blocks S phase progression in mammalian cells. J. Biol. Chem., 2006, 281(16), 10669-10681.
[http://dx.doi.org/10.1074/jbc.M509233200] [PMID: 16431923]
[91]
Sui, L.; Li, L.; Zhao, Y.; Zhao, Y.; Hao, P.; Guo, X.; Wang, W.; Wang, G.; Li, C.; Liu, Q. Host cell cycle checkpoint as antiviral target for SARS-CoV-2 revealed by integrative transcriptome and proteome analyses. Signal Transduct. Target. Ther., 2023, 8(1), 21.
[http://dx.doi.org/10.1038/s41392-022-01296-1] [PMID: 36596760]
[92]
Guo, S.; Lei, X.; Chang, Y.; Zhao, J.; Wang, J.; Dong, X.; Liu, Q.; Zhang, Z.; Wang, L.; Yi, D.; Ma, L.; Li, Q.; Zhang, Y.; Ding, J.; Liang, C.; Li, X.; Guo, F.; Wang, J.; Cen, S. SARS-CoV-2 hijacks cellular kinase CDK2 to promote viral RNA synthesis. Signal Transduct. Target. Ther., 2022, 7(1), 400.
[http://dx.doi.org/10.1038/s41392-022-01239-w] [PMID: 36575184]
[93]
Xiao, Y.; Yan, Y.; Chang, L.; Ji, H.; Sun, H.; Song, S.; Feng, K.; Nuermaimaiti, A.; Lu, Z.; Wang, L. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antiviral Res., 2023, 212, 105558.
[http://dx.doi.org/10.1016/j.antiviral.2023.105558] [PMID: 36806814]
[94]
Ji, X.Y.; Chen, J.H.; Zheng, G.H.; Huang, M.H.; Zhang, L.; Yi, H.; Jin, J.; Jiang, J.D.; Peng, Z.G.; Li, Z.R. Design and synthesis of cajanine analogues against hepatitis C virus through down-regulating host chondroitin sulfate N -Acetylgalactosaminyltransferase 1. J. Med. Chem., 2016, 59(22), 10268-10284.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01301] [PMID: 27783522]
[95]
He, Y.; Zhou, J.; Gao, H.; Liu, C.; Zhan, P.; Liu, X. Broad-spectrum antiviral strategy: Host-targeting antivirals against emerging and re-emerging viruses. Eur. J. Med. Chem., 2024, 265, 116069.
[http://dx.doi.org/10.1016/j.ejmech.2023.116069] [PMID: 38160620]
[96]
Zhou, S.; Wang, K.; Hu, Z.; Chen, T.; Dong, Y.; Gao, R.; Wu, M.; Li, Y.; Ji, X. Design, synthesis, and structure-activity relationships of a novel class of quinazoline derivatives as coronavirus inhibitors. Eur. J. Med. Chem., 2023, 261, 115831.
[http://dx.doi.org/10.1016/j.ejmech.2023.115831] [PMID: 37813064]
[97]
Shavakhi, A.; Minakari, M.; Bighamian, A.; Sadeghian, S.; Shavakhi, S.; Khamisi, N.; Khodadustan, M.; Talebi, M.; Ataei, B. Statin efficacy in the treatment of hepatitis C genotype I. J. Res. Med. Sci., 2014, 19(Suppl. 1), S1-S4.
[PMID: 25002886]
[98]
Rustgi, V.K.; Lee, W.M.; Lawitz, E.; Gordon, S.C.; Afdhal, N.; Poordad, F.; Bonkovsky, H.L.; Bengtsson, L.; Chandorkar, G.; Harding, M.; McNair, L.; Aalyson, M.; Alam, J.; Kauffman, R.; Gharakhanian, S.; McHutchison, J.G. Merimepodib, pegylated interferon, and ribavirin in genotype 1 chronic hepatitis C pegylated interferon and ribavirin nonresponders. Hepatology, 2009, 50(6), 1719-1726.
[http://dx.doi.org/10.1002/hep.23204] [PMID: 19852040]