Current Chemical Biology

Author(s): Nawel Meliani, Radja Achiri, Mohammed El Amine Dib* and Alain Muselli

DOI: 10.2174/0122127968309078240815053526

DownloadDownload PDF Flyer Cite As
Assessment of Chemical Composition and Investigation into the Antioxidant, Anti-inflammatory, and Hemolytic Properties of Hexane Extracts from Cynara cardunculus subsp. Cardunculus and Cynara cardunculus subsp. sylvestris

Page: [46 - 52] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Cynara cardunculus is frequently used in Mediterranean cuisine and is known for its possible medicinal properties. These properties are usually related to the presence of specific bioactive compounds present in the leaves of the artichoke. On the other hand, the root parts of the artichoke have not been subjected to extensive studies so far.

Objective: The main objective of this study was to conduct a chemical analysis of the root part of the hexane extract of Cynara cardunculus subsp. cardunculus and Cynara cardunculus subsp. sylvestris, while exploring their antioxidant, anti-inflammatory, and hemolytic effects.

Methods: The chemical composition of the extracts of both species was analyzed using gas chromatography (GC) and gas chromatography coupled with mass spectroscopy (GC/MS). The antioxidant properties were evaluated using the DPPH radical scavenging method. The anti-inflammatory activity was evaluated through the protein denaturation method using diclofenac as a positive control. The hemolytic effect was examined on a suspension of erythrocytes in human blood.

Results: The main constituents of the hexane extract of C. cardunculus and C. sylvestris were aplotaxene (70.5% and 56.3%, respectively) and hexadecanoic acid (10.2% and 13.2%, respectively). The hexane extracts of C. sylvestris and C. cardunculus showed positive antioxidant activity with the DPPH test by comparing them with the BHT control. However, it should be noted that the extract of C. cardunculus showed the best performance, with an IC50 of 4.3 μg/mL, while the extract of C. sylvestris presented an IC50 of 5.6 μg/mL. The hexane extracts of C. cardunclus and C. sylvastris showed good anti-inflammatory activity with IC50s of 17.3 μg/mL and 23.8 μg/mL compared to diclofenac (IC50= 13.3 μg/mL), respectively. The toxicity assessment on human erythrocytes shows that both extracts of roots of C. cardunculus and C. sylvestris have a very low hemolysis rate (1.4% and 11.1%, respectively), even at high concentrations (2000 μg/mL).

Conclusion: The extracts obtained from hexane from the plants C. cardunculus and C. sylvestris, during the tests, revealed particularly promising antioxidant, anti-inflammatory, and hemolytic properties. These results offer an interesting perspective for the creation and development of new antioxidant and anti-inflammatory agents for the pharmaceutical and cosmetic industry.

Keywords: Hexane extracts, antioxidant activity, anti-inflammatory activity, hemolytic effect, aplotaxene, egg albumin.

Graphical Abstract

[1]
Collins, L.M.; Toulouse, A.; Connor, T.J.; Nolan, Y.M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology, 2012, 62(7), 2154-2168.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.028] [PMID: 22361232]
[2]
Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Res. Int., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/406960] [PMID: 25136585]
[3]
Gogoi, R.; Loying, R.; Sarma, N.; Munda, S.; Kumar Pandey, S.; Lal, M. A comparative study on antioxidant, anti-inflammatory, genotoxicity, anti-microbial activities and chemical composition of fruit and leaf essential oils of Litsea cubeba Pers from North-east India. Ind. Crops Prod., 2018, 125(1), 131-139.
[http://dx.doi.org/10.1016/j.indcrop.2018.08.052]
[4]
Velez, Z.; Campinho, M.; Guerra, Â.; García, L.; Ramos, P.; Guerreiro, O.; Felício, L.; Schmitt, F.; Duarte, M. Biological characterization of Cynara cardunculus L. methanolic extracts: Antioxidant, anti-proliferative, anti-migratory and anti-angiogenic activities. Agriculture, 2012, 2(4), 472-492.
[http://dx.doi.org/10.3390/agriculture2040472]
[5]
Pignone, D.; Sonnante, G. Wild artichokes of south Italy: did the story begin here? Genet. Resour. Crop Evol., 2004, 51(6), 577-580.
[http://dx.doi.org/10.1023/B:GRES.0000024786.01004.71]
[6]
Acquaviva, R.; Malfa, G.A.; Santangelo, R.; Bianchi, S.; Pappalardo, F.; Taviano, M.F.; Miceli, N.; Di Giacomo, C.; Tomasello, B. Wild artichoke (cynara cardunculus subsp. sylvestris, asteraceae) leaf extract: phenolic profile and oxidative stress inhibitory effects on hepg2 cells. Molecules, 2023, 28(6), 2475.
[http://dx.doi.org/10.3390/molecules28062475] [PMID: 36985448]
[7]
Mandim, F.; Petropoulos, S.A.; Pinela, J.; Dias, M.I.; Giannoulis, K.D.; Kostić, M.; Soković, M.; Queijo, B.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem., 2022, 369, 130875..
[http://dx.doi.org/10.1016/j.foodchem.2021.130875] [PMID: 34438342]
[8]
O’Mahony, J.A.; Sousa, M.J.; Mcsweeney, P.L.H. Proteolysis in miniature Cheddar-type cheeses made using blends of chymosin and Cynara cardunculus proteinases as coagulant. Int. J. Dairy Technol., 2003, 56(1), 52-58.
[http://dx.doi.org/10.1046/j.1471-0307.2003.00078.x]
[9]
Gostin, A.I.; Waisundara, V.Y. Edible flowers as functional food: A review on artichoke (Cynara cardunculus L.) Trends Food Sci. Technol., 2019, 86, 381-391.
[http://dx.doi.org/10.1016/j.tifs.2019.02.015]
[10]
Ben Salem, M.; Affes, H.; Athmouni, K.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Chemicals compositions, antioxidant and anti-inflammatory activity of Cynara scolymus leaves extracts, and analysis of major bioactive polyphenols by HPLC. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-14.
[http://dx.doi.org/10.1155/2017/4951937] [PMID: 28539965]
[11]
Petropoulos, S.A.; Pereira, C.; Tzortzakis, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and bioactive compounds characterization of plant parts from Cynara cardunculus L. (Asteraceae) cultivated in central Greece. Front. Plant Sci., 2018, 9, 459.
[http://dx.doi.org/10.3389/fpls.2018.00459] [PMID: 29692792]
[12]
Petropoulos, S.A.; Pereira, C.; Ntatsi, G.; Danalatos, N.; Barros, L.; Ferreira, I.C.F.R. Nutritional value and chemical composition of Greek artichoke genotypes. Food Chem., 2018, 267, 296-302.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.159] [PMID: 29934171]
[13]
Chihoub, W.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Harzallah-Skhiri, F.; Ferreira, I.C.F.R. Valorisation of the green waste parts from turnip, radish and wild cardoon: nutritional value, phenolic profile and bioactivity evaluation. Food Res. Int., 2019, 126, 108651.
[http://dx.doi.org/10.1016/j.foodres.2019.108651] [PMID: 31732057]
[14]
Salekzamani, S.; Ebrahimi-Mameghani, M.; Rezazadeh, K. The antioxidant activity of artichoke Cynara scolymus ): A systematic review and meta‐analysis of animal studies. Phytother. Res., 2019, 33(1), 55-71.
[http://dx.doi.org/10.1002/ptr.6213] [PMID: 30345589]
[15]
Babushok, V.I.; Linstrom, P.J.; Reed, J.J.; Zenkevich, I.G.; Brown, R.L.; Mallard, W.G.; Stein, S.E. Development of a database of gas chromatographic retention properties of organic compounds. J. Chromatogr. A, 2007, 1157(1-2), 414-421.
[http://dx.doi.org/10.1016/j.chroma.2007.05.044] [PMID: 17543315]
[16]
Knorr, A.; Monge, A.; Stueber, M.; Stratmann, A.; Arndt, D.; Martin, E.; Pospisil, P. Computer-assisted structure identification (CASI)--an automated platform for high-throughput identification of small molecules by two-dimensional gas chromatography coupled to mass spectrometry. Anal. Chem., 2013, 85(23), 11216-11224.
[http://dx.doi.org/10.1021/ac4011952] [PMID: 24160557]
[17]
Johnston, C.; Stauffer, D.; Douglas, B. The wiley / nbs registry of mass spectral data, volumes 1-7 (mclafferty, fred w.; stauffer, douglas b.). J. Chem. Educ., 1989, 66(10), A256.
[http://dx.doi.org/10.1021/ed066pA256.3]
[18]
NIST mass spectrometry data center standard reference libraries and software J. Forensic Sci., 2023, 68(5), 1484-1493.
[http://dx.doi.org/10.1111/1556-4029.15284] [PMID: 37203286]
[19]
Que, F.; Mao, L.; Pan, X. Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int., 2006, 39(5), 581-587.
[http://dx.doi.org/10.1016/j.foodres.2005.12.001]
[20]
Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. JPN. J. Nutr. Diet., 1986, 44(6), 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[21]
Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed., 2012, 2(1), S178-S180.
[http://dx.doi.org/10.1016/S2221-1691(12)60154-3]
[22]
Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol., 2011, 20(3), 169-173.
[http://dx.doi.org/10.1111/j.2042-7158.1968.tb09718.x] [PMID: 4385045]
[23]
Andrä, J.; Jakovkin, I.; Grötzinger, J.; Hecht, O.; Krasnosdembskaya, A.D.; Goldmann, T.; Gutsmann, T.; Leippe, M.; Andrä, J. Structure and mode of action of the antimicrobial peptide arenicin. Biochem. J., 2008, 410(1), 113-122.
[http://dx.doi.org/10.1042/BJ20071051] [PMID: 17935487]
[24]
Babu Shankar, P.; Sathiyamoorthy, S.; Palanisamy, P.; Boopathi, S.; Rajaram, V. Antioxidant and antimicrobial properties of Glycine Max-A review. Int. J. Cur. Bio. Med. Sci, 2011, 1(2), 49-62.
[25]
Grancai, D.; Nagy, M.; Suchy, V.; Ubik, K. Constituents of cynara cardunculus 1.1. sterols and pentacyclic triterpenes. Farm. Obz., 1992, 61, 577-580.
[26]
Grancai, D.; Nagy, M.; Mucaji, P.; Suchy, V.; Ubik, K. Constituents of cynara cardunculus L. 111. coomarins. Farm. Obz., 1994, 63, 447-449.
[27]
Grancai, D.; Nagy, M.; Suchy, V.; Ubik, K. Constituents of cynara cardunculus 1. 11. flavonoids. Farm. Obz., 1993, 62, 31-34.
[28]
Grancai, D.; Nagy, M.; Mucaji, P.; Ubik, K. Constitoents of cynara cardunculus l. iv. flavonoid glycosides. Farm. Obz., 1996, 64, 255-256.
[29]
Mucaji, P.; Grancai, D.; Nagy, M.; Budesinsky, M.; Ubik, K. Triterpenoid saponins from Cynara cardunculus L. Pharmazie, 1999, 1999(54), 714-716.
[30]
Pandino, G.; Courts, F.L.; Lombardo, S.; Mauromicale, G.; Williamson, G. Caffeoylquinic acids and flavonoids in the immature inflorescence of globe artichoke, wild cardoon, and cultivated cardoon. J. Agric. Food Chem., 2010, 58(2), 1026-1031.
[http://dx.doi.org/10.1021/jf903311j] [PMID: 20028012]
[31]
Wang, M.; Simon, J.E.; Aviles, I.F.; He, K.; Zheng, Q.Y.; Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem., 2003, 51(3), 601-608.
[http://dx.doi.org/10.1021/jf020792b] [PMID: 12537429]
[32]
Benhamidat, L.; Dib, M.A.; Bensaid, O.; Tabet Zatla, A.; Keniche, A.; El Ouar, I.; Djabou, N.; Muselli, A. A. chemical composition and antioxidant, anti-inflammatory and anticholinesterase properties of the aerial and root parts of centaurea acaulis essential oils: study of the combinatorial activities of aplotaxene with reference standards. J. Essent. Oil-Bear. Plants., 2022, 23(1), 126-146.
[33]
Benhamidat, L.; Dib, M.E.A.; Bensaid, O.; Keniche, A.; ouar, I.E.; Muselli, A.; Muselli, A. Chemical composition and antioxidant, anti-inflammatory and neuroprotective properties of hexane extracts from the roots of centaurea acaulis and centaurea pullata. Antiinfect. Agents, 2022, 20(5), e100622205831.
[http://dx.doi.org/10.2174/2211352520666220610113750]
[34]
Siswadi, S.; Saragih, G.S. Phytochemical analysis of bioactive compounds in ethanolic extract of sterculia quadrifida R.Br. AIP Conf. Proc., 2021, 2023(2353), 030098.
[http://dx.doi.org/10.1063/5.0053057]
[35]
Mazumder, K.; Nabila, A.; Aktar, A.; Farahnaky, A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of australian lupin species: a comprehensive substantiation. Antioxidants, 2020, 9(4), 282.
[http://dx.doi.org/10.3390/antiox9040282] [PMID: 32230703]
[36]
Bounatirou, S.; Smiti, S.; Miguel, M.; Faleiro, L.; Rejeb, M.; Neffati, M.; Costa, M.; Figueiredo, A.; Barroso, J.; Pedro, L. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem., 2007, 105(1), 146-155.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.059]
[37]
Visioli, F.; Poli, A.; Gall, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev., 2002, 22(1), 65-75.
[http://dx.doi.org/10.1002/med.1028] [PMID: 11746176]
[38]
Ghadermazi, R.; Keramat, J.; Goli, S.A.H. Antioxidant activity of clove (Eugenia caryophyllata Thunb), oregano (Oringanum vulgare L) and sage (Salvia officinalis L) essential oils in various model systems. Int. Food Res. J., 2017, 24(4), 1628-1635.
[39]
Rajeswari, G.; Murugan, M.; Mohan, V.R. GC-MS analysis of bioactive components of Hugonia mystax L. (Linaceae). Res. J. Pharm. Biol. Chem. Sci., 2012, 3(4), 301.
[40]
Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem. Biol. Drug Des., 2012, 80(3), 434-439.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01418.x] [PMID: 22642495]
[41]
Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59.
[http://dx.doi.org/10.1016/j.biocel.2008.06.010] [PMID: 18662800]
[42]
Peana, A.T.; D’Aquila, P.S.; Panin, F.; Serra, G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine, 2002, 9(8), 721-726.
[http://dx.doi.org/10.1078/094471102321621322] [PMID: 12587692]