CNS & Neurological Disorders - Drug Targets

Author(s): Jose Augusto Nogueira-Machado*, Franscisco das Chagas Lima e Silva, Fabiana Rocha-Silva and Nathalia Gomes

DOI: 10.2174/0118715273315891240801065231

DownloadDownload PDF Flyer Cite As
Amyotrophic Lateral Sclerosis (ALS): An Overview of Genetic and Metabolic Signaling Mechanisms

Page: [83 - 90] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Amyotrophic Lateral Sclerosis (ALS) is a rare, progressive, and incurable disease. Sporadic (sALS) accounts for ninety percent of ALS cases, while familial ALS (fALS) accounts for around ten percent. Reports have identified over 30 different forms of familial ALS. Multiple types of fALS exhibit comparable symptoms with mutations in different genes and possibly with different predominant metabolic signals. Clinical diagnosis takes into account patient history but not genetic mutations, misfolded proteins, or metabolic signaling. As research on genetics and metabolic pathways advances, it is expected that the intricate complexity of ALS will compound further. Clinicians discuss whether a gene's presence is a cause of the disease or just an association or consequence. They believe that a mutant gene alone is insufficient to diagnose ALS. ALS, often perceived as a single disease, appears to be a complex collection of diseases with similar symptoms. This review highlights gene mutations, metabolic pathways, and muscle-neuron interactions.

Keywords: Amyotrophic lateral sclerosis, ALS, metabolic signaling, genetic biomarkers, neurological implications, mutated ALS genes, muscle-neuron interaction, neurodegenerative diseases.

Graphical Abstract

[1]
Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med 2001; 344(22): 1688-700.
[http://dx.doi.org/10.1056/NEJM200105313442207] [PMID: 11386269]
[2]
Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009; 65(S1) (Suppl. 1): S3-9.
[http://dx.doi.org/10.1002/ana.21543] [PMID: 19191304]
[3]
Souza PVS, Pinto WBVR, Chieia MAT, Oliveira ASB. Clinical and genetic basis of familial amyotrophic lateral sclerosis. Arq Neuropsiquiatr 2015; 73(12): 1026-37.
[http://dx.doi.org/10.1590/0004-282X20150161] [PMID: 26465287]
[4]
NIH. National Institute of Neurological Disorders and Stroke 2023. Available From: https://www.ninds.nih.gov/
[5]
Sanjak M, Konopacki R, Capasso R, Roelke KA, Peper SM, Houdek AM. Dissociation between mechanical and myoelectrical manifestation of muscle fatigue in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2004; 5(1): 26-32.
[http://dx.doi.org/10.1080/14660820310017551]
[6]
Li M, Ona VO, Guégan C, et al. Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 2000; 288(5464): 335-9.
[http://dx.doi.org/10.1126/science.288.5464.335] [PMID: 10764647]
[7]
Wijesekera LC, Nigel Leigh P. Amyotrophic lateral sclerosis. Orphanet J Rare Dis 2009; 4(1): 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[8]
Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 2015; 6(1): 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[9]
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3: 17071.
[10]
Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med 2017; 377(2): 162-72.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[11]
van Es MA, Hardiman O, Chio A, et al. Amyotrophic lateral sclerosis. Lancet 2017; 390(10107): 2084-98.
[http://dx.doi.org/10.1016/S0140-6736(17)31287-4] [PMID: 28552366]
[12]
Le Gall L, Anakor E, Connolly O, Vijayakumar U, Duddy W, Duguez S. Molecular and cellular mechanisms affected in ALS. J Pers Med 2020; 10(3): 101.
[http://dx.doi.org/10.3390/jpm10030101] [PMID: 32854276]
[13]
Kurland LT, Mulder DW. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. I. Neurology 1955; 5(3): 182-96.
[http://dx.doi.org/10.1212/WNL.5.3.182] [PMID: 14356347]
[14]
Myrianthopoulos NC, Brown IA. A genetic study of progressive spinal muscular atrophy. Am J Hum Genet 1954; 6(4): 387-411.
[PMID: 14349945]
[15]
Horton WA, Eldridge R, Brody JA. Familial motor neuron disease. Neurology 1976; 26(5): 460-5.
[http://dx.doi.org/10.1212/WNL.26.5.460] [PMID: 944398]
[16]
Lee YB, Chen HJ, Peres JN, et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 2013; 5(5): 1178-86.
[http://dx.doi.org/10.1016/j.celrep.2013.10.049] [PMID: 24290757]
[17]
Sennfält S, Kläppe U, Thams S, et al. The path to diagnosis in ALS: Delay, referrals, alternate diagnoses, and clinical progression. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24(1-2): 45-53.
[http://dx.doi.org/10.1080/21678421.2022.2053722] [PMID: 35343340]
[18]
Dengler R, Tröger M. Classification of ALS--do we know enough? Amyotroph Lateral Scler Other Motor Neuron Disord 2000; 1(2): 68-9.
[19]
Thome J, Steinbach R, Grosskreutz J, Durstewitz D, Koppe G. Classification of amyotrophic lateral sclerosis by brain volume, connectivity, and network dynamics. Hum Brain Mapp 2022; 43(2): 681-99.
[http://dx.doi.org/10.1002/hbm.25679] [PMID: 34655259]
[20]
Iazzolino B, Pain D, Peotta L, et al. Validation of the revised classification of cognitive and behavioural impairment in ALS. J Neurol Neurosurg Psychiatry 2019; 90(7): 734-9.
[http://dx.doi.org/10.1136/jnnp-2018-319696] [PMID: 30733331]
[21]
van Es MA, Goedee HS, Westeneng HJ, Nijboer TCW, van den Berg LH. Is it accurate to classify ALS as a neuromuscular disorder? Expert Rev Neurother 2020; 20(9): 895-906.
[http://dx.doi.org/10.1080/14737175.2020.1806061] [PMID: 32749157]
[22]
Byrne S, Bede P, Elamin M, Kenna K, Lynch C, McLaughlin R. Proposed criteria for familial amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2011; 12(3): 157-9.
[http://dx.doi.org/10.3109/17482968.2010.545420]
[23]
Vucic S, Ferguson TA, Cummings C, et al. Gold Coast diagnostic criteria: Implications for ALS diagnosis and clinical trial enrollment. Muscle Nerve 2021; 64(5): 532-7.
[http://dx.doi.org/10.1002/mus.27392] [PMID: 34378224]
[24]
Mathis S, Goizet C, Soulages A, Vallat JM, Masson GL. Genetics of amyotrophic lateral sclerosis: A review. J Neurol Sci 2019; 399: 217-26.
[http://dx.doi.org/10.1016/j.jns.2019.02.030] [PMID: 30870681]
[25]
Andersen PM, Al-Chalabi A. Clinical genetics of amyotrophic lateral sclerosis: What do we really know? Nat Rev Neurol 2011; 7(11): 603-15.
[http://dx.doi.org/10.1038/nrneurol.2011.150] [PMID: 21989245]
[26]
Deng HX, Chen W, Hong ST, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/] dementia. Nature 2011; 477(7363): 211-5.
[http://dx.doi.org/10.1038/nature10353] [PMID: 21857683]
[27]
Berdyński M, Miszta P, Safranow K, et al. SOD1 mutations associated with amyotrophic lateral sclerosis analysis of variant severity. Sci Rep 2022; 12(1): 103.
[http://dx.doi.org/10.1038/s41598-021-03891-8] [PMID: 34996976]
[28]
Da Cruz S, Cleveland DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 2011; 21(6): 904-19.
[http://dx.doi.org/10.1016/j.conb.2011.05.029] [PMID: 21813273]
[29]
Strong MJ, Abrahams S, Goldstein LH, et al. Amyotrophic lateral sclerosis - frontotemporal spectrum disorder (ALS-FTSD): Revised diagnostic criteria. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18(3-4): 153-74.
[http://dx.doi.org/10.1080/21678421.2016.1267768] [PMID: 28054827]
[30]
Wu JJ, Cai A, Greenslade JE, et al. ALS/FTD mutations in UBQLN2 impede autophagy by reducing autophagosome acidification through loss of function. Proc Natl Acad Sci USA 2020; 117(26): 15230-41.
[http://dx.doi.org/10.1073/pnas.1917371117] [PMID: 32513711]
[31]
Nementzik LR, Thumbadoo KM, Murray HC, et al. Distribution of ubiquilin 2 and TDP ‐43 aggregates throughout the CNS inUBQLN2 p. T487I ‐linked amyotrophic lateral sclerosis and frontotemporal dementia. Brain Pathol 2024; 34(3): e13230.
[http://dx.doi.org/10.1111/bpa.13230] [PMID: 38115557]
[32]
Koyama A, Sugai A, Kato T, et al. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Nucleic Acids Res 2016; 44(12): 5820-36.
[http://dx.doi.org/10.1093/nar/gkw499] [PMID: 27257061]
[33]
Lattante S, Rouleau GA, Kabashi E. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: Summary and update. Hum Mutat 2013; 34(6): 812-26.
[http://dx.doi.org/10.1002/humu.22319] [PMID: 23559573]
[34]
Goutman SA, Chen KS, Paez-Colasante X, Feldman EL. Emerging understanding of the genotype–phenotype relationship in amyotrophic lateral sclerosis. Handb Clin Neurol 2018; 148: 603-23.
[http://dx.doi.org/10.1016/B978-0-444-64076-5.00039-9] [PMID: 29478603]
[35]
Cappella M, Ciotti C, Cohen-Tannoudji M, Biferi MG. Gene therapy for ALS-A perspective. Int J Mol Sci 2019; 20(18): 4388.
[http://dx.doi.org/10.3390/ijms20184388] [PMID: 31500113]
[36]
Zou ZY, Zhou ZR, Che CH, Liu CY, He RL, Huang HP. Genetic epidemiology of amyotrophic lateral sclerosis: A systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2017; 88(7): 540-9.
[http://dx.doi.org/10.1136/jnnp-2016-315018] [PMID: 28057713]
[37]
Akçimen F, Lopez ER, Landers JE, et al. Amyotrophic lateral sclerosis: Translating genetic discoveries into therapies. Nat Rev Genet 2023; 24(9): 642-58.
[http://dx.doi.org/10.1038/s41576-023-00592-y] [PMID: 37024676]
[38]
Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, losses, and implications for future therapies. Neuron 2020; 108(5): 822-42.
[http://dx.doi.org/10.1016/j.neuron.2020.08.022] [PMID: 32931756]
[39]
Feldman EL, Goutman SA, Petri S, et al. Amyotrophic lateral sclerosis. Lancet 2022; 400(10360): 1363-80.
[http://dx.doi.org/10.1016/S0140-6736(22)01272-7] [PMID: 36116464]
[40]
Gomes NA, das Chagas Lima e Silva F , de Oliveira Volpe CM , et al. Overexpression of mTOR in leukocytes from ALS8 patients. Curr Neuropharmacol 2023; 21(3): 482-90.
[http://dx.doi.org/10.2174/1570159X21666230201151016] [PMID: 36722478]
[41]
Peters OM, Ghasemi M, Brown RH Jr. Emerging mechanisms of molecular pathology in ALS. J Clin Invest 2015; 125(5): 1767-79.
[http://dx.doi.org/10.1172/JCI71601] [PMID: 25932674]
[42]
Cirulli ET, Lasseigne BN, Petrovski S, et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015; 347(6229): 1436-41.
[http://dx.doi.org/10.1126/science.aaa3650] [PMID: 25700176]
[43]
Freischmidt A, Wieland T, Richter B, et al. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat Neurosci 2015; 18(5): 631-6.
[http://dx.doi.org/10.1038/nn.4000] [PMID: 25803835]
[44]
Oakes JA, Davies MC, Collins MO. TBK1: A new player in ALS linking autophagy and neuroinflammation. Mol Brain 2017; 10(1): 5.
[http://dx.doi.org/10.1186/s13041-017-0287-x] [PMID: 28148298]
[45]
DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72(2): 245-56.
[http://dx.doi.org/10.1016/j.neuron.2011.09.011] [PMID: 21944778]
[46]
Nishimura AL, Mitne-Neto M, Silva HCA, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75(5): 822-31.
[http://dx.doi.org/10.1086/425287] [PMID: 15372378]
[47]
Mitne-Neto M, Machado-Costa M, Marchetto MCN, et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 2011; 20(18): 3642-52.
[http://dx.doi.org/10.1093/hmg/ddr284] [PMID: 21685205]
[48]
Rehorst WA, Thelen MP, Nolte H, et al. Muscle regulates mTOR dependent axonal local translation in motor neurons via CTRP3 secretion: Implications for a neuromuscular disorder, spinal muscular atrophy. Acta Neuropathol Commun 2019; 7(1): 154.
[http://dx.doi.org/10.1186/s40478-019-0806-3] [PMID: 31615574]
[49]
Prasad A, Bharathi V, Sivalingam V, Girdhar A, Patel BK. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front Mol Neurosci 2019; 12: 25.
[http://dx.doi.org/10.3389/fnmol.2019.00025] [PMID: 30837838]
[50]
Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019; 137(6): 859-77.
[http://dx.doi.org/10.1007/s00401-019-01964-7] [PMID: 30721407]
[51]
Chua JP, De Calbiac H, Kabashi E, Barmada SJ. Autophagy and ALS: Mechanistic insights and therapeutic implications. Autophagy 2022; 18(2): 254-82.
[http://dx.doi.org/10.1080/15548627.2021.1926656] [PMID: 34057020]
[52]
Ilieva H, Vullaganti M, Kwan J. Advances in molecular pathology, diagnosis, and treatment of amyotrophic lateral sclerosis. BMJ 2023; 383: e075037.
[http://dx.doi.org/10.1136/bmj-2023-075037] [PMID: 37890889]
[53]
Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002; 26(4): 438-58.
[http://dx.doi.org/10.1002/mus.10186] [PMID: 12362409]
[54]
Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta Mol Basis Dis 2006; 1762(11-12): 1051-67.
[http://dx.doi.org/10.1016/j.bbadis.2006.03.008] [PMID: 16713195]
[55]
Trias E, Ibarburu S, Barreto-Núñez R, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation 2016; 13(1): 177.
[http://dx.doi.org/10.1186/s12974-016-0620-9] [PMID: 27400786]
[56]
Russell AJ, Hartman JJ, Hinken AC, et al. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nat Med 2012; 18(3): 452-5.
[http://dx.doi.org/10.1038/nm.2618] [PMID: 22344294]
[57]
Hansen R, Saikali KG, Chou W, et al. Tirasemtiv amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve 2014; 50(6): 925-31.
[http://dx.doi.org/10.1002/mus.24239] [PMID: 24634285]
[58]
Hwee DT, Kennedy A, Ryans J, et al. Fast skeletal muscle troponin activator tirasemtiv increases muscle function and performance in the B6SJL-SOD1G93A ALS mouse model. PLoS One 2014; 9(5): e96921.
[http://dx.doi.org/10.1371/journal.pone.0096921] [PMID: 24805850]
[59]
Neef DW, Jaeger AM, Thiele DJ. Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 2011; 10(12): 930-44.
[http://dx.doi.org/10.1038/nrd3453] [PMID: 22129991]
[60]
Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6): 585-95.
[http://dx.doi.org/10.1038/ng1362] [PMID: 15146184]
[61]
Donnelly PS, Caragounis A, Du T, et al. Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem 2008; 283(8): 4568-77.
[http://dx.doi.org/10.1074/jbc.M705957200] [PMID: 18086681]
[62]
Parker SJ, Meyerowitz J, James JL, et al. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS One 2012; 7(8): e42277.
[http://dx.doi.org/10.1371/journal.pone.0042277] [PMID: 22879928]
[63]
Stoica R, Paillusson S, Gomez-Suaga P, et al. ALS/FTD‐associated FUS activates GSK‐3β to disrupt the VAPB - PTPIP 51 interaction and ER-mitochondria associations. EMBO Rep 2016; 17(9): 1326-42.
[http://dx.doi.org/10.15252/embr.201541726] [PMID: 27418313]
[64]
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61(1): 10-26.
[http://dx.doi.org/10.1016/j.neuron.2008.10.055] [PMID: 19146809]
[65]
Ghasemi M, Brown RH Jr. Genetics of amyotrophic lateral sclerosis. Cold Spring Harb Perspect Med 2018; 8(5): a024125.
[http://dx.doi.org/10.1101/cshperspect.a024125] [PMID: 28270533]
[66]
Rodrigues Lima-Junior J, Sulzer D, Lindestam Arlehamn CS, Sette A. The role of immune-mediated alterations and disorders in ALS disease. Hum Immunol 2021; 82(3): 155-61.
[http://dx.doi.org/10.1016/j.humimm.2021.01.017] [PMID: 33583639]
[67]
Beers DR, Zhao W, Liao B, et al. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav Immun 2011; 25(5): 1025-35.
[http://dx.doi.org/10.1016/j.bbi.2010.12.008] [PMID: 21176785]
[68]
López-Erauskin J, Tadokoro T, Baughn MW, et al. ALS/FTD-Linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS. Neuron 2018; 100(4): 816-830.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.09.044] [PMID: 30344044]
[69]
Kubinski S, Claus P. Protein network analysis reveals a functional connectivity of dysregulated processes in ALS and SMA. Neurosci Insights 2022; 17.
[http://dx.doi.org/10.1177/26331055221087740] [PMID: 35372839]
[70]
Kye MJ, Niederst ED, Wertz MH, et al. SMN regulates axonal local translation via miR-183/mTOR pathway. Hum Mol Genet 2014; 23(23): 6318-31.
[http://dx.doi.org/10.1093/hmg/ddu350] [PMID: 25055867]
[71]
Biondi O, Branchu J, Ben Salah A, et al. IGF-1R reduction triggers neuroprotective signaling pathways in spinal muscular atrophy mice. J Neurosci 2015; 35(34): 12063-79.
[http://dx.doi.org/10.1523/JNEUROSCI.0608-15.2015] [PMID: 26311784]
[72]
Shi Y, Shen HM, Gopalakrishnan V, Gordon N. Epigenetic regulation of autophagy beyond the cytoplasm: A review. Front Cell Dev Biol 2021; 9: 675599.
[http://dx.doi.org/10.3389/fcell.2021.675599] [PMID: 34195194]
[73]
Yin S, Liu L, Gan W. The roles of post-translational modifications on mTOR signaling. Int J Mol Sci 2021; 22(4): 1784.
[http://dx.doi.org/10.3390/ijms22041784] [PMID: 33670113]
[74]
Gómez-Suaga P, Pérez-Nievas BG, Glennon EB, et al. The VAPB-PTPIP51 endoplasmic reticulum-mitochondria tethering proteins are present in neuronal synapses and regulate synaptic activity. Acta Neuropathol Commun 2019; 7(1): 35.
[http://dx.doi.org/10.1186/s40478-019-0688-4] [PMID: 30841933]
[75]
Ramesh N, Pandey UB. Autophagy dysregulation in ALS: When protein aggregates get out of hand. Front Mol Neurosci 2017; 10: 263.
[http://dx.doi.org/10.3389/fnmol.2017.00263] [PMID: 28878620]
[76]
Ding WX, Ni HM, Gao W, et al. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007; 282(7): 4702-10.
[http://dx.doi.org/10.1074/jbc.M609267200] [PMID: 17135238]
[77]
Han SM, El Oussini H, Scekic-Zahirovic J, et al. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans. PLoS Genet 2013; 9(9): e1003738.
[http://dx.doi.org/10.1371/journal.pgen.1003738] [PMID: 24039594]
[78]
Brini M, Calì T, Ottolini D, Carafoli E. Neuronal calcium signaling: Function and dysfunction. Cell Mol Life Sci 2014; 71(15): 2787-814.
[http://dx.doi.org/10.1007/s00018-013-1550-7] [PMID: 24442513]
[79]
Finkel N. A forma pseudomiopática tardia da atrofia muscular progressiva heredo-familial. Arq Neuropsiquiatr 1962; 20(4): 307-22.
[http://dx.doi.org/10.1590/S0004-282X1962000400005]