Current Pharmaceutical Analysis

Author(s): Senem Sanlı, Mustafa Sinan Kaynak*, Nurullah Sanlı and Emine Erturk Balta

DOI: 10.2174/0115734129310868240805065851

DownloadDownload PDF Flyer Cite As
Investigation of the Permeability of Antiretroviral Drugs Lamivudine and Valganciclovir via Single-Pass Intestinal Perfusion (SPIP) Method

Page: [585 - 596] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Antiretroviral medications are widely used to treat HIV infections. Lamivudine (3TC) is prescribed for HIV-1 infection management in adults and pediatrics, while valganciclovir (VGC) is a prodrug of ganciclovir derived from valine.

Methods: The Biopharmaceutics Classification System (BCS) estimates the contributions of intestinal permeability, dissolution, and solubility in oral drug absorption. Intestinal permeability refers to a substance's capacity to pass through the protective layer of cells in the intestine. The intestinal permeability of 3TC and VGC was analyzed and categorized using the singlepass intestinal perfusion technique according to the BCS in male Sprague Dawley rats, and a reversed-phase HPLC method was validated for precise and accurate measurement.

Results: According to the BCS, 3TC and VGC have been classified as having low permeability when compared to metoprolol tartrate, which is classified as Class I with good permeability and resolution.

Conclusion: The permeability values derived from this work can be valuable in exposure assessment models.

Keywords: Lamivudine, valganciclovir, antiretroviral drugs, single-pass intestinal perfusion, drug permeability, HIV infections.

Graphical Abstract

[1]
Sanad, M.H.; Rizvi, S.F.A.; Farag, A.B. Synthesis, characterization, and bioevaluation of 99m Tc nitrido-oxiracetam as a brain imaging model. Radiochim. Acta, 2021, 109(6), 477-483.
[http://dx.doi.org/10.1515/ract-2021-0003]
[2]
Sanad, M.H.; Marzook, F.A.; Ibrahim, I.T.; Abd-Elhalim, S.M.; Farrag, N.S. Preparation and bioevaluation of radioiodinated omberacetam as a radiotracer for brain imaging. Radiochemistry, 2023, 65(1), 114-121.
[http://dx.doi.org/10.1134/S1066362223010162]
[3]
Sanad, M.; Marzook, F.; Challan, S.; Essam, H.; Farag, A. Radioiodination, and biological assessment of olsalazine, as a highly selective radiotracer for ulcerative colitis imaging in mice. Arab Journal of Nuclear Sciences and Applications, , 2023, 0(0), 0.
[http://dx.doi.org/10.21608/ajnsa.2022.163538.1639]
[4]
Sanad, M.H.; Challan, S.B.; Essam, H.M.; Massoud, A. Assessment of radiolabeled l-carnitine for hepatotoxicity imaging in rats. Radiochemistry, 2023, 65(1), 101-113.
[http://dx.doi.org/10.1134/S1066362223010150]
[5]
Sanad, M.H.; Eyssa, H.M.; Marzook, F.A.; Farag, A.B.; Rizvi, S.F.A. Radioiodinated procainamide as radiotracer for myocardial perfusion imaging in mice. Pharm. Chem. J., 2023, 57(4), 543-549.
[http://dx.doi.org/10.1007/s11094-023-02918-w]
[6]
Sanad, M.H.; Gomaa, N.M.; El Bakary, N.M.; Marzook, F.A.; Bassem, S.A. Radioiodination and biological evaluation of novel quinoline derivative for infective inflammation diagnosis. Pharm. Chem. J., 2023, 57(7), 1018-1028.
[http://dx.doi.org/10.1007/s11094-023-02979-x]
[7]
Sanad, M.H.; Eyssa, H.M.; Marzook, F.A.; Farag, A.B.; Rizvi, S.F.A.; Mandal, S.K. Comparative bioevaluation and 99mTc-Sn (II) lansoprazole as a model for peptic ulcer localization. Radiochemistry, 2021, 63(5), 642-650.
[http://dx.doi.org/10.1134/S1066362221050131]
[8]
Challan, S.B.; Khater, S.I.; Rashad, A.M. Preparation, molecular modeling and in-vivo evaluation of 99mTc-Oseltamivir as a tumor diagnostic agent. Int. J. Radiat. Res., 2022, 20(3), 635-642.
[9]
Sanad, M.H.; Eyssa, H.M.; Marzook, F.A.; Farag, A.B.; Elrefaei, A.; Fouzy, A.S.M.; Challan, S.B. Radiocomplexation, biological evaluation, and characterization of [99mtc]-5-[(3-carboxy-4-hydroxyphenyl)diazenyl-2].-hydroxybenzoic acid as a novel agent for imaging of ulcerative colitis in mice. Radiochemistry, 2023, 65(3), 378-386.
[http://dx.doi.org/10.1134/S1066362223030141]
[10]
Sanad, M.H.; Farag, A.B.; Marzook, F.A.; Mandal, S.K. Radiocomplexation, chromatographic separation and bioevaluation of [99mtc].dithiocarbamate of procainamide as selective labeled compound for myocardial perfusion imaging. Pharm. Chem. J., 2022, 56(6), 777-784.
[http://dx.doi.org/10.1007/s11094-022-02709-9]
[11]
Sanad, M.H.; Rizvi, S.F.A.; Farag, A.B. Radiosynthesis and in silico bioevaluation of 131 I‐Sulfasalazine as a highly selective radiotracer for imaging of ulcerative colitis. Chem. Biol. Drug Des., 2021, 98(5), 751-761.
[http://dx.doi.org/10.1111/cbdd.13929] [PMID: 34314572]
[12]
Sanad, M.H.; Gomaa, N.M.; El Bakary, N.M.; Ibrahim, I.T.; Massoud, A. Radioiodination of balsalazide, bioevaluation, and characterization as a highly selective radiotracer for imaging of ulcerative colitis in mice. J. Labelled Comp. Radiopharm., 2022, 65(3), 71-82.
[http://dx.doi.org/10.1002/jlcr.3961] [PMID: 34984721]
[13]
Sanad, M.H.; Eyssa, H.M.; Gomaa, N.M.; Marzook, F.A.; Bassem, S.A. Radioiodinated esomeprazole as a model for peptic ulcer localization. Radiochim. Acta, 2021, 109(9), 711-718.
[http://dx.doi.org/10.1515/ract-2021-1056]
[14]
Sanad, M.H.; Rizvi, S.F.A.; Farag, A.B. Design of novel radiotracer 99mTcN-tetrathiocarbamate as SPECT imaging agent: A preclinical study for GFR renal function. Chem. Zvesti, 2022, 76(2), 1253-1263.
[http://dx.doi.org/10.1007/s11696-021-01926-y]
[15]
Sanad, M.H.; Farag, A.B.; Marzook, F.A.; Mandal, S.K. Preparation, characterization, and bioevaluation of 99m Tc-famotidine as a selective radiotracer for peptic ulcer disorder detection in mice. Radiochim. Acta, 2022, 110(1), 67-74.
[http://dx.doi.org/10.1515/ract-2021-1105]
[16]
Sanad, M.H.; Challan, S.B.; Marzook, F.A.; Abd-Elhaliem, S.M.; Marzook, E.A. Radioiodination and biological evaluation of Cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection. Radiochim. Acta, 2021, 109(2), 109-117.
[http://dx.doi.org/10.1515/ract-2020-0046]
[17]
Sanad, M.H.; Farag, A.B.; Rizvi, S.F.A. In silico and in vivo study of radio-iodinated nefiracetam as a radiotracer for brain imaging in mice. Radiochim. Acta, 2021, 109(7), 575-582.
[http://dx.doi.org/10.1515/ract-2020-0125]
[18]
Sanad, M.H.; Gizawy, M.A.; Motaleb, M.A.; Ibrahim, I.T.; Saad, E.A. A comparative study of stannous chloride and sodium borohydride as reducing agents for the radiolabeling of 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-Porphine with Technetium-99m for tumor imaging. Radiochemistry, 2021, 63(4), 512-519.
[http://dx.doi.org/10.1134/S1066362221040159]
[19]
Sanad, M.H.; Marzook, F.A.; Rizvi, S.F.A.; Farag, A.B.; Fouzy, A.S.M. Radioiodinated azilsartan as a new highly selective radiotracer for myocardial perfusion imaging. Radiochemistry, 2021, 63(4), 520-525.
[http://dx.doi.org/10.1134/S1066362221040160]
[20]
Eyssa, H.M.; El Refay, H.M.; Sanad, M.H. Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation. Radiochim. Acta, 2022, 110(3), 205-218.
[http://dx.doi.org/10.1515/ract-2021-1091]
[21]
Sanad, M.H.; Farag, A.B.; Bassem, S.A.; Marzook, F.A. Radioiodination of zearalenone and determination of Lactobacillus plantarum effect of on zearalenone organ distribution:In silico study and preclinical evaluation. Toxicol. Rep., 2022, 9, 470-479.
[http://dx.doi.org/10.1016/j.toxrep.2022.02.003] [PMID: 35345860]
[22]
Sanad, M.H.; Eyssa, H.M.; Marzook, F.A.; Farag, A.B.; Rizvi, S.F.A.; Mandal, S.K.; Patnaik, S.S.; Fouzy, A.S.M. Optimized chromatographic separation and bioevalution of radioiodinated ilaprazole as a new labeled compound for peptic ulcer localization in mice. Radiochemistry, 2021, 63(6), 811-819.
[http://dx.doi.org/10.1134/S1066362221060138]
[23]
Sanad, M.H.; Eyssa, H.M.; Marzook, F.A.; Rizvi, S.F.A.; Farag, A.B.; Fouzy, A.S.M.; Bassem, S.A.; Ibrahim, A.A. Synthesis, radiolabeling, and biological evaluation of 99mTc-Tricarbonyl mesalamine as a potential ulcerative colitis imaging agent. Radiochemistry, 2021, 63(6), 835-842.
[http://dx.doi.org/10.1134/S1066362221060163]
[24]
Sanad, M.H.; Marzook, F.A.; Farag, A.B.; Mandal, S.K.; Rizvi, S.F.A.; Gupta, J.K. Preparation, biological evaluation and radiolabeling of [ 99m Tc]-technetium tricarbonyl procainamide as a tracer for heart imaging in mice. Radiochim. Acta, 2022, 110(4), 267-277.
[http://dx.doi.org/10.1515/ract-2021-1079]
[25]
Rizvi, S.F.A.; Jabbar, T.; Shahid, W.; Sanad, M.H.; Zhang, H. Facile one-pot strategy for radiosynthesis of 99mTc-Doxycycline to diagnose staphylococcus aureus in infectious animal models. Appl. Biochem. Biotechnol., 2022, 194(6), 2672-2683.
[http://dx.doi.org/10.1007/s12010-022-03856-1] [PMID: 35239149]
[26]
Sanad, M.H.; Marzook, F.A.; Mandal, S.K.; Baidya, M. Radiocomplexation and biological evaluation of99 [mTc]. tricarbonyl rabeprazole as a radiotracer for peptic ulcer localization. Radiochemistry, 2022, 64(2), 211-218.
[http://dx.doi.org/10.1134/S1066362222020138]
[27]
Sanad, M.H.; Eyssa, H.M.; Marzook, F.A.; Farag, A.B. Preparation and bioevaluation of [ 99mTc]. tricarbonyl omeprazole for gastric ulcer localization in mice. Radiochemistry, 2022, 64(1), 54-61.
[http://dx.doi.org/10.1134/S106636222201009X]
[28]
Sanad, M.H.; Rizvi, S.F.A.; Marzook, F.A.; Farag, A.B. In-Silico study, preparation and biological evaluation of 99MTC-mesalamine complex as radiotracer for diagnostics and monitoring of ulcerative colitis in mice. Pharm. Chem. J., 2022, 56(6), 754-761.
[http://dx.doi.org/10.1007/s11094-022-02706-y]
[29]
Eyssa, H.M.; Mona, Y.E.; Magdy, M.Z. Impact of graphene oxide nanoparticles and carbon black on the gamma radiation sensitization of acrylonitrile–butadiene rubber seal materials. Radiochim. Acta, 2021, 61(11), 2843-2860.
[30]
Eyssa, H.M.; El Mogy, S.A.; Youssef, H.A. Impact of foaming agent and nanoparticle fillers on the properties of irradiated rubber. Radiochim. Acta, 2021, 109(2), 127-142.
[http://dx.doi.org/10.1515/ract-2020-0015]
[31]
Treatment information for adults. 2023. Available from: HIV Treatment Information for Adults https://www.fda.gov/drugs/hiv-treatment/hiv-treatment-information-adults
[32]
Dezani, T.M.; Dezani, A.B.; Serra, C.H.R. Development and validation of RP-HPLC method for simultaneous determination of lamivudine, stavudine, and zidovudine in perfusate samples: Application to the single-pass intestinal perfusion (SPIP) studies. Braz. J. Pharm. Sci., 2021, 57, e19073.
[http://dx.doi.org/10.1590/s2175-97902020000419073]
[33]
Cvetković, R.S.; Wellington, K. Valganciclovir: A review of its use in the management of CMV infection and disease in immunocompromised patients. Drugs, 2005, 65(6), 859-878.
[http://dx.doi.org/10.2165/00003495-200565060-00012] [PMID: 15819597]
[34]
Pescovitz, M.D.; Rabkin, J.; Merion, R.M.; Paya, C.V.; Pirsch, J.; Freeman, R.B.; O’Grady, J.; Robinson, C.; To, Z.; Wren, K.; Banken, L.; Buhles, W.; Brown, F. Valganciclovir results in improved oral absorption of ganciclovir in liver transplant recipients. Antimicrob. Agents Chemother., 2000, 44(10), 2811-2815.
[http://dx.doi.org/10.1128/AAC.44.10.2811-2815.2000] [PMID: 10991864]
[35]
Humar, A.; Snydman, D. AST infectious diseases community of practice. Cytomegalovirus in solid organ transplant recipients. Am. J. Transplant., 2009, 9(Suppl. 4), S78-S86.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02897.x] [PMID: 20070700]
[36]
Vaziri, S.; Pezhman, Z.; Sayyad, B.; Mansouri, F.; Janbakhsh, A.; Afsharian, M.; Najafi, F. Efficacy of valganciclovir and ganciclovir for cytomegalovirus disease in solid organ transplants: A meta-analysis. J. Res. Med. Sci., 2014, 19(12), 1185-1192.
[PMID: 25709661]
[37]
Kim, I.; Chu, X.; Kim, S.; Provoda, C.J.; Lee, K.D.; Amidon, G.L. Identification of a human valacyclovirase: Biphenyl hydrolase-like protein as valacyclovir hydrolase. J. Biol. Chem., 2003, 278(28), 25348-25356.
[http://dx.doi.org/10.1074/jbc.M302055200] [PMID: 12732646]
[38]
Puente, X.S.; López-Otn, C. Cloning and expression analysis of a novel human serine hydrolase with sequence similarity to prokaryotic enzymes involved in the degradation of aromatic compounds. J. Biol. Chem., 1995, 270(21), 12926-12932.
[http://dx.doi.org/10.1074/jbc.270.21.12926] [PMID: 7759552]
[39]
Lamivudine. Available from: https://go.drugbank.com/drugs/DB00709
[40]
Michael Gibson, C. Valganciclovir hydrochloride., Available from: https://www.wikidoc.org/index.php/Valganciclovir_hydrochloride
[41]
Pereira, B.G.; Vianna-Soares, C.D.; Righi, A.; Pinheiro, M.V.B.; Flores, M.Z.S.; Bezerra, E.M.; Freire, V.N.; Lemos, V.; Caetano, E.W.S.; Cavada, B.S. Identification of lamivudine conformers by raman scattering measurements and quantum chemical calculations. J. Pharm. Biomed. Anal., 2007, 43(5), 1885-1889.
[http://dx.doi.org/10.1016/j.jpba.2007.01.014] [PMID: 17303364]
[42]
Shalaeva, M.; Kenseth, J.; Lombardo, F.; Bastin, A. Measurement of dissociation constants (pKa values) of organic compounds by multiplexed capillary electrophoresis using aqueous and cosolvent buffers. J. Pharm. Sci., 2008, 97(7), 2581-2606.
[http://dx.doi.org/10.1002/jps.21287] [PMID: 18228610]
[43]
Şanlı, S.; Şanlı, N.; Lunte, C. Determination and validation of capillary electrophoretic and liquid chromatographic methods for concurrent assay of valganciclovir and lamivudine in pharmaceutical formulations. Curr. Pharm. Anal., 2017, 13(1), 31-38.
[http://dx.doi.org/10.2174/1573412912666160728153846]
[44]
Lukacova, V.; Goelzer, P.; Reddy, M.; Greig, G.; Reigner, B.; Parrott, N. A physiologically based pharmacokinetic model for ganciclovir and its prodrug valganciclovir in adults and children. AAPS J., 2016, 18(6), 1453-1463.
[http://dx.doi.org/10.1208/s12248-016-9956-4] [PMID: 27450227]
[45]
Stefanidis, D.; Brandl, M. Reactivity of valganciclovir in aqueous solution. Drug Dev. Ind. Pharm., 2005, 31(9), 879-884.
[http://dx.doi.org/10.1080/03639040500271951] [PMID: 16305999]
[46]
Komarov, T.N.; Shohin, I.E.; Tokareva, M.A.; Archakova, O.A.; Bogdanova, D.S.; Aleshina, A.A.; Bagaeva, N.S.; Davydanova, V.V. Development and validation of valganciclovir and its active metabolite ganciclovir determination in human plasma by HPLCMS/ MS method. Drug development & registration, 2021, 10(1), 120-128.
[http://dx.doi.org/ 10.33380/2305-2066-2021-10-1-120-128]
[47]
Barve, K.H.; Patel, J.R. Intestinal permeability of lamivudine using single pass intestinal perfusion. Indian J. Pharm. Sci., 2012, 74(5), 478-481.
[http://dx.doi.org/10.4103/0250-474X.108441] [PMID: 23716881]
[48]
Amidon, G.L.; Sinko, P.J.; Fleisher, D. Estimating human oral fraction dose absorbed: a correlation using rat intestinal membrane permeability for passive and carrier-mediated compounds. Pharm. Res., 1988, 5(10), 651-654.
[http://dx.doi.org/10.1023/A:1015927004752] [PMID: 3244618]
[49]
Artursson, P.; Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun., 1991, 175(3), 880-885.
[http://dx.doi.org/10.1016/0006-291X(91)91647-U] [PMID: 1673839]
[50]
Hillgren, K.M.; Kato, A.; Borchardt, R.T. In vitro systems for studying intestinal drug absorption. Med. Res. Rev., 1995, 15(2), 83-109.
[http://dx.doi.org/10.1002/med.2610150202] [PMID: 7537838]
[51]
Salphati, L.; Childers, K.; Pan, L.; Tsutsui, K.; Takahashi, L. Evaluation of a single-pass intestinal-perfusion method in rat for the prediction of absorption in man. J. Pharm. Pharmacol., 2010, 53(7), 1007-1013.
[http://dx.doi.org/10.1211/0022357011776252] [PMID: 11480535]
[52]
Fagerholm, U.; Johansson, M.; Lennernäs, H. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res., 1996, 13(9), 1336-1342.
[http://dx.doi.org/10.1023/A:1016065715308] [PMID: 8893271]
[53]
Barthe, L.; Woodley, J.; Houin, G. Gastrointestinal absorption of drugs: Methods and studies. Fundam. Clin. Pharmacol., 1999, 13(2), 154-168.
[http://dx.doi.org/10.1111/j.1472-8206.1999.tb00334.x] [PMID: 10226759]
[54]
Dezani, T.M.; Dezani, A.B.; Junior, J.B.S.; Serra, C.H.R. Single-pass intestinal perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: A study with antiretroviral drugs. Eur. J. Pharm. Biopharm., 2016, 104, 131-139.
[http://dx.doi.org/10.1016/j.ejpb.2016.04.020] [PMID: 27130787]
[55]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the world health organization model list of essential medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[56]
Wu, C.Y.; Benet, L.Z. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm. Res., 2005, 22(1), 11-23.
[http://dx.doi.org/10.1007/s11095-004-9004-4] [PMID: 15771225]
[57]
Wagner, D.; Spahn-Langguth, H.; Hanafy, A.; Koggel, A.; Langguth, P. Intestinal drug efflux: Formulation and food effects. Adv. Drug Deliv. Rev., 2001, 50(Suppl. 1), S13-S31.
[http://dx.doi.org/10.1016/S0169-409X(01)00183-1] [PMID: 11576693]
[58]
Kim, J.S.; Mitchell, S.; Kijek, P.; Tsume, Y.; Hilfinger, J.; Amidon, G.L. The suitability of an in situ perfusion model for permeability determinations: Utility for BCS class I biowaiver requests. Mol. Pharm., 2006, 3(6), 686-694.
[http://dx.doi.org/10.1021/mp060042f] [PMID: 17140256]
[59]
Berggren, S.; Hoogstraate, J.; Fagerholm, U.; Lennernäs, H. Characterization of jejunal absorption and apical efflux of ropivacaine, lidocaine and bupivacaine in the rat using in situ and in vitro absorption models. Eur. J. Pharm. Sci., 2004, 21(4), 553-560.
[http://dx.doi.org/10.1016/j.ejps.2003.12.004] [PMID: 14998587]
[60]
Lindahl, A.; Frid, S.; Ungell, A.L.; Lennernas, H. No evidence for the involvement of the multidrug resistance-associated protein and/or the monocarboxylic acid transporter in the intestinal transport of fluvastatin in the rat. AAPS PharmSci, 2000, 2(3), e26.
[http://dx.doi.org/10.1208/ps020326] [PMID: 11741242]
[61]
Grassi, M.; Cadelli, G. Theoretical considerations on the in vivo intestinal permeability determination by means of the single pass and recirculating techniques. Int. J. Pharm., 2001, 229(1-2), 95-105.
[http://dx.doi.org/10.1016/S0378-5173(01)00848-1] [PMID: 11604262]
[62]
Barr, W.H. The role of intestinal metabolism on bioavailability. Pharm. Bioequivalence, , 199, 1149-1168.
[63]
TRS 1025 - Annex 12: WHO “Biowaiver List”: proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms. 2006. Available from: https://www.who.int/publications/m/item/trs-1025-annex-12-who-biowaiver-eml
[64]
Kasim, N.A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernäs, H.; Hussain, A.S.; Junginger, H.E.; Stavchansky, S.A.; Midha, K.K.; Shah, V.P.; Amidon, G.L. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharm., 2004, 1(1), 85-96.
[http://dx.doi.org/10.1021/mp034006h] [PMID: 15832504]
[65]
Huang, W.; Chen, S.; Sun, L.; Wwang, H.; Qiao, H. Study on the intestinal permeability of lamivudine using Caco-2 cells monolayer and Single-pass intestinal perfusion. Saudi J. Biol. Sci., 2022, 29(4), 2247-2252.
[http://dx.doi.org/10.1016/j.sjbs.2021.11.052] [PMID: 35531213]
[66]
Ates, M.; Kaynak, M.S.; Sahin, S. Effect of permeability enhancers on paracellular permeability of acyclovir. J. Pharm. Pharmacol., 2016, 68(6), 781-790.
[http://dx.doi.org/10.1111/jphp.12551] [PMID: 27061718]