Current Drug Targets

Author(s): Menghan Zhu, Dongxia Qi, Dongliang Chen, Wenchong Ye, Xiaoyang Wang, Chunmei Wang, Wen Zhou, Bin Zhou, Juan Li* and Keyu Zhang*

DOI: 10.2174/0113894501297697240805103744

DownloadDownload PDF Flyer Cite As
Joint Screening and Identification of Potential Targets of Nitazoxanide by Affinity Chromatography and Label-Free Techniques

Page: [819 - 845] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Background: Nitazoxanide not only exhibits a broad spectrum of activities against various pathogens infecting animals and humans but also induces cellular autophagy. Currently, the pattern of action and subcellular targets of nitazoxanide-induced cellular autophagy are still unclear.

Methods: To identify potential targets of nitazoxanide in mammalian cells, we developed an affinity chromatography system using tizoxanide, a deacetyl derivative of nitazoxanide, as a ligand. Affinity chromatography was performed using VERO cell extracts on tizoxanide-biotin, and the isolated binding proteins were identified by mass spectrometry. Candidate target proteins obtained using affinity chromatography were co-analysed with the drug affinity response target stability method. Fluorescent probes obtained by coupling rhodamine B to nitazoxanide were used for intracellular localisation of the binding targets. Solvent-induced protein precipitation profiling and thermal proteome profiling were used to further validate the binding proteins.

Results: The joint analysis of the drug affinity response target stability method and affinity chromatography resulted in the screening of six possible candidate target proteins. Fluorescent probes localised the nitazoxanide-binding protein around the nuclear membrane. Molecular docking revealed that the binding proteins mainly formed hydrogen bonds with the nitro group of nitazoxanide. Solvent-induced protein precipitation profiling and thermal proteome profiling further validated SEC61A, PSMD12, and PRKAG1 as potential target proteins of nitazoxanide.

Conclusion: The data supports the idea that nitazoxanide is a multifunctional compound with multiple targets.

Keywords: Alzheimer's disease, atherosclerosis, nitazoxanide, affinity chromatography, drug target, autophagy.

Graphical Abstract

[1]
Castillo-Salazar, M.; Sánchez-Muñoz, F.; Springall del Villar, R. Nitazoxanide exerts immunomodulatory effects on peripheral blood mononuclear cells from type 2 diabetes patients. Biomolecules, 2021, 11(12), 1817.
[http://dx.doi.org/10.3390/biom11121817] [PMID: 34944461]
[2]
Rossignol, J.F.; Maisonneuve, H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections. Am. J. Trop. Med. Hyg., 1984, 33(3), 511-512.
[http://dx.doi.org/10.4269/ajtmh.1984.33.511] [PMID: 6731683]
[3]
Rossignol, J.F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Res., 2014, 110, 94-103.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.014] [PMID: 25108173]
[4]
Esposito, M.; Müller, N.; Hemphill, A. Structure-activity relationships from in vitro efficacies of the thiazolide series against the intracellular apicomplexan protozoan Neospora caninum. Int. J. Parasitol., 2007, 37(2), 183-190.
[http://dx.doi.org/10.1016/j.ijpara.2006.10.009] [PMID: 17141783]
[5]
Hemphill, A.; Mueller, J.; Esposito, M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections. Expert Opin. Pharmacother., 2006, 7(7), 953-964.
[http://dx.doi.org/10.1517/14656566.7.7.953] [PMID: 16634717]
[6]
Broekhuysen, J.; Stockis, A.; Lins, R.L.; Graeve, J.D.; Rossignol, J.F. Nitazoxanide: Pharmacokinetics and metabolism in man. Int. J. Clin. Pharmacol. Ther., 2000, 38(8), 387-394.
[http://dx.doi.org/10.5414/CPP38387] [PMID: 10984012]
[7]
La Frazia, S.; Ciucci, A.; Arnoldi, F. Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation. J. Virol., 2013, 87(20), 11096-11106.
[http://dx.doi.org/10.1128/JVI.01213-13] [PMID: 23926336]
[8]
Huang, Z.; Zheng, H.; Wang, Y. The modulation of metabolomics and antioxidant stress is involved in the effect of nitazoxanide against influenza A virus in vitro. Acta Virol., 2023, 67, 11612.
[http://dx.doi.org/10.3389/av.2023.11612]
[9]
Shi, Z.; Wei, J.; Deng, X. Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Virol. J., 2014, 11(1), 10.
[http://dx.doi.org/10.1186/1743-422X-11-10] [PMID: 24456815]
[10]
Stelitano, D.; La Frazia, S.; Ambrosino, A. Antiviral activity of nitazoxanide against Morbillivirus infections. J. Virus Erad., 2023, 9(4), 100353.
[http://dx.doi.org/10.1016/j.jve.2023.100353] [PMID: 38028567]
[11]
Piacentini, S.; Riccio, A.; Santopolo, S. The FDA-approved drug nitazoxanide is a potent inhibitor of human seasonal coronaviruses acting at postentry level: Effect on the viral spike glycoprotein. Front. Microbiol., 2023, 14, 1206951.
[http://dx.doi.org/10.3389/fmicb.2023.1206951]
[12]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Elekhnawy, E.; Batiha, G.E.S. Nitazoxanide and COVID-19: A review. Mol. Biol. Rep., 2022, 49(11), 11169-11176.
[http://dx.doi.org/10.1007/s11033-022-07822-2] [PMID: 36094778]
[13]
Lü, Z.; Li, X.; Li, K. Nitazoxanide and related thiazolides induce cell death in cancer cells by targeting the 20S proteasome with novel binding modes. Biochem. Pharmacol., 2022, 197, 114913.
[http://dx.doi.org/10.1016/j.bcp.2022.114913] [PMID: 35032461]
[14]
Abd El-Fadeal, NM; Nafie, MS K El-Kherbetawy M, et al Antitumor activity of nitazoxanide against colon cancers: Molecular docking and experimental studies based on Wnt/β-Catenin signaling inhibition. Int. J. Mol. Sci., 2021, 22(10), 5213.
[http://dx.doi.org/10.3390/ijms22105213] [PMID: 34069111]
[15]
Sun, H.Y.; Ou, T.; Hu, J.Y. Nitazoxanide impairs mitophagy flux through ROS-mediated mitophagy initiation and lysosomal dysfunction in bladder cancer. Biochem. Pharmacol., 2021, 190, 114588.
[http://dx.doi.org/10.1016/j.bcp.2021.114588]
[16]
Ye, C.; Wei, M.; Huang, H. Nitazoxanide inhibits osteosarcoma cells growth and metastasis by suppressing AKT/mTOR and Wnt/β-catenin signaling pathways. Biol. Chem., 2022, 403(10), 929-943.
[http://dx.doi.org/10.1515/hsz-2022-0148] [PMID: 35946850]
[17]
Shou, J.; Kong, X.; Wang, X. Tizoxanide inhibits inflammation in LPS-Activated RAW264.7 macrophages via the suppression of NF-κB and MAPK activation. Inflammation, 2019, 42(4), 1336-1349.
[http://dx.doi.org/10.1007/s10753-019-00994-3] [PMID: 30937840]
[18]
Araújo, J.A.A.; Gomes, T.C.; Lima, V.C.N.; Silva, Y.B.; Lino, Junior R.S.; Vinaud, M.C. Oxfendazole nitazoxanide combination in experimental neurocysticercosis - anti-inflammatory and cysticidal effects. Exp. Parasitol., 2024, 262, 108764.
[http://dx.doi.org/10.1016/j.exppara.2024.108764] [PMID: 38677580]
[19]
Amireddy, N.; Dulam, V.; Kaul, S.; Pakkiri, R.; Kalivendi, S.V. The mitochondrial uncoupling effects of nitazoxanide enhances cellular autophagy and promotes the clearance of α-synuclein: Potential role of AMPK-JNK pathway. Cell. Signal., 2023, 109, 110769.
[http://dx.doi.org/10.1016/j.cellsig.2023.110769] [PMID: 37315747]
[20]
Shou, J.; Wang, M.; Cheng, X. Tizoxanide induces autophagy by inhibiting PI3K/Akt/mTOR pathway in RAW264.7 macrophage cells. Arch. Pharm. Res., 2020, 43(2), 257-270.
[http://dx.doi.org/10.1007/s12272-019-01202-4] [PMID: 31894502]
[21]
Elaidy, S.M.; Hussain, M.A.; El-Kherbetawy, M.K. Time-dependent therapeutic roles of nitazoxanide on high-fat diet/streptozotocin-induced diabetes in rats: Effects on hepatic peroxisome proliferator-activated receptor-gamma receptors. Can. J. Physiol. Pharmacol., 2018, 96(5), 485-497.
[http://dx.doi.org/10.1139/cjpp-2017-0533] [PMID: 29244961]
[22]
Li, X.; Lu, J.; Xu, Y. Discovery of nitazoxanide-based derivatives as autophagy activators for the treatment of Alzheimer’s disease. Acta Pharm. Sin. B, 2020, 10(4), 646-666.
[http://dx.doi.org/10.1016/j.apsb.2019.07.006] [PMID: 32322468]
[23]
Ma, M.H.; Li, F.F.; Li, W.F. Repurposing nitazoxanide as a novel anti‐atherosclerotic drug based on mitochondrial uncoupling mechanisms. Br. J. Pharmacol., 2023, 180(1), 62-79.
[http://dx.doi.org/10.1111/bph.15949] [PMID: 36082580]
[24]
Dubreuil, L.; Houcke, I.; Mouton, Y.; Rossignol, J.F. In vitro evaluation of activities of nitazoxanide and tizoxanide against anaerobes and aerobic organisms. Antimicrob. Agents Chemother., 1996, 40(10), 2266-2270.
[http://dx.doi.org/10.1128/AAC.40.10.2266] [PMID: 8891127]
[25]
de Carvalho, L.P.S.; Darby, C.M.; Rhee, K.Y.; Nathan, C. Nitazoxanide Disrupts Membrane Potential and Intrabacterial pH Homeostasis of Mycobacterium tuberculosis. ACS Med. Chem. Lett., 2011, 2(11), 849-854.
[http://dx.doi.org/10.1021/ml200157f] [PMID: 22096616]
[26]
Chahales, P.; Hoffman, P.S.; Thanassi, D.G. Nitazoxanide inhibits pilus biogenesis by interfering with folding of the usher protein in the outer membrane. Antimicrob. Agents Chemother., 2016, 60(4), 2028-2038.
[http://dx.doi.org/10.1128/AAC.02221-15] [PMID: 26824945]
[27]
Psonis, J.J.; Chahales, P.; Henderson, N.S.; Rigel, N.W.; Hoffman, P.S.; Thanassi, D.G. The small molecule nitazoxanide selectively disrupts BAM-mediated folding of the outer membrane usher protein. J. Biol. Chem., 2019, 294(39), 14357-14369.
[http://dx.doi.org/10.1074/jbc.RA119.009616] [PMID: 31391254]
[28]
Hoffman, P.S.; Sisson, G.; Croxen, M.A. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob. Agents Chemother., 2007, 51(3), 868-876.
[http://dx.doi.org/10.1128/AAC.01159-06] [PMID: 17158936]
[29]
Müller, J.; Wastling, J.; Sanderson, S.; Müller, N.; Hemphill, A. A novel Giardia lamblia nitroreductase, GlNR1, interacts with nitazoxanide and other thiazolides. Antimicrob. Agents Chemother., 2007, 51(6), 1979-1986.
[http://dx.doi.org/10.1128/AAC.01548-06] [PMID: 17438059]
[30]
Müller, J.; Naguleswaran, A.; Müller, N.; Hemphill, A. Neospora caninum: Functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides. Exp. Parasitol., 2008, 118(1), 80-88.
[http://dx.doi.org/10.1016/j.exppara.2007.06.008] [PMID: 17720161]
[31]
Ahmed, T.; Rahman, S.M.A.; Asaduzzaman, M.; Islam, A.B.M.M.K.; Chowdhury, A.K.A. Synthesis, in vitro bioassays, and computational study of heteroaryl nitazoxanide analogs. Pharmacol. Res. Perspect., 2021, 9(3), e00800.
[http://dx.doi.org/10.1002/prp2.800] [PMID: 34086411]
[32]
Müller, J.; Sidler, D.; Nachbur, U.; Wastling, J.; Brunner, T.; Hemphill, A. Thiazolides inhibit growth and induce glutathione‐S‐transferase Pi (GSTP1)‐dependent cell death in human colon cancer cells. Int. J. Cancer, 2008, 123(8), 1797-1806.
[http://dx.doi.org/10.1002/ijc.23755] [PMID: 18688861]
[33]
Stachulski, A.V.; Taujanskas, J.; Pate, S.L. Therapeutic potential of nitazoxanide: An appropriate choice for repurposing versus SARS-CoV-2? ACS Infect. Dis., 2021, 7(6), 1317-1331.
[http://dx.doi.org/10.1021/acsinfecdis.0c00478] [PMID: 33352056]
[34]
Xu, J.; Xue, Y.; Bolinger, A.A. Therapeutic potential of salicylamide derivatives for combating viral infections. Med. Res. Rev., 2023, 43(4), 897-931.
[http://dx.doi.org/10.1002/med.21940] [PMID: 36905090]
[35]
Hossain, M.J.; Rahman, S.M.A. Repurposing therapeutic agents against SARS-CoV-2 infection: Most promising and neoteric progress. Expert Rev. Anti Infect. Ther., 2021, 19(8), 1009-1027.
[http://dx.doi.org/10.1080/14787210.2021.1864327] [PMID: 33355520]
[36]
Lokhande, A.S.; Devarajan, P.V. A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. Eur. J. Pharmacol., 2021, 891, 173748.
[http://dx.doi.org/10.1016/j.ejphar.2020.173748] [PMID: 33227285]
[37]
Agrawal, M.; Saraf, S.; Saraf, S. In-line treatments and clinical initiatives to fight against COVID-19 outbreak. Respir. Med., 2022, 191, 106192.
[http://dx.doi.org/10.1016/j.rmed.2020.106192] [PMID: 33199136]
[38]
Bello-Perez, M.; Sola, I.; Novoa, B.; Klionsky, D.J.; Falco, A. Canonical and noncanonical autophagy as potential targets for COVID-19. Cells, 2020, 9(7), 1619.
[http://dx.doi.org/10.3390/cells9071619]
[39]
Lomenick, B.; Hao, R.; Jonai, N. Target identification using drug affinity responsive target stability (DARTS). Proc. Natl. Acad. Sci. USA, 2009, 106(51), 21984-21989.
[http://dx.doi.org/10.1073/pnas.0910040106] [PMID: 19995983]
[40]
Burley, S.K.; Bhikadiya, C.; Bi, C. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[41]
Zhang, X.; Wang, Q.; Li, Y. Solvent-induced protein precipitation for drug target discovery on the proteomic scale. Anal. Chem., 2020, 92(1), 1363-1371.
[http://dx.doi.org/10.1021/acs.analchem.9b04531] [PMID: 31794197]
[42]
Zhang, X.; Wang, K.; Wu, S. Highly effective identification of drug targets at the proteome level by pH-dependent protein precipitation. Chem. Sci. (Camb.), 2022, 13(42), 12403-12418.
[http://dx.doi.org/10.1039/D2SC03326G] [PMID: 36382280]
[43]
Pan, S.; Zhang, H.; Wang, C.; Yao, S.C.L.; Yao, S.Q. Target identification of natural products and bioactive compounds using affinity-based probes. Nat. Prod. Rep., 2016, 33(5), 612-620.
[http://dx.doi.org/10.1039/C5NP00101C] [PMID: 26580476]
[44]
Shiyama, T.; Furuya, M.; Yamazaki, A.; Terada, T.; Tanaka, A. Design and synthesis of novel hydrophilic spacers for the reduction of nonspecific binding proteins on affinity resins. Bioorg. Med. Chem., 2004, 12(11), 2831-2841.
[http://dx.doi.org/10.1016/j.bmc.2004.03.052] [PMID: 15142543]
[45]
Tanida, I.; Ueno, T.; Kominami, E. LC3 conjugation system in mammalian autophagy. Int. J. Biochem. Cell Biol., 2004, 36(12), 2503-2518.
[http://dx.doi.org/10.1016/j.biocel.2004.05.009] [PMID: 15325588]
[46]
Nayarisseri, A.; Khandelwal, R.; Tanwar, P. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Curr. Drug Targets, 2021, 22(6), 631-655.
[http://dx.doi.org/10.2174/18735592MTEzsMDMnz] [PMID: 33397265]
[47]
Liu, W.; Zhang, Z.; Zhang, Z.M.; Hao, P.; Ding, K.; Li, Z. Integrated phenotypic screening and activity-based protein profiling to reveal potential therapy targets of pancreatic cancer. Chem. Commun. (Camb.), 2019, 55(11), 1596-1599.
[http://dx.doi.org/10.1039/C8CC08753A] [PMID: 30656306]
[48]
Sharma, V.; Singh, A.; Chauhan, S. Role of artificial intelligence in drug discovery and target identification in cancer. Curr. Drug Deliv., 2023, 21(6), 90621.
[http://dx.doi.org/10.2174/1567201821666230905090621] [PMID: 37670704]
[49]
Hwang, H.Y.; Kim, T.Y.; Szász, M.A. Profiling the protein targets of unmodified bio‐active molecules with drug affinity responsive target stability and liquid chromatography/tandem mass spectrometry. Proteomics, 2020, 20(9), 1900325.
[http://dx.doi.org/10.1002/pmic.201900325] [PMID: 31926115]
[50]
Drewes, G.; Knapp, S. Chemoproteomics and chemical probes for target discovery. Trends Biotechnol., 2018, 36(12), 1275-1286.
[http://dx.doi.org/10.1016/j.tibtech.2018.06.008] [PMID: 30017093]
[51]
Bantscheff, M.; Scholten, A.; Heck, A.J.R. Revealing promiscuous drug-target interactions by chemical proteomics. Drug Discov. Today, 2009, 14(21-22), 1021-1029.
[http://dx.doi.org/10.1016/j.drudis.2009.07.001] [PMID: 19596079]
[52]
Pichler, C.M.; Krysiak, J.; Breinbauer, R. Target identification of covalently binding drugs by activity-based protein profiling (ABPP). Bioorg. Med. Chem., 2016, 24(15), 3291-3303.
[http://dx.doi.org/10.1016/j.bmc.2016.03.050] [PMID: 27085673]
[53]
Topçu, A.A.; Kılıç, S.; Özgür, E.; Türkmen, D.; Denizli, A. Inspirations of biomimetic affinity ligands: A review. ACS Omega, 2022, 7(37), 32897-32907.
[http://dx.doi.org/10.1021/acsomega.2c03530] [PMID: 36157742]
[54]
Seo, S.Y.; Corson, T.W. Small molecule target identification using photo-affinity chromatography. Methods Enzymol; , 2019, pp. (622)347-374.
[http://dx.doi.org/10.1016/bs.mie.2019.02.028]] [PMID: 31155061]
[55]
Rylova, G.; Ozdian, T.; Varanasi, L. Affinity-based methods in drug-target discovery. Curr. Drug Targets, 2015, 16(1), 60-76.
[http://dx.doi.org/10.2174/1389450115666141120110323] [PMID: 25410410]
[56]
Chang, J.; Kim, Y.; Kwon, H.J. Advances in identification and validation of protein targets of natural products without chemical modification. Nat. Prod. Rep., 2016, 33(5), 719-730.
[http://dx.doi.org/10.1039/C5NP00107B] [PMID: 26964663]
[57]
Rix, U.; Gridling, M.; Superti-Furga, G. Compound immobilization and drug-affinity chromatography. Methods Mol. Biol., 2012, 803, 25-38.
[http://dx.doi.org/10.1007/978-1-61779-364-6_3] [PMID: 22065216]
[58]
Saxena, C.; Higgs, R.E.; Zhen, E.; Hale, J.E. Small-molecule affinity chromatography coupled mass spectrometry for drug target deconvolution. Expert Opin. Drug Discov., 2009, 4(7), 701-714.
[http://dx.doi.org/10.1517/17460440903005565] [PMID: 23489165]
[59]
Nagatsuka, T.; Uzawa, H.; Sato, K.; Ohsawa, I.; Seto, Y.; Nishida, Y. Glycotechnology for decontamination of biological agents: A model study using ricin and biotin-tagged synthetic glycopolymers. ACS Appl. Mater. Interfaces, 2012, 4(2), 832-837.
[http://dx.doi.org/10.1021/am201493q] [PMID: 22214533]
[60]
Rybak, J.N.; Scheurer, S.B.; Neri, D.; Elia, G. Purification of biotinylated proteins on streptavidin resin: A protocol for quantitative elution. Proteomics, 2004, 4(8), 2296-2299.
[http://dx.doi.org/10.1002/pmic.200300780] [PMID: 15274123]
[61]
Bishop, E.; Bradshaw, T.D. Autophagy modulation: A prudent approach in cancer treatment? Cancer Chemother. Pharmacol., 2018, 82(6), 913-922.
[http://dx.doi.org/10.1007/s00280-018-3669-6] [PMID: 30182146]
[62]
Pai, P.P.; Mondal, S. Applying knowledge of enzyme biochemistry to the prediction of functional sites for aiding drug discovery. Curr. Top. Med. Chem., 2017, 17(21), 2401-2421.
[http://dx.doi.org/10.2174/1568026617666170329153858] [PMID: 28359251]
[63]
Piazza, I.; Kochanowski, K.; Cappelletti, V. A map of protein-metabolite interactions reveals principles of chemical communication. Cell, 2018, 172(1-2), 358-372.e23.
[http://dx.doi.org/10.1016/j.cell.2017.12.006] [PMID: 29307493]
[64]
Tanie, Y.; Tanabe, N.; Kuboyama, T.; Tohda, C. Extracellular neuroleukin enhances neuroleukin secretion from astrocytes and promotes axonal growth in vitro and in vivo. Front. Pharmacol., 2018, 9, 1228.
[http://dx.doi.org/10.3389/fphar.2018.01228] [PMID: 30459611]
[65]
Christensen, K.E.; Mirza, I.A.; Berghuis, A.M.; MacKenzie, R.E. Magnesium and phosphate ions enable NAD binding to methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase. J. Biol. Chem., 2005, 280(40), 34316-34323.
[http://dx.doi.org/10.1074/jbc.M505210200] [PMID: 16100107]
[66]
Zhang, H.; Zhu, S.; Zhou, H.; Li, R.; Xia, X.; Xiong, H. Identification of MTHFD2 as a prognostic biomarker and ferroptosis regulator in triple-negative breast cancer. Front. Oncol., 2023, 13, 1098357.
[http://dx.doi.org/10.3389/fonc.2023.1098357] [PMID: 36726381]
[67]
LeGros, H.L., Jr; Halim, A.B.; Geller, A.M.; Kotb, M. Cloning, expression, and functional characterization of the beta regulatory subunit of human methionine adenosyltransferase (MAT II). J. Biol. Chem., 2000, 275(4), 2359-2366.
[http://dx.doi.org/10.1074/jbc.275.4.2359] [PMID: 10644686]
[68]
Monson, M.S.; Settlage, R.E.; McMahon, K.W. Response of the hepatic transcriptome to aflatoxin B1 in domestic turkey (Meleagris gallopavo). PLoS One, 2014, 9(6), e100930.
[http://dx.doi.org/10.1371/journal.pone.0100930] [PMID: 24979717]
[69]
Wang, Z.; Li, Z.; Xu, H. PSMD12 promotes glioma progression by upregulating the expression of Nrf2. Ann. Transl. Med., 2021, 9(8), 700.
[http://dx.doi.org/10.21037/atm-21-1481] [PMID: 33987398]
[70]
Hui, X.; Cao, L.; Xu, T. PSMD12-mediated M1 ubiquitination of influenza A Virus at K102 regulates viral replication. J. Virol., 2022, 96(15), e00786-e22.
[http://dx.doi.org/10.1128/jvi.00786-22] [PMID: 35861516]
[71]
Jurica, M.S.; Licklider, L.J.; Gygi, S.P.; Grigorieff, N.; Moore, M.J. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA, 2002, 8(4), 426-439.
[http://dx.doi.org/10.1017/S1355838202021088] [PMID: 11991638]
[72]
Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet., 2016, 135(8), 851-867.
[http://dx.doi.org/10.1007/s00439-016-1683-5] [PMID: 27215579]
[73]
Haßdenteufel, S.; Johnson, N.; Paton, A.W.; Paton, J.C.; High, S.; Zimmermann, R. Chaperone-mediated sec61 channel Gating during ER import of small precursor proteins overcomes Sec61 inhibitor-reinforced energy barrier. Cell Rep., 2018, 23(5), 1373-1386.
[http://dx.doi.org/10.1016/j.celrep.2018.03.122] [PMID: 29719251]
[74]
Panda, D.; Rose, P.P.; Hanna, S.L. Genome-wide RNAi screen identifies SEC61A and VCP as conserved regulators of Sindbis virus entry. Cell Rep., 2013, 5(6), 1737-1748.
[http://dx.doi.org/10.1016/j.celrep.2013.11.028] [PMID: 24332855]
[75]
Oakhill, J.S.; Steel, R.; Chen, Z.P. AMPK is a direct adenylate charge-regulated protein kinase. Science, 2011, 332(6036), 1433-1435.
[http://dx.doi.org/10.1126/science.1200094] [PMID: 21680840]
[76]
Löffler, A.S.; Alers, S.; Dieterle, A.M. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy, 2011, 7(7), 696-706.
[http://dx.doi.org/10.4161/auto.7.7.15451] [PMID: 21460634]
[77]
Müller, J.; Hemphill, A. Identification of a host cell target for the thiazolide class of broad-spectrum anti-parasitic drugs. Exp. Parasitol., 2011, 128(2), 145-150.
[http://dx.doi.org/10.1016/j.exppara.2011.02.007] [PMID: 21335006]
[78]
Sun, C.P.; Zhou, J.J.; Yu, Z.L. Kurarinone alleviated Parkinson’s disease viastabilization of epoxyeicosatrienoic acids in animal model. Proc. Natl. Acad. Sci. USA, 2022, 119(9), e2118818119.
[http://dx.doi.org/10.1073/pnas.2118818119] [PMID: 35217618]
[79]
Franken, H.; Mathieson, T.; Childs, D. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc., 2015, 10(10), 1567-1593.
[http://dx.doi.org/10.1038/nprot.2015.101] [PMID: 26379230]
[80]
Tu, Y.; Tan, L.; Tao, H.; Li, Y.; Liu, H. CETSA and thermal proteome profiling strategies for target identification and drug discovery of natural products. Phytomedicine, 2023, 116, 154862.
[http://dx.doi.org/10.1016/j.phymed.2023.154862] [PMID: 37216761]
[81]
Martinez Molina, D.; Nordlund, P. The cellular thermal shift assay: A novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 141-161.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103715] [PMID: 26566155]