Current Pharmaceutical Design

Author(s): Babita Gupta, Rishabha Malviya*, Saurabh Srivastava*, Irfan Ahmad, Safia Obaidur Rab and Deependra Pratap Singh

DOI: 10.2174/0113816128322300240725052530

DownloadDownload PDF Flyer Cite As
3D Printed Nanosensors for Cancer Diagnosis: Advances and Future Perspective

Page: [2993 - 3008] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Cancer is the leading cause of mortality worldwide, requiring continuous advancements in diagnosis and treatment. Traditional methods often lack sensitivity and specificity, leading to the need for new methods. 3D printing has emerged as a transformative tool in cancer diagnosis, offering the potential for precise and customizable nanosensors. These advancements are critical in cancer research, aiming to improve early detection and monitoring of tumors. In current times, the usage of the 3D printing technique has been more prevalent as a flexible medium for the production of accurate and adaptable nanosensors characterized by exceptional sensitivity and specificity. The study aims to enhance early cancer diagnosis and prognosis by developing advanced 3D-printed nanosensors using 3D printing technology. The research explores various 3D printing techniques, design strategies, and functionalization strategies for cancer-specific biomarkers. The integration of these nanosensors with detection modalities like fluorescence, electrochemical, and surface-enhanced Raman spectroscopy is also evaluated. The study explores the use of inkjet printing, stereolithography, and fused deposition modeling to create nanostructures with enhanced performance. It also discusses the design and functionalization methods for targeting cancer indicators. The integration of 3D-printed nanosensors with multiple detection modalities, including fluorescence, electrochemical, and surface-enhanced Raman spectroscopy, enables rapid and reliable cancer diagnosis. The results show improved sensitivity and specificity for cancer biomarkers, enabling early detection of tumor indicators and circulating cells. The study highlights the potential of 3D-printed nanosensors to transform cancer diagnosis by enabling highly sensitive and specific detection of tumor biomarkers. It signifies a pivotal step forward in cancer diagnostics, showcasing the capacity of 3D printing technology to produce advanced nanosensors that can significantly improve early cancer detection and patient outcomes.

Keywords: 3D printing, nanosensor, cancer, stereolithography, surface-enhanced Raman spectroscopy, tumor-specific biomarkers, single- walled carbon nanotubes, circulating tumor cells.

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5-29.
[http://dx.doi.org/10.3322/caac.21254] [PMID: 25559415]
[2]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Vockley JG, Niederhuber JE. Diagnosis and treatment of cancer using genomics. BMJ 2015; 350(may28 9): h1832.
[http://dx.doi.org/10.1136/bmj.h1832] [PMID: 26022222]
[4]
Jones M. Non-communicable diseases. Striving for equity: Healthcare in Sri Lanka from independence to the millennium, 1948-2000. Orient Blackswan 2020; 156.
[5]
Boloker G, Wang C, Zhang J. Updated statistics of lung and bronchus cancer in United States (2018). J Thorac Dis 2018; 10(3): 1158-61.
[http://dx.doi.org/10.21037/jtd.2018.03.15] [PMID: 29708136]
[6]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019; 69(1): 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[7]
Sohrabi H, Bolandi N, Hemmati A, et al. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchem J 2022; 177: 107248.
[http://dx.doi.org/10.1016/j.microc.2022.107248]
[8]
Safhi AY. Three-dimensional (3D) printing in cancer therapy and diagnostics: Current status and future perspectives. Pharmaceuticals (Basel) 2022; 15(6): 678.
[http://dx.doi.org/10.3390/ph15060678] [PMID: 35745597]
[9]
Chinnakorn A, Nuansing W, Bodaghi M, Rolfe B, Zolfagharian A. Recent progress of 4D printing in cancer therapeutics studies. SLAS Technol 2023; 28(3): 127-41.
[http://dx.doi.org/10.1016/j.slast.2023.02.002] [PMID: 36804175]
[10]
Huber F, Lang HP, Zhang J, Rimoldi D, Gerber C. Nanosensors for cancer detection. Swiss Med Wkly 2015; 145: w14092.
[PMID: 25664868]
[11]
Cash KJ, Clark HA. Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 2010; 16(12): 584-93.
[http://dx.doi.org/10.1016/j.molmed.2010.08.002] [PMID: 20869318]
[12]
Bird DT, Ravindra NM. Additive manufacturing of sensors for military monitoring applications. Polymers (Basel) 2021; 13(9): 1455.
[http://dx.doi.org/10.3390/polym13091455] [PMID: 33946226]
[13]
Sui X, Downing JR, Hersam MC, Chen J. Additive manufacturing and applications of nanomaterial-based sensors. Mater Today 2021; 48: 135-54.
[http://dx.doi.org/10.1016/j.mattod.2021.02.001]
[14]
Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: The best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4(1): 24.
[http://dx.doi.org/10.1186/s41824-020-00094-8] [PMID: 34191197]
[15]
Serrano DR, Kara A, Yuste I, et al. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals. Pharmaceutics 2023; 15(2): 313.
[16]
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High precision 3D printing for micro to nano scale biomedical and electronic devices. Micromachines (Basel) 2022; 13(4): 642.
[http://dx.doi.org/10.3390/mi13040642] [PMID: 35457946]
[17]
Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: A review. Sensors (Basel) 2020; 20(15): 4236.
[http://dx.doi.org/10.3390/s20154236] [PMID: 32751404]
[18]
Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-based nano biosensors for healthcare monitoring. Mol Biotechnol 2024; 66(3): 378-401.
[http://dx.doi.org/10.1007/s12033-023-00760-9] [PMID: 37166577]
[19]
Kumar A, Panda U. Chapter 12 - Microfluidics-based devices and their role on point-of-care testing. Biosensor Based Advanced Cancer Diagnostics - From Lab to Clinics. Academic Press 2022; pp. 197-224.
[http://dx.doi.org/10.1016/B978-0-12-823424-2.00011-9]
[20]
Hohmann JK, Renner M, Waller EH, von Freymann G. Three-dimensional μ-printing: An enabling technology. Adv Opt Mater 2015; 3(11): 1488-507.
[http://dx.doi.org/10.1002/adom.201500328]
[21]
Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science 2015; 347(6228): 1349-52.
[http://dx.doi.org/10.1126/science.aaa2397] [PMID: 25780246]
[22]
Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA. 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 2013; 25(33): 4539-43.
[http://dx.doi.org/10.1002/adma.201301036] [PMID: 23776158]
[23]
Xu Y, Wu X, Guo X, et al. The boom in 3D-printed sensor technology. Sensors (Basel) 2017; 17(5): 1166.
[http://dx.doi.org/10.3390/s17051166] [PMID: 28534832]
[24]
Ren Y, Sun X, Liu J. Advances in liquid metal-enabled flexible and wearable sensors. Micromachines (Basel) 2020; 11(2): 200.
[http://dx.doi.org/10.3390/mi11020200] [PMID: 32075215]
[25]
Ni Y, Ji R, Long K, Bu T, Chen K, Zhuang S. A review of 3D-printed sensors. Appl Spectrosc Rev 2017; 52(7): 623-52.
[http://dx.doi.org/10.1080/05704928.2017.1287082]
[26]
Khosravani MR, Reinicke T. 3D-printed sensors: Current progress and future challenges. Sens Actuators A Phys 2020; 305: 111916.
[http://dx.doi.org/10.1016/j.sna.2020.111916]
[27]
Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 2016; 76: 321-43.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.076] [PMID: 26561931]
[28]
Ning F, Cong W, Hu Y, Wang H, Zhang H. 3D printing of thermoplastic composites: A review. Compos, Part B Eng 2018; 143: 172-96.
[29]
Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP. Optical approach to resin formulation for 3D printed microfluidics. RSC Advances 2016; 6(54): 48547-51.
[PMID: 26744624]
[30]
Usha SP, Manoharan H, Deshmukh R, et al. Attomolar analyte sensing techniques (AttoSens): A review on a decade of progress on chemical and biosensing nanoplatforms. Chem Soc Rev 2021; 50(23): 13012-89.
[http://dx.doi.org/10.1039/D1CS00137J] [PMID: 34673860]
[31]
Yildirim DU, Ghobadi A, Ozbay E. Nanosensors based on localized surface plasmon resonance. Plasmonic Sensors and their Applications. Wiley 2021.
[http://dx.doi.org/10.1002/9783527830343.ch2]
[32]
Nocerino V, Miranda B, Tramontano C, et al. Plasmonic nanosensors: design, fabrication, and applications in biomedicine. Chemosensors (Basel) 2022; 10(5): 150.
[http://dx.doi.org/10.3390/chemosensors10050150]
[33]
Khazaei M, Hosseini MS, Haghighi AM, Misaghi M. Nanosensors and their applications in early diagnosis of cancer. Sens Biosensing Res 2023; 41: 100569.
[http://dx.doi.org/10.1016/j.sbsr.2023.100569]
[34]
Norizan MN, Moklis MH, Ngah Demon SZ, et al. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Advances 2020; 10(71): 43704-32.
[http://dx.doi.org/10.1039/D0RA09438B] [PMID: 35519676]
[35]
Nardi-Agmon I, Abud-Hawa M, Liran O, et al. Exhaled breath analysis for monitoring response to treatment in advanced lung cancer. J Thorac Oncol 2016; 11(6): 827-37.
[http://dx.doi.org/10.1016/j.jtho.2016.02.017] [PMID: 26968885]
[36]
Chen Y, Wang X, Hong MK, et al. Nanoelectronic detection of breast cancer biomarker. Appl Phys Lett 2010; 97(23): 233702.
[http://dx.doi.org/10.1063/1.3519983]
[37]
Lyu Q, Zhai Q, Dyson J, et al. Real-time and in-situ monitoring of H2O2 release from living cells by a stretchable electrochemical biosensor based on vertically aligned gold nanowires. Anal Chem 2019; 91(21): 13521-7.
[http://dx.doi.org/10.1021/acs.analchem.9b02610] [PMID: 31549803]
[38]
Butova VV, Soldatov MA, Guda AA, Lomachenko KA, Lamberti C. Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russ Chem Rev 2016; 85(3): 280-307.
[http://dx.doi.org/10.1070/RCR4554]
[39]
Zhu QL, Xu Q. Metal–organic framework composites. Chem Soc Rev 2014; 43(16): 5468-512.
[http://dx.doi.org/10.1039/C3CS60472A] [PMID: 24638055]
[40]
Li Y, Liu J, Wang Z, et al. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv Mater 2020; 32(14): 1907718.
[http://dx.doi.org/10.1002/adma.201907718] [PMID: 32091152]
[41]
Carrasco S. Metal-organic frameworks for the development of biosensors: A current overview. Biosensors (Basel) 2018; 8(4): 92.
[http://dx.doi.org/10.3390/bios8040092] [PMID: 30332786]
[42]
Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors. ACS Nano 2013; 7(12): 11166-73.
[http://dx.doi.org/10.1021/nn404889b] [PMID: 24206232]
[43]
Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF. Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol 2018; 16(1): 75.
[http://dx.doi.org/10.1186/s12951-018-0400-z] [PMID: 30243292]
[44]
Li W, Wang H, Zhao Z, et al. Emerging nanotechnologies for liquid biopsy: The detection of circulating tumor cells and extracellular vesicles. Adv Mater 2019; 31(45): 1805344.
[http://dx.doi.org/10.1002/adma.201805344] [PMID: 30589111]
[45]
Salvati E, Stellacci F, Krol S. Nanosensors for early cancer detection and for therapeutic drug monitoring. Nanomedicine (Lond) 2015; 10(23): 3495-512.
[http://dx.doi.org/10.2217/nnm.15.180] [PMID: 26606949]
[46]
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B Mater Biol Med 2019; 7(43): 6670-704.
[http://dx.doi.org/10.1039/C9TB01490J] [PMID: 31646316]
[47]
Iftikhar FJ, Shah A, Akhter MS, Kurbanoglu S, Ozkan SA. Introduction to nanosensors. New Developments in Nanosensors for Pharmaceutical Analysis. Academic Press 2019; pp. 1-46.
[http://dx.doi.org/10.1016/B978-0-12-816144-9.00001-8]
[48]
Nimal R, Selcuk O, Kurbanoglu S, Shah A, Siddiq M, Uslu B. Trends in electrochemical nanosensors for the analysis of antioxidants. Trends Analyt Chem 2022; 153: 116626.
[http://dx.doi.org/10.1016/j.trac.2022.116626]
[49]
Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L. Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 2014; 6(17): 14745-66.
[http://dx.doi.org/10.1021/am5015056] [PMID: 24968359]
[50]
John SA, Chattree A, Ramteke PW, Shanthy P, Nguyen TA, Rajendran S. 20 - Nanosensors for plant health monitoring. Nanosensors for Smart Agriculture - Micro and Nano Technologies. Elsevier 2022; pp. 449-61.
[http://dx.doi.org/10.1016/B978-0-12-824554-5.00012-4]
[51]
Butt Z, Aziz MS, Aamir M, Syed AS, Akhtar J. Chapter 21- Next- generation self-powered nanosensors. Nanosensors for Smart Manufacturing - Micro and Nano Technologies. Elsevier 2021; pp. 487-515.
[http://dx.doi.org/10.1016/B978-0-12-823358-0.00023-X]
[52]
McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 2003; 3(8): 1057-62.
[http://dx.doi.org/10.1021/nl034372s]
[53]
Haes AJ, Van Duyne RP. A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem 2004; 379(7-8): 920-30.
[http://dx.doi.org/10.1007/s00216-004-2708-9] [PMID: 15338088]
[54]
Lee H, Kang T, Yoon KA, Lee SY, Joo SW, Lee K. Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 2010; 25(7): 1669-74.
[http://dx.doi.org/10.1016/j.bios.2009.12.002] [PMID: 20036793]
[55]
Baker GA, Moore DS. Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 2005; 382(8): 1751-70.
[http://dx.doi.org/10.1007/s00216-005-3353-7] [PMID: 16049671]
[56]
Israelsen ND, Hanson C, Vargis E. Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: An introduction. ScientificWorldJournal 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/124582] [PMID: 25884017]
[57]
Marsich L, Bonifacio A, Mandal S, Krol S, Beleites C, Sergo V. Poly-L-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced Raman scattering. Langmuir 2012; 28(37): 13166-71.
[http://dx.doi.org/10.1021/la302383r] [PMID: 22958086]
[58]
Hayat A, Catanante G, Marty J. Current trends in nanomaterial-based amperometric biosensors. Sensors (Basel) 2014; 14(12): 23439-61.
[http://dx.doi.org/10.3390/s141223439] [PMID: 25494347]
[59]
Munge BS, Krause CE, Malhotra R, Patel V, Silvio Gutkind J, Rusling JF. Electrochemical immunosensors for interleukin-6. Comparison of carbon nanotube forest and gold nanoparticle platforms. Electrochem Commun 2009; 11(5): 1009-12.
[http://dx.doi.org/10.1016/j.elecom.2009.02.044] [PMID: 20046945]
[60]
Florea A, Guo Z, Cristea C, et al. Anticancer drug detection using a highly sensitive molecularly imprinted electrochemical sensor based on an electropolymerized microporous metal organic framework. Talanta 2015; 138: 71-6.
[http://dx.doi.org/10.1016/j.talanta.2015.01.013] [PMID: 25863374]
[61]
Swierczewska M, Liu G, Lee S, Chen X. High-sensitivity nanosensors for biomarker detection. Chem Soc Rev 2012; 41(7): 2641-55.
[http://dx.doi.org/10.1039/C1CS15238F] [PMID: 22187721]
[62]
Perfézou M, Turner A, Merkoçi A. Cancer detection using nanoparticle-based sensors. Chem Soc Rev 2012; 41(7): 2606-22.
[http://dx.doi.org/10.1039/C1CS15134G] [PMID: 21796315]
[63]
Shiddiky MJA, Rauf S, Kithva PH, Trau M. Graphene/quantum dot bionanoconjugates as signal amplifiers in stripping voltammetric detection of EpCAM biomarkers. Biosens Bioelectron 2012; 35(1): 251-7.
[http://dx.doi.org/10.1016/j.bios.2012.02.057] [PMID: 22465446]
[64]
Liu X, Liu W, Ren Z, et al. Progress of optomechanical micro/nano sensors: A review. Int J Optomechatron 2021; 15(1): 120-59.
[http://dx.doi.org/10.1080/15599612.2021.1986612]
[65]
Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol 2011; 6(4): 203-15.
[http://dx.doi.org/10.1038/nnano.2011.44] [PMID: 21441911]
[66]
Fedi A, Vitale C, Giannoni P, Caluori G, Marrella A. Biosensors to monitor cell activity in 3D hydrogel-based tissue models. Sensors (Basel) 2022; 22(4): 1517.
[http://dx.doi.org/10.3390/s22041517] [PMID: 35214418]
[67]
Wu J, Liang B, Lu S, et al. Application of 3D printing technology in tumor diagnosis and treatment. Biomed Mater 2024; 19(1): 012002.
[http://dx.doi.org/10.1088/1748-605X/ad08e1] [PMID: 37918002]
[68]
Johnson BN, Mutharasan R. Biosensing using dynamic-mode cantilever sensors: A review. Biosens Bioelectron 2012; 32(1): 1-18.
[http://dx.doi.org/10.1016/j.bios.2011.10.054] [PMID: 22119230]
[69]
Melli M, Scoles G, Lazzarino M. Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars. ACS Nano 2011; 5(10): 7928-35.
[http://dx.doi.org/10.1021/nn202224g] [PMID: 21955070]
[70]
Munawar A, Ong Y, Schirhagl R, Tahir MA, Khan WS, Bajwa SZ. Nanosensors for diagnosis with optical, electric and mechanical transducers. RSC Advances 2019; 9(12): 6793-803.
[http://dx.doi.org/10.1039/C8RA10144B] [PMID: 35518460]
[71]
Javaid M, Haleem A, Singh RP, Rab S, Suman R. Exploring the potential of nanosensors: A brief overview. Sensors Int 2021; 2: 100130.
[http://dx.doi.org/10.1016/j.sintl.2021.100130]
[72]
Bhuskute H, Shende P, Prabhakar B. 3D printed personalized medicine for cancer: Applications for the betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech 2021; 23(1): 8.
[http://dx.doi.org/10.1208/s12249-021-02153-0] [PMID: 34853934]
[73]
Galstyan A, Bunker MJ, Lobo F, et al. Applications of 3D printing in breast cancer management. 3D Print Med 2021; 7: 19.
[PMID: 34232424]
[74]
Haleem A, Javaid M, Vaishya R. 3D printing applications for the treatment of cancer. Clin Epidemiol Glob Health 2020; 8(4): 1072-6.
[http://dx.doi.org/10.1016/j.cegh.2020.03.022]
[75]
Chiadò A, Palmara G, Chiappone A, et al. A modular 3D printed lab-on-a-chip for early cancer detection. Lab Chip 2020; 20(3): 665-74.
[http://dx.doi.org/10.1039/C9LC01108K] [PMID: 31939966]
[76]
Sheil CJ, Khan U, Zakharov YN, et al. Two-photon polymerization nanofabrication of ultracompact light scattering spectroscopic probe for detection of pre-cancer in pancreatic cyst. Opt Lasers Eng 2021; 142: 106616.
[http://dx.doi.org/10.1016/j.optlaseng.2021.106616] [PMID: 34305200]
[77]
Jiao Z, Zhao L, Tang C, Shi H, Wang F, Hu B. Droplet-based PCR in a 3D-printed microfluidic chip for miRNA-21 detection. Anal Methods 2019; 11(26): 3286-93.
[http://dx.doi.org/10.1039/C9AY01108K]
[78]
Wang L, Pumera M. Covalently modified enzymatic 3D-printed bioelectrode. Mikrochim Acta 2021; 188(11): 374.
[http://dx.doi.org/10.1007/s00604-021-05006-6] [PMID: 34628520]
[79]
Wang P, Sun L, Li C, et al. Study on drug screening multicellular model for colorectal cancer constructed by three-dimensional bioprinting technology. Int J Bioprint 2023; 9(3): 694.
[http://dx.doi.org/10.18063/ijb.694] [PMID: 37273979]
[80]
Somers N, Jean F, Lasgorceix M, et al. Fabrication of doped β-tricalcium phosphate bioceramics by Direct Ink Writing for bone repair applications. J Eur Ceram Soc 2023; 43(2): 629-38.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2022.10.018]
[81]
Heidari-Rarani M, Rafiee-Afarani M, Zahedi AM. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos, Part B Eng 2019; 175: 107147.
[http://dx.doi.org/10.1016/j.compositesb.2019.107147]
[82]
Liu C, Huang N, Xu F, et al. 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers (Basel) 2018; 10(6): 629.
[http://dx.doi.org/10.3390/polym10060629] [PMID: 30966663]
[83]
Kamyshny A, Magdassi S. Conductive nanomaterials for 2D and 3D printed flexible electronics. Chem Soc Rev 2019; 48(6): 1712-40.
[http://dx.doi.org/10.1039/C8CS00738A] [PMID: 30569917]
[84]
Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 2012; 7(11): e49365.
[http://dx.doi.org/10.1371/journal.pone.0049365] [PMID: 23185319]
[85]
Roberson D, Shemelya CM, MacDonald E, Wicker R. Expanding the applicability of FDM-type technologies through materials development. Rapid Prototyping J 2015; 21(2): 137-43.
[http://dx.doi.org/10.1108/RPJ-12-2014-0165]
[86]
Zhang Y. 3D printing for cancer diagnosis: What unique advantages are gained? ACS Materials Au 2023; 3(6): 620-35.
[http://dx.doi.org/10.1021/acsmaterialsau.3c00046] [PMID: 38089653]
[87]
Varghese G, Moral M, Castro-García M, et al. Fabrication and characterisation of ceramics via low-cost DLP 3D printing. Boletin de la Sociedad Espanola de Ceramica y Vidrio 2018; 57(1): 1-18.
[88]
Khashayar P, Al-Madhagi S, Azimzadeh M, Scognamiglio V, Arduini F. New frontiers in microfluidics devices for miRNA analysis. Trends Analyt Chem 2022; 156: 116706.
[http://dx.doi.org/10.1016/j.trac.2022.116706]
[89]
Ahrberg CD, Manz A, Chung BG. Polymerase chain reaction in microfluidic devices. Lab Chip 2016; 16(20): 3866-84.
[http://dx.doi.org/10.1039/C6LC00984K] [PMID: 27713993]
[90]
Khaing MW, Fuh JYH, Lu L. Direct metal laser sintering for rapid tooling: Processing and characterisation of EOS parts. J Mater Process Technol 2001; 113(1-3): 269-72.
[http://dx.doi.org/10.1016/S0924-0136(01)00584-2]
[91]
Kumar S. Selective laser sintering: A qualitative and objective approach. J Miner Met Mater Soc 2003; 55(10): 43-7.
[http://dx.doi.org/10.1007/s11837-003-0175-y]
[92]
Schmid M, Amado A, Wegener K. Polymer powders for selective laser sintering (SLS). AIP Conference proceedings 1664; 1664(1)
[93]
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019; 84: 16-33.
[http://dx.doi.org/10.1016/j.actbio.2018.11.039] [PMID: 30481607]
[94]
Zhang Y, Thakkar R, Zhang J, et al. Investigating the use of magnetic nanoparticles as alternative sintering agents in selective laser sintering (SLS) 3D printing of oral tablets. ACS Biomater Sci Eng 2023; 9(6): 2924-36.
[http://dx.doi.org/10.1021/acsbiomaterials.2c00299] [PMID: 36744796]
[95]
Farsari M, Chichkov B N. Two-photon fabrication. Nature Photonics 2009; 3(8): 450-2.
[http://dx.doi.org/10.1038/nphoton.2009.131]
[96]
Xing JF, Zheng ML, Duan XM. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev 2015; 44(15): 5031-9.
[http://dx.doi.org/10.1039/C5CS00278H] [PMID: 25992492]
[97]
Saadi MASR, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater 2022; 34(28): 2108855.
[http://dx.doi.org/10.1002/adma.202108855] [PMID: 35246886]
[98]
Samavedi S, Joy N III. 3D printing for the development of in vitro cancer models. Curr Opin Biomed Eng 2017; 2: 35-42.
[http://dx.doi.org/10.1016/j.cobme.2017.06.003]
[99]
Lee SY, Koo IS, Hwang HJ, Lee DW. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov 2023; 28(4): 119-37.
[http://dx.doi.org/10.1016/j.slasd.2023.03.006] [PMID: 36997090]
[100]
Shen Y, Tang H, Huang X, et al. DLP printing photocurable chitosan to build bio-constructs for tissue engineering. Carbohydr Polym 2020; 235: 115970.
[http://dx.doi.org/10.1016/j.carbpol.2020.115970] [PMID: 32122504]
[101]
Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev 2020; 120(19): 10793-833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00008] [PMID: 32902959]
[102]
Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater 2010; 22(6): 673-85.
[http://dx.doi.org/10.1002/adma.200901141] [PMID: 20217769]
[103]
Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater 2022; 34(31): 2105015.
[http://dx.doi.org/10.1002/adma.202105015] [PMID: 35338719]
[104]
Salmoria G, Espíndola Vieira F. 3D printing of PCL/fluorouracil tablets by selective laser sintering: Properties of implantable drug delivery for cartilage cancer treatment. Rheumatol Orthoped Med 2017; 2: 1-7.
[105]
Almela T, Tayebi L, Moharamzadeh K. 3D bioprinting for in vitro models of oral cancer: Toward development and validation. Bioprinting 2021; 22: e00132.
[http://dx.doi.org/10.1016/j.bprint.2021.e00132] [PMID: 34368488]
[106]
Sharma R, Restan Perez M, da Silva VA, et al. 3D bioprinting complex models of cancer. Biomater Sci 2023; 11(10): 3414-30.
[http://dx.doi.org/10.1039/D2BM02060B] [PMID: 37000528]
[107]
Damiati S, Küpcü S, Peacock M, et al. Acoustic and hybrid 3D-printed electrochemical biosensors for the real-time immunodetection of liver cancer cells (HepG2). Biosens Bioelectron 2017; 94: 500-6.
[http://dx.doi.org/10.1016/j.bios.2017.03.045] [PMID: 28343102]
[108]
An L, Wang G, Han Y, Li T, Jin P, Liu S. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab Chip 2018; 18(2): 335-42.
[http://dx.doi.org/10.1039/C7LC01117B] [PMID: 29260185]
[109]
Tang CK, Vaze A, Rusling JF. Automated 3D-printed unibody immunoarray for chemiluminescence detection of cancer biomarker proteins. Lab Chip 2017; 17(3): 484-9.
[http://dx.doi.org/10.1039/C6LC01238H] [PMID: 28067370]
[110]
Motaghi H, Ziyaee S, Mehrgardi MA, Kajani AA, Bordbar AK. Electrochemiluminescence detection of human breast cancer cells using aptamer modified bipolar electrode mounted into 3D printed microchannel. Biosens Bioelectron 2018; 118: 217-23.
[http://dx.doi.org/10.1016/j.bios.2018.07.066] [PMID: 30092457]
[111]
Park C, Abafogi AT, Ponnuvelu DV, Song I, Ko K, Park S. Enhanced luminescent detection of circulating tumor cells by a 3D printed immunomagnetic concentrator. Biosensors (Basel) 2021; 11(8): 278.
[http://dx.doi.org/10.3390/bios11080278] [PMID: 34436080]
[112]
Kadimisetty K, Malla S, Bhalerao KS, et al. Automated 3D-printed microfluidic array for rapid nanomaterial-enhanced detection of multiple proteins. Anal Chem 2018; 90(12): 7569-77.
[http://dx.doi.org/10.1021/acs.analchem.8b01198] [PMID: 29779368]
[113]
Chen J, Liu CY, Wang X, et al. 3D printed microfluidic devices for circulating tumor cells (CTCs) isolation. Biosens Bioelectron 2020; 150: 111900.
[http://dx.doi.org/10.1016/j.bios.2019.111900] [PMID: 31767348]
[114]
Wang J, Li Y, Wang R, et al. A fully automated and integrated microfluidic system for efficient CTC detection and its application in hepatocellular carcinoma screening and prognosis. ACS Appl Mater Interfaces 2021; 13(25): 30174-86.
[http://dx.doi.org/10.1021/acsami.1c06337] [PMID: 34142547]
[115]
Kadimisetty K, Mosa IM, Malla S, et al. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray. Biosens Bioelectron 2016; 77: 188-93.
[http://dx.doi.org/10.1016/j.bios.2015.09.017] [PMID: 26406460]
[116]
Heger Z, Žitka J, Cernei N, et al. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis 2015; 36(11-12): 1256-64.
[http://dx.doi.org/10.1002/elps.201400559] [PMID: 25735231]
[117]
Damiati S, Peacock M, Leonhardt S, et al. Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs). Genes (Basel) 2018; 9(2): 89.
[http://dx.doi.org/10.3390/genes9020089] [PMID: 29443890]
[118]
Diamandis EP. Cancer biomarkers: Can we turn recent failures into success? J Natl Cancer Inst 2010; 102(19): 1462-7.
[http://dx.doi.org/10.1093/jnci/djq306] [PMID: 20705936]
[119]
Ahmed SM. Patient Care Management of Cancer. Thesis, Brac University 2019.
[120]
Wu X, Luo L, Yang S, et al. Improved SERS nanoparticles for direct detection of circulating tumor cells in the blood. ACS Appl Mater Interfaces 2015; 7(18): 9965-71.
[http://dx.doi.org/10.1021/acsami.5b02276] [PMID: 25875511]
[121]
Bajaj A, Miranda OR, Kim IB, et al. Detection and differentiation of normal, cancerous, and metastatic cells using nanoparticle-polymer sensor arrays. Proc Natl Acad Sci USA 2009; 106(27): 10912-6.
[http://dx.doi.org/10.1073/pnas.0900975106] [PMID: 19549846]
[122]
Rahman APH, Misra AJ, Panda S, et al. Sonophotocatalysis-mediated morphological transition modulates virulence and antibiotic resistance in Salmonella typhimurium. Environ Sci Water Res Technol 2020; 6(7): 1917-30.
[http://dx.doi.org/10.1039/D0EW00224K]
[123]
Chong H, Zhu C, Song J, et al. Preparation and optical property of new fluorescent nanoparticles. Macromol Rapid Commun 2013; 34(9): 736-42.
[http://dx.doi.org/10.1002/marc.201200755] [PMID: 23468167]
[124]
Diamantides N, Wang L, Pruiksma T, et al. Correlating rheological properties and printability of collagen bioinks: The effects of riboflavin photocrosslinking and pH. Biofabrication 2017; 9(3): 034102.
[http://dx.doi.org/10.1088/1758-5090/aa780f] [PMID: 28677597]
[125]
Cui X, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: A focus on multicomponent hydrogel-based bioinks. Adv Health Mater 2020; 9(15): 1901648.
[126]
Kashte S, Jaiswal AK, Kadam S. Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 2017; 14(1): 1-14.
[http://dx.doi.org/10.1007/s13770-016-0001-6] [PMID: 30603457]
[127]
Hughes AM, Kolb AD, Shupp AB, Shine KM, Bussard KM. Printing the pathway forward in bone metastatic cancer research: Applications of 3D engineered models and bioprinted scaffolds to recapitulate the bone–tumor niche. Cancers (Basel) 2021; 13(3): 507.
[http://dx.doi.org/10.3390/cancers13030507] [PMID: 33572757]
[128]
Rana S, Singla AK, Bajaj A, et al. Array-based sensing of metastatic cells and tissues using nanoparticle-fluorescent protein conjugates. ACS Nano 2012; 6(9): 8233-40.
[http://dx.doi.org/10.1021/nn302917e] [PMID: 22920837]
[129]
Roco MC, Hersam MC, Mirkin CA, Mirkin CA, Nel A, Thaxton CS. Applications: Nanobiosystems, medicine, and health. Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook. Dordrecht: Springer 2011.
[130]
Li Z, Shum HC. Nanotechnology and Microfluidics for Biosensing and Biophysical Property Assessment. Nanotechnology and Microfluidics. Wiley 2020.
[http://dx.doi.org/10.1002/9783527818341.ch3]
[131]
Darwish MA, Abd-Elaziem W, Elsheikh A, Zayed AA. Advancements in nanomaterials for nanosensors: A comprehensive review. Nanoscale Adv 2024; 6: 4015-4046.
[http://dx.doi.org/10.1039/D4NA00214H]
[132]
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev 2017; 117(15): 10212-90.
[http://dx.doi.org/10.1021/acs.chemrev.7b00074] [PMID: 28756658]
[133]
Zhang J, Huang H, Song G, et al. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens Bioelectron 2022; 202: 114003.
[http://dx.doi.org/10.1016/j.bios.2022.114003] [PMID: 35065479]
[134]
Raghu HV, Parkunan T, Kumar N. Application of nano biosensors for food safety monitoring. Environ Nanotechnol 2020; 4: 93-129.
[135]
Xiang L, Zeng X, Xia F, Jin W, Liu Y, Hu Y. Recent advances in flexible and stretchable sensing systems: From the perspective of system integration. ACS Nano 2020; 14(6): 6449-69.
[http://dx.doi.org/10.1021/acsnano.0c01164] [PMID: 32479071]
[136]
Yi Q, Najafikhoshnoo S, Das P, et al. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv Mater Technol 2022; 7(5): 2101034.
[http://dx.doi.org/10.1002/admt.202101034]
[137]
Lutz W, de Jong K, Rubel JA, Delgadillo J. Measuring, predicting, and tracking change in psychotherapy. Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change. Wiley 2021; pp. 89-133.
[138]
Tovar-Lopez FJ. Recent progress in micro-and nanotechnology-enabled sensors for biomedical and environmental challenges. Sensors (Basel) 2023; 23(12): 5406.
[http://dx.doi.org/10.3390/s23125406] [PMID: 37420577]
[139]
Han T, Kundu S, Nag A, Xu Y. 3D printed sensors for biomedical applications: A review. Sensors (Basel) 2019; 19(7): 1706.
[http://dx.doi.org/10.3390/s19071706] [PMID: 30974757]
[140]
Parupelli SK, Desai S. The 3D printing of nanocomposites for wearable biosensors: Recent advances, challenges, and prospects. Bioengineering (Basel) 2023; 11(1): 32.
[http://dx.doi.org/10.3390/bioengineering11010032] [PMID: 38247910]