Current Proteomics

Author(s): Rustam Nailevich Mustafin*

DOI: 10.2174/0115701646319572240805103747

DownloadDownload PDF Flyer Cite As
The Relationship of Transposable Elements with Non-Coding RNAs in the Emergence of Human Proteins and Peptides

Page: [140 - 161] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Transposable elements are the oldest structural and functional units that were formed during the emergence of life on Earth. The most ancient properties of transposable elements are the multifunctionality of their transcription and translation products and the formation of their many variants through processing, due to which transposable elements are key evolutionary sources of long non-coding RNAs, circular RNAs, microRNAs, proteins and peptides formation. Moreover, the same type of transposon can simultaneously serve as the source of the origin of all these molecules, providing the adaptive properties of living organisms, especially complex eukaryotes, including humans. The ancient ability of transposable elements for mutual integration due to their protein products interacting with DNA and RNA molecules, as well as for mutual regulation due to the functionality of their RNA, is the basis for the origin of many proteins and non-coding RNAs characterized by the same properties. This can explain the emergence of transcription factors from transposable elements, that is, proteins capable of interacting with the structures of DNA molecules due to the presence of specific amino acid sequences derived from transposable elements. This article presents facts about the origin during the evolution of many protein and non-- coding RNA genes from transposable elements. Specific proteins and peptides translated from long non-coding RNAs, pri-microRNAs and circular RNAs are described, which reflect the origin of non-coding RNAs from transposable elements in evolution. These proteins and peptides are promising tools for the treatment of viral infections and drug-resistant tumors, since, together with non-coding RNAs, they are involved in antiviral and antitumor responses.

Keywords: Circular RNAs, long non-coding RNAs, microRNAs, origin, peptides, proteins, retroelements, transposable elements.

Graphical Abstract

[1]
Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; Aganezov, S.; Hoyt, S.J.; Diekhans, M.; Logsdon, G.A.; Alonge, M.; Antonarakis, S.E.; Borchers, M.; Bouffard, G.G.; Brooks, S.Y.; Caldas, G.V.; Chen, N.C.; Cheng, H.; Chin, C.S.; Chow, W.; de Lima, L.G.; Dishuck, P.C.; Durbin, R.; Dvorkina, T.; Fiddes, I.T.; Formenti, G.; Fulton, R.S.; Fungtammasan, A.; Garrison, E.; Grady, P.G.S.; Graves-Lindsay, T.A.; Hall, I.M.; Hansen, N.F.; Hartley, G.A.; Haukness, M.; Howe, K.; Hunkapiller, M.W.; Jain, C.; Jain, M.; Jarvis, E.D.; Kerpedjiev, P.; Kirsche, M.; Kolmogorov, M.; Korlach, J.; Kremitzki, M.; Li, H.; Maduro, V.V.; Marschall, T.; McCartney, A.M.; McDaniel, J.; Miller, D.E.; Mullikin, J.C.; Myers, E.W.; Olson, N.D.; Paten, B.; Peluso, P.; Pevzner, P.A.; Porubsky, D.; Potapova, T.; Rogaev, E.I.; Rosenfeld, J.A.; Salzberg, S.L.; Schneider, V.A.; Sedlazeck, F.J.; Shafin, K.; Shew, C.J.; Shumate, A.; Sims, Y.; Smit, A.F.A.; Soto, D.C.; Sović, I.; Storer, J.M.; Streets, A.; Sullivan, B.A.; Thibaud-Nissen, F.; Torrance, J.; Wagner, J.; Walenz, B.P.; Wenger, A.; Wood, J.M.D.; Xiao, C.; Yan, S.M.; Young, A.C.; Zarate, S.; Surti, U.; McCoy, R.C.; Dennis, M.Y.; Alexandrov, I.A.; Gerton, J.L.; O’Neill, R.J.; Timp, W.; Zook, J.M.; Schatz, M.C.; Eichler, E.E.; Miga, K.H.; Phillippy, A.M. The complete sequence of a human genome. Science, 2022, 376(6588), 44-53.
[http://dx.doi.org/10.1126/science.abj6987] [PMID: 35357919]
[2]
Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; Lagarde, J.; Veeravalli, L.; Ruan, X.; Ruan, Y.; Lassmann, T.; Carninci, P.; Brown, J.B.; Lipovich, L.; Gonzalez, J.M.; Thomas, M.; Davis, C.A.; Shiekhattar, R.; Gingeras, T.R.; Hubbard, T.J.; Notredame, C.; Harrow, J.; Guigó, R. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res., 2012, 22(9), 1775-1789.
[http://dx.doi.org/10.1101/gr.132159.111] [PMID: 22955988]
[3]
Makałowski, W.; Gotea, V.; Pande, A.; Makałowska, I. Transposable elements: Classification, identification, and their use as a tool for comparative genomics. Methods Mol. Biol., 2019, 1910, 177-207.
[http://dx.doi.org/10.1007/978-1-4939-9074-0_6] [PMID: 31278665]
[4]
de Koning, A.P.J.; Gu, W.; Castoe, T.A.; Batzer, M.A.; Pollock, D.D. Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet., 2011, 7(12), e1002384.
[http://dx.doi.org/10.1371/journal.pgen.1002384] [PMID: 22144907]
[5]
Mustafin, RN Functional dualism of transcripts of transposons in the evolution of eukaryotic genomes. Russ. J. Dev. Biol., 2018, 49(6), 339-355.
[http://dx.doi.org/10.1134/S1062360418070019]
[6]
Mustafin, R.N.; Khusnutdinova, E.K. The role of reverse transcriptase in the origin of life. Biochemistry (Mosc.), 2019, 84(8), 870-883.
[http://dx.doi.org/10.1134/S0006297919080030] [PMID: 31522669]
[7]
Kang, M.; Tang, B.; Li, J.; Zhou, Z.; Liu, K.; Wang, R.; Jiang, Z.; Bi, F.; Patrick, D.; Kim, D.; Mitra, A.K.; Yang-Hartwich, Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol. Cancer, 2020, 19(1), 143.
[http://dx.doi.org/10.1186/s12943-020-01248-9] [PMID: 32928232]
[8]
Fitzgerald, K.A.; Caffrey, D.R. Long noncoding RNAs in innate and adaptive immunity. Curr. Opin. Immunol., 2014, 26, 140-146.
[http://dx.doi.org/10.1016/j.coi.2013.12.001] [PMID: 24556411]
[9]
Fico, A.; Fiorenzano, A.; Pascale, E.; Patriarca, E.J.; Minchiotti, G. Long non-coding RNA in stem cell pluripotency and lineage commitment: Functions and evolutionary conservation. Cell. Mol. Life Sci., 2019, 76(8), 1459-1471.
[http://dx.doi.org/10.1007/s00018-018-3000-z] [PMID: 30607432]
[10]
Long, Y.; Wang, X.; Youmans, D.T.; Cech, T.R. How do lncRNAs regulate transcription? Sci. Adv., 2017, 3(9), eaao2110.
[http://dx.doi.org/10.1126/sciadv.aao2110] [PMID: 28959731]
[11]
Mustafin, R.N. The Relationship between transposons and transcription factors in the evolution of eukaryotes. J. Evol. Biochem. Physiol., 2019, 55(1), 14-23.
[http://dx.doi.org/10.1134/S0022093019010022]
[12]
Kapusta, A.; Kronenberg, Z.; Lynch, V.J.; Zhuo, X.; Ramsay, L.; Bourque, G.; Yandell, M.; Feschotte, C. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet., 2013, 9(4), e1003470.
[http://dx.doi.org/10.1371/journal.pgen.1003470] [PMID: 23637635]
[13]
Johnson, R.; Guigó, R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA, 2014, 20(7), 959-976.
[http://dx.doi.org/10.1261/rna.044560.114] [PMID: 24850885]
[14]
Hadjiargyrou, M.; Delihas, N. The intertwining of transposable elements and non-coding RNAs. Int. J. Mol. Sci., 2013, 14(7), 13307-13328.
[http://dx.doi.org/10.3390/ijms140713307] [PMID: 23803660]
[15]
Gerdes, P.; Richardson, S.R.; Mager, D.L.; Faulkner, G.J. Transposable elements in the mammalian embryo: Pioneers surviving through stealth and service. Genome Biol., 2016, 17(1), 100-116.
[http://dx.doi.org/10.1186/s13059-016-0965-5] [PMID: 27161170]
[16]
Lu, X.; Sachs, F.; Ramsay, L.; Jacques, P.É.; Göke, J.; Bourque, G.; Ng, H.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol., 2014, 21(4), 423-425.
[http://dx.doi.org/10.1038/nsmb.2799] [PMID: 24681886]
[17]
Honson, D.D.; Macfarlan, T.S. A lncRNA-like Role for LINE1s in Development. Dev. Cell, 2018, 46(2), 132-134.
[http://dx.doi.org/10.1016/j.devcel.2018.06.022] [PMID: 30016617]
[18]
Ramsay, L.; Marchetto, M.C.; Caron, M.; Chen, S.H.; Busche, S.; Kwan, T.; Pastinen, T.; Gage, F.H.; Bourque, G. Conserved expression of transposon-derived non-coding transcripts in primate stem cells. BMC Genomics, 2017, 18(1), 214-226.
[http://dx.doi.org/10.1186/s12864-017-3568-y] [PMID: 28245871]
[19]
Arendt, T.; Ueberham, U.; Janitz, M. Non-coding transcriptome in brain aging. Aging (Albany NY), 2017, 9(9), 1943-1944.
[http://dx.doi.org/10.18632/aging.101290] [PMID: 28898200]
[20]
Lapp, H.E.; Hunter, R.G. The dynamic genome: Transposons and environmental adaptation in the nervous system. Epigenomics, 2016, 8(2), 237-249.
[http://dx.doi.org/10.2217/epi.15.107] [PMID: 26791965]
[21]
Anderson, D.M.; Anderson, K.M.; Chang, C.L.; Makarewich, C.A.; Nelson, B.R.; McAnally, J.R.; Kasaragod, P.; Shelton, J.M.; Liou, J.; Bassel-Duby, R.; Olson, E.N. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell, 2015, 160(4), 595-606.
[http://dx.doi.org/10.1016/j.cell.2015.01.009] [PMID: 25640239]
[22]
Nelson, B.R.; Makarewich, C.A.; Anderson, D.M.; Winders, B.R.; Troupes, C.D.; Wu, F.; Reese, A.L.; McAnally, J.R.; Chen, X.; Kavalali, E.T.; Cannon, S.C.; Houser, S.R.; Bassel-Duby, R.; Olson, E.N. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science, 2016, 351(6270), 271-275.
[http://dx.doi.org/10.1126/science.aad4076] [PMID: 26816378]
[23]
Zhang, J.; Mujahid, H.; Hou, Y.; Nallamilli, BR.; Peng, Z. Plant Long ncRNAs: A new frontier for gene regulatory control. Am. J. Plant Sci., 2013, 4(5), 1038-1045.
[http://dx.doi.org/10.4236/ajps.2013.45128]
[24]
Levine, M.T.; Jones, C.D.; Kern, A.D.; Lindfors, H.A.; Begun, D.J. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc. Natl. Acad. Sci. USA, 2006, 103(26), 9935-9939.
[http://dx.doi.org/10.1073/pnas.0509809103] [PMID: 16777968]
[25]
Cai, J.; Zhao, R.; Jiang, H.; Wang, W. De novo origination of a new protein-coding gene in Saccharomyces cerevisiae . Genetics, 2008, 179(1), 487-496.
[http://dx.doi.org/10.1534/genetics.107.084491] [PMID: 18493065]
[26]
Xie, C.; Zhang, Y.E.; Chen, J.Y.; Liu, C.J.; Zhou, W.Z.; Li, Y.; Zhang, M.; Zhang, R.; Wei, L.; Li, C.Y. Hominoid-specific de novo protein-coding genes originating from long non-coding RNAs. PLoS Genet., 2012, 8(9), e1002942.
[http://dx.doi.org/10.1371/journal.pgen.1002942] [PMID: 23028352]
[27]
Ruiz-Orera, J.; Messeguer, X.; Subirana, J.A.; Alba, M.M. Long non-coding RNAs as a source of new peptides. eLife, 2014, 3, e03523.
[http://dx.doi.org/10.7554/eLife.03523] [PMID: 25233276]
[28]
Guo, L.; Zhao, Y.; Yang, S.; Zhang, H.; Wu, Q.; Chen, F. An integrated evolutionary analysis of miRNA–lncRNA in mammals. Mol. Biol. Rep., 2014, 41(1), 201-207.
[http://dx.doi.org/10.1007/s11033-013-2852-4] [PMID: 24186852]
[29]
Lauressergues, D.; Couzigou, J.M.; Clemente, H.S.; Martinez, Y.; Dunand, C.; Bécard, G.; Combier, J.P. Primary transcripts of microRNAs encode regulatory peptides. Nature, 2015, 520(7545), 90-93.
[http://dx.doi.org/10.1038/nature14346] [PMID: 25807486]
[30]
Fang, J.; Morsalin, S.; Rao, V.; Reddy, E.S. Decoding of non-coding DNA and non-coding RNA: Pri-micro RNA-encoded novel peptides regulate migration of cancer cells. J. Pharm. Sci. Pharmacol., 2017, 3(1), 23-27.
[http://dx.doi.org/10.1166/jpsp.2017.1070]
[31]
Niu, L.; Lou, F.; Sun, Y.; Sun, L.; Cai, X.; Liu, Z.; Zhou, H.; Wang, H.; Wang, Z.; Bai, J.; Yin, Q.; Zhang, J.; Chen, L.; Peng, D.; Xu, Z.; Gao, Y.; Tang, S.; Fan, L.; Wang, H. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci. Adv., 2020, 6(21), eaaz2059.
[http://dx.doi.org/10.1126/sciadv.aaz2059] [PMID: 32671205]
[32]
Prel, A.; Dozier, C.; Combier, J.P.; Plaza, S.; Besson, A. Evidence that regulation of Pri-miRNA/miRNA expression is not a general rule of miPEPs function in humans. Int. J. Mol. Sci., 2021, 22(7), 3432.
[http://dx.doi.org/10.3390/ijms22073432] [PMID: 33810468]
[33]
Wei, G.; Qin, S.; Li, W.; Chen, L.; Ma, F. MDTE DB: A database for microRNAs derived from transposable element. IEEE/ACM Trans Comput Biol Bioinform., 2016, 13(6), 1155-1160.
[http://dx.doi.org/10.1109/TCBB.2015.2511767]
[34]
Schrader, L.; Schmitz, J. The impact of transposable elements in adaptive evolution. Mol. Ecol., 2019, 28(6), 1537-1549.
[http://dx.doi.org/10.1111/mec.14794] [PMID: 30003608]
[35]
Kubiak, M.R.; Makałowska, I. Protein-coding genes’ retrocopies and their functions. Viruses, 2017, 9(4), 80.
[http://dx.doi.org/10.3390/v9040080] [PMID: 28406439]
[36]
Abascal, F.; Tress, M.L.; Valencia, A. Alternative splicing and co-option of transposable elements: The case of TMPO/LAP2α and ZNF451 in mammals. Bioinformatics, 2015, 31(14), 2257-2261.
[http://dx.doi.org/10.1093/bioinformatics/btv132] [PMID: 25735770]
[37]
He, Z.; Chen, O.; Phillips, N.; Pasquesi, G.I.M.; Sabunciyan, S.; Florea, L. Predicting Alu exonization in the human genome with a deep learning model. bioRxiv, 2024, 2024.01.03.574099.
[http://dx.doi.org/10.1101/2024.01.03.574099.]
[38]
Tan, S.; Cardoso-Moreira, M.; Shi, W.; Zhang, D.; Huang, J.; Mao, Y.; Jia, H.; Zhang, Y.; Chen, C.; Shao, Y.; Leng, L.; Liu, Z.; Huang, X.; Long, M.; Zhang, Y.E. LTR-mediated retroposition as a mechanism of RNA-based duplication in metazoans. Genome Res., 2016, 26(12), 1663-1675.
[http://dx.doi.org/10.1101/gr.204925.116] [PMID: 27934698]
[39]
Zhu, Z.; Tan, S.; Zhang, Y.; Zhang, Y.E. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots. Sci. Rep., 2016, 6(1), 24755.
[http://dx.doi.org/10.1038/srep24755] [PMID: 27098918]
[40]
Sakai, H.; Mizuno, H.; Kawahara, Y.; Wakimoto, H.; Ikawa, H.; Kawahigashi, H.; Kanamori, H.; Matsumoto, T.; Itoh, T.; Gaut, B.S. Retrogenes in rice ( Oryza sativa L. ssp. japonica ) exhibit correlated expression with their source genes. Genome Biol. Evol., 2011, 3, 1357-1368.
[http://dx.doi.org/10.1093/gbe/evr111] [PMID: 22042334]
[41]
Grandi, F.C.; Rosser, J.M.; Newkirk, S.J.; Yin, J.; Jiang, X.; Xing, Z.; Whitmore, L.; Bashir, S.; Ivics, Z.; Izsvák, Z.; Ye, P.; Yu, Y.E.; An, W. Retrotransposition creates sloping shores: A graded influence of hypomethylated CpG islands on flanking CpG sites. Genome Res., 2015, 25(8), 1135-1146.
[http://dx.doi.org/10.1101/gr.185132.114] [PMID: 25995269]
[42]
Du, Z.Q.; Yang, C.X.; Rothschild, M.F.; Ross, J.W. Novel microRNA families expanded in the human genome. BMC Genomics, 2013, 14(1), 98-105.
[http://dx.doi.org/10.1186/1471-2164-14-98] [PMID: 23402294]
[43]
Hoen, D.R.; Bureau, T.E. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol. Biol. Evol., 2015, 32(6), 1487-1506.
[http://dx.doi.org/10.1093/molbev/msv042] [PMID: 25713212]
[44]
Alzohairy, A.M.; Gyulai, G.; Jansen, R.K.; Bahieldin, A. Transposable elements domesticated and neofunctionalized by eukaryotic genomes. Plasmid, 2013, 69(1), 1-15.
[http://dx.doi.org/10.1016/j.plasmid.2012.08.001] [PMID: 22960324]
[45]
Kopera, H.C.; Moldovan, J.B.; Morrish, T.A.; Garcia-Perez, J.L.; Moran, J.V. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase. Proc. Natl. Acad. Sci. USA, 2011, 108(51), 20345-20350.
[http://dx.doi.org/10.1073/pnas.1100275108] [PMID: 21940498]
[46]
Casacuberta, E. Drosophila: Retrotransposons making up telomeres. Viruses, 2017, 9(7), 192.
[http://dx.doi.org/10.3390/v9070192] [PMID: 28753967]
[47]
Kipling, D.; Warburton, P.E. Centromeres, CENP-B and tigger too. Trends Genet., 1997, 13(4), 141-145.
[http://dx.doi.org/10.1016/S0168-9525(97)01098-6] [PMID: 9097724]
[48]
Zdobnov, E.M.; Campillos, M.; Harrington, E.D.; Torrents, D.; Bork, P. Protein coding potential of retroviruses and other transposable elements in vertebrate genomes. Nucleic Acids Res., 2005, 33(3), 946-954.
[http://dx.doi.org/10.1093/nar/gki236] [PMID: 15716312]
[49]
Feschotte, C. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet., 2008, 9(5), 397-405.
[http://dx.doi.org/10.1038/nrg2337] [PMID: 18368054]
[50]
de Souza, F.S.J.; Franchini, L.F.; Rubinstein, M. Exaptation of transposable elements into novel cis-regulatory elements: Is the evidence always strong? Mol. Biol. Evol., 2013, 30(6), 1239-1251.
[http://dx.doi.org/10.1093/molbev/mst045] [PMID: 23486611]
[51]
Couzigou, J.M.; André, O.; Guillotin, B.; Alexandre, M.; Combier, J.P. Use of micro RNA -encoded peptide mi PEP 172c to stimulate nodulation in soybean. New Phytol., 2016, 211(2), 379-381.
[http://dx.doi.org/10.1111/nph.13991] [PMID: 27105382]
[52]
Lv, S.; Pan, L.; Wang, G. Commentary: Primary transcripts of micrornas encode regulatory peptides. Front. Plant Sci., 2016, 7, 1436.
[http://dx.doi.org/10.3389/fpls.2016.01436] [PMID: 27713758]
[53]
Volff, J.N. Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays, 2006, 28(9), 913-922.
[http://dx.doi.org/10.1002/bies.20452] [PMID: 16937363]
[54]
Kapitonov, V.V.; Jurka, J. Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol., 2004, 23(5), 311-324.
[http://dx.doi.org/10.1089/104454904323090949] [PMID: 15169610]
[55]
Abrusán, G.; Zhang, Y.; Szilágyi, A. Structure prediction and analysis of DNA transposon and LINE retrotransposon proteins. J. Biol. Chem., 2013, 288(22), 16127-16138.
[http://dx.doi.org/10.1074/jbc.M113.451500] [PMID: 23530042]
[56]
Duan, C.G.; Wang, X.; Xie, S.; Pan, L.; Miki, D.; Tang, K.; Hsu, C.C.; Lei, M.; Zhong, Y.; Hou, Y.J.; Wang, Z.; Zhang, Z.; Mangrauthia, S.K.; Xu, H.; Zhang, H.; Dilkes, B.; Tao, W.A.; Zhu, J.K. A pair of transposon-derived proteins function in a histone acetyltransferase complex for active DNA demethylation. Cell Res., 2017, 27(2), 226-240.
[http://dx.doi.org/10.1038/cr.2016.147] [PMID: 27934869]
[57]
Sinzelle, L.; Izsvák, Z.; Ivics, Z. Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell. Mol. Life Sci., 2009, 66(6), 1073-1093.
[http://dx.doi.org/10.1007/s00018-009-8376-3] [PMID: 19132291]
[58]
Wang, J.; Vicente-García, C.; Seruggia, D.; Moltó, E.; Fernandez-Miñán, A.; Neto, A.; Lee, E.; Gómez-Skarmeta, J.L.; Montoliu, L.; Lunyak, V.V.; Jordan, I.K. MIR retrotransposon sequences provide insulators to the human genome. Proc. Natl. Acad. Sci. USA, 2015, 112(32), 4428-4437.
[http://dx.doi.org/10.1073/pnas.1507253112]
[59]
Malfavon-Borja, R.; Feschotte, C. Fighting fire with fire: Endogenous retrovirus envelopes as restriction factors. J. Virol., 2015, 89(8), 4047-4050.
[http://dx.doi.org/10.1128/JVI.03653-14] [PMID: 25653437]
[60]
Malik, H.S.; Henikoff, S.; Eickbush, T.H. Poised for contagion: Evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res., 2000, 10(9), 1307-1318.
[http://dx.doi.org/10.1101/gr.145000] [PMID: 10984449]
[61]
Mallet, F.; Bouton, O.; Prudhomme, S.; Cheynet, V.; Oriol, G.; Bonnaud, B.; Lucotte, G.; Duret, L.; Mandrand, B. The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc. Natl. Acad. Sci. USA, 2004, 101(6), 1731-1736.
[http://dx.doi.org/10.1073/pnas.0305763101] [PMID: 14757826]
[62]
Dupressoir, A.; Marceau, G.; Vernochet, C.; Bénit, L.; Kanellopoulos, C.; Sapin, V.; Heidmann, T. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 725-730.
[http://dx.doi.org/10.1073/pnas.0406509102] [PMID: 15644441]
[63]
Cornelis, G.; Vernochet, C.; Malicorne, S.; Souquere, S.; Tzika, A.C.; Goodman, S.M.; Catzeflis, F.; Robinson, T.J.; Milinkovitch, M.C.; Pierron, G.; Heidmann, O.; Dupressoir, A.; Heidmann, T. Retroviral envelope syncytin capture in an ancestrally diverged mammalian clade for placentation in the primitive Afrotherian tenrecs. Proc. Natl. Acad. Sci. USA, 2014, 111(41), E4332-E4341.
[http://dx.doi.org/10.1073/pnas.1412268111] [PMID: 25267646]
[64]
Heidmann, O.; Vernochet, C.; Dupressoir, A.; Heidmann, T. Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: A new “syncytin” in a third order of mammals. Retrovirology, 2009, 6(1), 107.
[http://dx.doi.org/10.1186/1742-4690-6-107] [PMID: 19943933]
[65]
Joly-Lopez, Z.; Bureau, T.E. Exaptation of transposable element coding sequences. Curr. Opin. Genet. Dev., 2018, 49, 34-42.
[http://dx.doi.org/10.1016/j.gde.2018.02.011] [PMID: 29525543]
[66]
Bernard, D.; Méhul, B.; Thomas-Collignon, A.; Delattre, C.; Donovan, M.; Schmidt, R. Identification and characterization of a novel retroviral-like aspartic protease specifically expressed in human epidermis. J. Invest. Dermatol., 2005, 125(2), 278-287.
[http://dx.doi.org/10.1111/j.0022-202X.2005.23816.x] [PMID: 16098038]
[67]
Toll-Riera, M.; Bosch, N.; Bellora, N.; Castelo, R.; Armengol, L.; Estivill, X.; Mar Alba, M. Origin of primate orphan genes: A comparative genomics approach. Mol. Biol. Evol., 2008, 26(3), 603-612.
[http://dx.doi.org/10.1093/molbev/msn281] [PMID: 19064677]
[68]
Lu, S.; Zhang, J.; Lian, X.; Sun, L.; Meng, K.; Chen, Y.; Sun, Z.; Yin, X.; Li, Y.; Zhao, J.; Wang, T.; Zhang, G.; He, Q.Y. A hidden human proteome encoded by ‘non-coding’ genes. Nucleic Acids Res., 2019, 47(15), 8111-8125.
[http://dx.doi.org/10.1093/nar/gkz646] [PMID: 31340039]
[69]
van Heesch, S.; Witte, F.; Schneider-Lunitz, V.; Schulz, J.F.; Adami, E.; Faber, A.B.; Kirchner, M.; Maatz, H.; Blachut, S.; Sandmann, C.L.; Kanda, M.; Worth, C.L.; Schafer, S.; Calviello, L.; Merriott, R.; Patone, G.; Hummel, O.; Wyler, E.; Obermayer, B.; Mücke, M.B.; Lindberg, E.L.; Trnka, F.; Memczak, S.; Schilling, M.; Felkin, L.E.; Barton, P.J.R.; Quaife, N.M.; Vanezis, K.; Diecke, S.; Mukai, M.; Mah, N.; Oh, S.J.; Kurtz, A.; Schramm, C.; Schwinge, D.; Sebode, M.; Harakalova, M.; Asselbergs, F.W.; Vink, A.; de Weger, R.A.; Viswanathan, S.; Widjaja, A.A.; Gärtner-Rommel, A.; Milting, H.; dos Remedios, C.; Knosalla, C.; Mertins, P.; Landthaler, M.; Vingron, M.; Linke, W.A.; Seidman, J.G.; Seidman, C.E.; Rajewsky, N.; Ohler, U.; Cook, S.A.; Hubner, N. The translational landscape of the human heart. Cell, 2019, 178(1), 242-260.e29.
[http://dx.doi.org/10.1016/j.cell.2019.05.010] [PMID: 31155234]
[70]
Li, X.L.; Pongor, L.; Tang, W.; Das, S.; Muys, B.R.; Jones, M.F.; Lazar, S.B.; Dangelmaier, E.A.; Hartford, C.C.R.; Grammatikakis, I.; Hao, Q.; Sun, Q.; Schetter, A.; Martindale, J.L.; Tang, B.; Jenkins, L.M.; Robles, A.I.; Walker, R.L.; Ambs, S.; Chari, R.; Shabalina, S.A.; Gorospe, M.; Hussain, S.P.; Harris, C.C.; Meltzer, P.S.; Prasanth, K.V.; Aladjem, M.I.; Andresson, T.; Lal, A. A small protein encoded by a putative lncRNA regulates apoptosis and tumorigenicity in human colorectal cancer cells. eLife, 2020, 9, e53734.
[http://dx.doi.org/10.7554/eLife.53734] [PMID: 33112233]
[71]
Ge, Q.; Jia, D.; Cen, D.; Qi, Y.; Shi, C.; Li, J.; Sang, L.; Yang, L.; He, J.; Lin, A.; Chen, S.; Wang, L. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. J. Clin. Invest., 2021, 131(22), e152911.
[http://dx.doi.org/10.1172/JCI152911] [PMID: 34591791]
[72]
Wu, S.; Zhang, L.; Deng, J.; Guo, B.; Li, F.; Wang, Y.; Wu, R.; Zhang, S.; Lu, J.; Zhou, Y. A novel micropeptide encoded by Y-Linked LINC00278 links cigarette smoking and AR signaling in male esophageal squamous cell carcinoma. Cancer Res., 2020, 80(13), 2790-2803.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3440] [PMID: 32169859]
[73]
Barczak, W.; Carr, S.M.; Liu, G.; Munro, S.; Nicastri, A.; Lee, L.N.; Hutchings, C.; Ternette, N.; Klenerman, P.; Kanapin, A.; Samsonova, A.; La Thangue, N.B. Long non-coding RNA-derived peptides are immunogenic and drive a potent anti-tumour response. Nat. Commun., 2023, 14(1), 1078.
[http://dx.doi.org/10.1038/s41467-023-36826-0] [PMID: 36841868]
[74]
Xiao, W.; Halabi, R.; Lin, C.H.; Nazim, M.; Yeom, K.H.; Black, D.L. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. Genes Dev., 2024, 38(7-8), 294-307.
[http://dx.doi.org/10.1101/gad.351557.124] [PMID: 38688681]
[75]
Zapata, J.C.; Campilongo, F.; Barclay, R.A.; DeMarino, C.; Iglesias-Ussel, M.D.; Kashanchi, F.; Romerio, F. The human immunodeficiency virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly. Virology, 2017, 506, 34-44.
[http://dx.doi.org/10.1016/j.virol.2017.03.002] [PMID: 28340355]
[76]
Bidet, K.; Dadlani, D.; Garcia-Blanco, M.A. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog., 2014, 10(7), e1004242.
[http://dx.doi.org/10.1371/journal.ppat.1004242] [PMID: 24992036]
[77]
Mustafin, R.N. The hypothesis of the origin of viruses from transposons. Mol. Gen. Microbiol. Virol., 2018, 33(4), 223-232.
[http://dx.doi.org/10.3103/S0891416818040067]
[78]
Vachon, V.K.; Conn, G.L. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Res., 2016, 212, 39-52.
[http://dx.doi.org/10.1016/j.virusres.2015.06.018] [PMID: 26116898]
[79]
Cao, S.; Moss, W.; O’Grady, T.; Concha, M.; Strong, M.J.; Wang, X.; Yu, Y.; Baddoo, M.; Zhang, K.; Fewell, C.; Lin, Z.; Dong, Y.; Flemington, E.K. New noncoding lytic transcripts derived from the Epstein-Barr virus latency origin of replication, oriP, are hyperedited, bind the paraspeckle protein, NONO/p54nrb, and Support viral lytic transcription. J. Virol., 2015, 89(14), 7120-7132.
[http://dx.doi.org/10.1128/JVI.00608-15] [PMID: 25926645]
[80]
Szafron, L.M.; Balcerak, A.; Grzybowska, E.A.; Pienkowska-Grela, B.; Felisiak-Golabek, A.; Podgorska, A. The novel gene journal pre-proof 25 CRNDE encodes a nuclear peptide (CRNDEP) which is overexpressed in highly proliferating tissues. PLoS One, 2015, 10(5), e0127475.
[http://dx.doi.org/10.1371/journal.pone.0127475] [PMID: 25978564]
[81]
D’Lima, N.G.; Ma, J.; Winkler, L.; Chu, Q.; Loh, K.H.; Corpuz, E.O.; Budnik, B.A.; Lykke-Andersen, J.; Saghatelian, A.; Slavoff, S.A. A human microprotein that interacts with the mRNA decapping complex. Nat. Chem. Biol., 2017, 13(2), 174-180.
[http://dx.doi.org/10.1038/nchembio.2249] [PMID: 27918561]
[82]
Guo, B.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F.; Wang, Y.; Zhang, S.; Wu, R.; Lu, J.; Zhou, Y. Micropeptide CIP 2A- BPencoded by LINC 00665 inhibits triple-negative breast cancer progression. EMBO J., 2020, 39(1), e102190.
[http://dx.doi.org/10.15252/embj.2019102190] [PMID: 31755573]
[83]
Wang, Y.; Wu, S.; Zhu, X.; Zhang, L.; Deng, J.; Li, F. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med., 2020, 217(3), jem.20190950.
[http://dx.doi.org/10.1084/jem.20190950.]
[84]
Zhang, Z.; Yi, Y.; Wang, Z.; Zhang, H.; Zhao, Y.; He, R.; Luo, Y.; Cui, Z. LncRNA MAGI2-AS3-encoded polypeptide restrains the proliferation and migration of breast cancer cells. Mol. Biotechnol., 2024, 66(6), 1409-1423.
[http://dx.doi.org/10.1007/s12033-023-00801-3] [PMID: 37358745]
[85]
Polycarpou-Schwarz, M.; Groß, M.; Mestdagh, P.; Schott, J.; Grund, S.E.; Hildenbrand, C.; Rom, J.; Aulmann, S.; Sinn, H.P.; Vandesompele, J.; Diederichs, S. The cancer-associated microprotein CASIMO1 controls cell proliferation and interacts with squalene epoxidase modulating lipid droplet formation. Oncogene, 2018, 37(34), 4750-4768.
[http://dx.doi.org/10.1038/s41388-018-0281-5] [PMID: 29765154]
[86]
Huang, J.Z.; Chen, M.; Chen, D.; Gao, X.C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.R. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth. Mol. Cell, 2017, 68(1), 171-184.e6.
[http://dx.doi.org/10.1016/j.molcel.2017.09.015] [PMID: 28985503]
[87]
Meng, N.; Chen, M.; Chen, D.; Chen, X.H.; Wang, J.Z.; Zhu, S.; He, Y.T.; Zhang, X.L.; Lu, R.X.; Yan, G.R. Small protein hidden in lncRNA LOC90024 promotes “cancerous” RNA splicing and tumorigenesis. Adv. Sci. (Weinh.), 2020, 7(10), 1903233.
[http://dx.doi.org/10.1002/advs.201903233] [PMID: 32440474]
[88]
Zhu, S.; Wang, J.Z.; Chen, D.; He, Y.T.; Meng, N.; Chen, M.; Lu, R.X.; Chen, X.H.; Zhang, X.L.; Yan, G.R. An oncopeptide regulates m6A recognition by the m6A reader IGF2BP1 and tumorigenesis. Nat. Commun., 2020, 11(1), 1685.
[http://dx.doi.org/10.1038/s41467-020-15403-9] [PMID: 32245947]
[89]
Zheng, W.; Guo, Y.; Zhang, G.; Bai, J.; Song, Y.; Song, X.; Zhu, Q.; Bao, X.; Wu, G.; Zhang, C. Peptide encoded by lncRNA BVES-AS1 promotes cell viability, migration, and invasion in colorectal cancer cells via the SRC/mTOR signaling pathway. PLoS One, 2023, 18(6), e0287133.
[http://dx.doi.org/10.1371/journal.pone.0287133] [PMID: 37347740]
[90]
Pang, Y.; Liu, Z.; Han, H.; Wang, B.; Li, W.; Mao, C.; Liu, S. Peptide SMIM30 promotes HCC development by inducing SRC/YES1 membrane anchoring and MAPK pathway activation. J. Hepatol., 2020, 73(5), 1155-1169.
[http://dx.doi.org/10.1016/j.jhep.2020.05.028] [PMID: 32461121]
[91]
Xu, W.; Deng, B.; Lin, P.; Liu, C.; Li, B.; Huang, Q.; Zhou, H.; Yang, J.; Qu, L. Ribosome profiling analysis identified a KRAS-interacting microprotein that represses oncogenic signaling in hepatocellular carcinoma cells. Sci. China Life Sci., 2020, 63(4), 529-542.
[http://dx.doi.org/10.1007/s11427-019-9580-5] [PMID: 31240521]
[92]
Zhang, M.; Zhao, K.; Xu, X.; Yang, Y.; Yan, S.; Wei, P.; Liu, H.; Xu, J.; Xiao, F.; Zhou, H.; Yang, X.; Huang, N.; Liu, J.; He, K.; Xie, K.; Zhang, G.; Huang, S.; Zhang, N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun., 2018, 9(1), 4475.
[http://dx.doi.org/10.1038/s41467-018-06862-2] [PMID: 30367041]
[93]
Du, B.; Zhang, Z.; Jia, L.; Zhang, H.; Zhang, S.; Wang, H.; Cheng, Z. Micropeptide AF127577.4-ORF hidden in a lncRNA diminishes glioblastoma cell proliferation via the modulation of ERK2/METTL3 interaction. Sci. Rep., 2024, 14(1), 12090.
[http://dx.doi.org/10.1038/s41598-024-62710-y] [PMID: 38802444]
[94]
Song, H.; Wang, J.; Wang, X.; Yuan, B.; Li, D.; Hu, A.; Guo, Y.; Cai, S.; Jin, S.; Zhou, Y.; Li, Q.; Chen, G.; Gao, H.; Zheng, L.; Tong, Q. HNF4A-AS1-encoded small peptide promotes self-renewal and aggressiveness of neuroblastoma stem cells via eEF1A1-repressed SMAD4 transactivation. Oncogene, 2022, 41(17), 2505-2519.
[http://dx.doi.org/10.1038/s41388-022-02271-4] [PMID: 35318442]
[95]
Sun, L.; Wang, W.; Han, C.; Huang, W.; Sun, Y.; Fang, K.; Zeng, Z.; Yang, Q.; Pan, Q.; Chen, T.; Luo, X.; Chen, Y. The oncomicropeptide APPLE promotes hematopoietic malignancy by enhancing translation initiation. Mol. Cell, 2021, 81(21), 4493-4508.e9.
[http://dx.doi.org/10.1016/j.molcel.2021.08.033] [PMID: 34555354]
[96]
Kermi, C.; Lau, L.; Asadi Shahmirzadi, A.; Classon, M. Disrupting mechanisms that regulate genomic repeat elements to combat cancer and drug resistance. Front. Cell Dev. Biol., 2022, 10, 826461.
[http://dx.doi.org/10.3389/fcell.2022.826461] [PMID: 35602594]
[97]
Mustafin, R.N.; Khusnutdinova, E.K. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilov Journal of Genetics and Breeding, 2017, 21(6), 742-749.
[http://dx.doi.org/10.18699/10.18699/VJ17.30-o]
[98]
Mombach, D.M.; Mercuri, R.L.V.; da Fontoura Gomes, T.M.F.; Galante, P.A.F.; Loreto, E.L.S. Transposable elements alter gene expression and may impact response to cisplatin therapy in ovarian cancer. Carcinogenesis, 2024, bgae029.
[http://dx.doi.org/10.1093/carcin/bgae029] [PMID: 38722203]
[99]
Zhang, C.; Kang, T.; Wang, X.; Wang, J.; Liu, L.; Zhang, J.; Liu, X.; Li, R.; Wang, J.; Zhang, J. LINC-PINT suppresses cisplatin resistance in gastric cancer by inhibiting autophagy activation via epigenetic silencing of ATG5 by EZH2. Front. Pharmacol., 2022, 13, 968223.
[http://dx.doi.org/10.3389/fphar.2022.968223] [PMID: 36091809]
[100]
Chen, J.; Zhu, M.; Zou, L.; Xia, J.; Huang, J.; Deng, Q.; Xu, R. Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(8), 801-809.
[http://dx.doi.org/10.1093/abbs/gmaa072] [PMID: 32632453]
[101]
Yuan, Z.; Xiu, C.; Liu, D.; Zhou, G.; Yang, H.; Pei, R.; Ding, C.; Cui, X.; Sun, J.; Song, K. Long noncoding RNA LINC-PINT regulates laryngeal carcinoma cell stemness and chemoresistance through miR-425-5p/PTCH1/SHH axis. J. Cell. Physiol., 2019, 234(12), 23111-23122.
[http://dx.doi.org/10.1002/jcp.28874] [PMID: 31131448]
[102]
Ling, L.; Wen, Y.; Xiong, Y.; Liu, X.; Chen, J.; Liu, T.; Zhang, B. Anisomycin inhibits the activity of human ovarian cancer stem cells via regulating antisense RNA NCBP2-AS2/MEK/ERK/STAT3 signaling. J. Gene Med., 2024, 26(1), e3571.
[http://dx.doi.org/10.1002/jgm.3571] [PMID: 37483091]
[103]
Li, L.; Zhang, Y.; Zhan, Y.; Zhong, Y.; Li, X. LINC00467 mediates the 5-fluorouracil resistance in breast cancer cells. In Vitro Cell. Dev. Biol. Anim., 2023, 60(1), 80-88.
[http://dx.doi.org/10.1007/s11626-023-00832-9] [PMID: 38127229]
[104]
Li, W.; He, Y.; Chen, W.; Man, W.; Fu, Q.; Tan, H.; Guo, H.; Zhou, J.; Yang, P. Knockdown of LINC00467 contributed to Axitinib sensitivity in hepatocellular carcinoma through miR-509-3p/PDGFRA axis. Gene Ther., 2021, 28(10-11), 634-645.
[http://dx.doi.org/10.1038/s41434-020-0137-9] [PMID: 32221502]
[105]
Yao, M.; Shi, X.; Li, Y.; Xiao, Y.; Butler, W.; Huang, Y.; Du, L.; Wu, T.; Bian, X.; Shi, G.; Ye, D.; Fu, G.; Wang, J.; Ren, S. LINC00675 activates androgen receptor axis signaling pathway to promote castration-resistant prostate cancer progression. Cell Death Dis., 2020, 11(8), 638.
[http://dx.doi.org/10.1038/s41419-020-02856-5] [PMID: 32801300]
[106]
Tseng, C.F.; Chen, L.T.; Wang, H.D.; Liu, Y.H.; Shiah, S.G. Transcriptional suppression of Dicer by HOXB-AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. Cancer Sci., 2022, 113(5), 1601-1612.
[http://dx.doi.org/10.1111/cas.15319] [PMID: 35253323]
[107]
Yang, G.; Li, T.; Liu, J.; Quan, Z.; Liu, M.; Guo, Y.; Wu, Y.; Ou, L.; Wu, X.; Zheng, Y. lncRNA MAGI2-AS3 suppresses castration-resistant prostate cancer proliferation and migration via the miR-106a-5p/RAB31 axis. Genomics, 2023, 115(2), 110599.
[http://dx.doi.org/10.1016/j.ygeno.2023.110599] [PMID: 36889366]
[108]
Lu, M.; Qin, X.; Zhou, Y.; Li, G.; Liu, Z.; Geng, X.; Yue, H. Long non-coding RNA LINC00665 promotes gemcitabine resistance of cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis., 2021, 12(1), 72.
[http://dx.doi.org/10.1038/s41419-020-03346-4] [PMID: 33436545]
[109]
Liu, X.; Lu, X.; Zhen, F.; Jin, S.; Yu, T.; Zhu, Q.; Wang, W.; Xu, K.; Yao, J.; Guo, R. LINC00665 induces acquired resistance to gefitinib through recruiting EZH2 and activating PI3K/AKT pathway in NSCLC. Mol. Ther. Nucleic Acids, 2019, 16, 155-161.
[http://dx.doi.org/10.1016/j.omtn.2019.02.010] [PMID: 30889481]
[110]
Wu, J.; Ni, X.; Yu, Z.; Wu, S.; Liu, Z. CRNDE inducing cisplatin resistance through SRSF1/TIA1 signaling pathway in ovarian cancer. Pathol. Res. Pract., 2022, 235, 153957.
[http://dx.doi.org/10.1016/j.prp.2022.153957] [PMID: 35653925]
[111]
Chen, K.Y.; Zhu, S.G.; He, J.W.; Duan, X.P. LncRNA CRNDE is involved in radiation resistance in hepatocellular carcinoma via modulating the SP1/PDK1 axis. Neoplasma, 2022, 69(4), 918-930.
[http://dx.doi.org/10.4149/neo_2022_211230N1853] [PMID: 35652619]
[112]
Liu, P.; Li, X.; Cui, Y.; Chen, J.; Li, C.; Li, Q.; Li, H.; Zhang, X.; Zu, X. LncRNA-MALAT1 mediates cisplatin resistance via miR-101-3p/VEGF-C pathway in bladder cancer. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(11), 1148-1157.
[http://dx.doi.org/10.1093/abbs/gmz112] [PMID: 31650173]
[113]
Zhang, Z.; Li, M.; Zhang, Z. lncRNA MALAT1 modulates oxaliplatin resistance of gastric cancer via sponging miR-22-3p. OncoTargets Ther., 2020, 13, 1343-1354.
[http://dx.doi.org/10.2147/OTT.S196619] [PMID: 32104001]
[114]
Cao, Y.; Zhang, F.; Wang, H.; Bi, C.; Cui, J.; Liu, F.; Pan, H. LncRNA MALAT1 mediates doxorubicin resistance of hepatocellular carcinoma by regulating miR-3129-5p/Nova1 axis. Mol. Cell. Biochem., 2021, 476(1), 279-292.
[http://dx.doi.org/10.1007/s11010-020-03904-6] [PMID: 32965597]
[115]
Shi, C.; Ren, S.; Zhao, X.; Li, Q. lncRNA MALAT1 regulates the resistance of breast cancer cells to paclitaxel via the miR-497-5p/SHOC2 axis. Pharmacogenomics, 2022, 23(18), 973-985.
[http://dx.doi.org/10.2217/pgs-2022-0077] [PMID: 36420706]
[116]
Chen, W.; Tan, X.; Yang, Q.; Fang, Z.; Xu, Y. MALAT1 enhances gemcitabine resistance in non-small cell lung cancer cells by directly affecting miR-27a-5p/PBOV1 axis. Cell. Signal., 2022, 94, 110326.
[http://dx.doi.org/10.1016/j.cellsig.2022.110326] [PMID: 35367362]
[117]
Yu, Z.; Tang, H.; Chen, S.; Xie, Y.; Shi, L.; Xia, S.; Jiang, M.; Li, J.; Chen, D. Exosomal LOC85009 inhibits docetaxel resistance in lung adenocarcinoma through regulating ATG5-induced autophagy. Drug Resist. Updat., 2023, 67, 100915.
[http://dx.doi.org/10.1016/j.drup.2022.100915] [PMID: 36641841]
[118]
Zhu, C.; Xie, Y.; Li, Q.; Zhang, Z.; Chen, J.; Zhang, K.; Xia, X.; Yu, D.; Chen, D.; Yu, Z.; Chen, J. CPSF6-mediated XBP1 3’UTR shortening attenuates cisplatin-induced ER stress and elevates chemo-resistance in lung adenocarcinoma. Drug Resist. Updat., 2023, 68, 100933.
[http://dx.doi.org/10.1016/j.drup.2023.100933] [PMID: 36821972]
[119]
Zhou, H.; Lou, F.; Bai, J.; Sun, Y.; Cai, W.; Sun, L.; Xu, Z.; Liu, Z.; Zhang, L.; Yin, Q.; Zhang, J.; Gao, Y.; Wang, Z.; Niu, L.; Cai, X.; Deng, S.; Wang, H.; Xia, L.; Ginhoux, F.; Li, Q.; Wang, H. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting T reg differentiation. EMBO Rep., 2022, 23(5), e53475.
[http://dx.doi.org/10.15252/embr.202153475] [PMID: 35343645]
[120]
Ormancey, M.; Thuleau, P.; Combier, J.P.; Plaza, S. The essentials on microRNA-encoded peptides from plants to animals. Biomolecules, 2023, 13(2), 206.
[http://dx.doi.org/10.3390/biom13020206] [PMID: 36830576]
[121]
Kumar, R.S.; Sinha, H.; Datta, T.; Asif, M.H.; Trivedi, P.K. microRNA408 and its encoded peptide regulate sulfur assimilation and arsenic stress response in Arabidopsis. Plant Physiol., 2023, 192(2), 837-856.
[http://dx.doi.org/10.1093/plphys/kiad033] [PMID: 36682886]
[122]
Razooky, B.; Obermayer, B.; O’May, J.; Tarakhovsky, A. Viral infection identifies micropeptides differentially regulated in smORF-Containing lncRNAs. Genes (Basel), 2017, 8(8), 206.
[http://dx.doi.org/10.3390/genes8080206] [PMID: 28825667]
[123]
Lee, C.Q.E.; Kerouanton, B.; Chothani, S.; Zhang, S.; Chen, Y.; Mantri, C.K.; Hock, D.H.; Lim, R.; Nadkarni, R.; Huynh, V.T.; Lim, D.; Chew, W.L.; Zhong, F.L.; Stroud, D.A.; Schafer, S.; Tergaonkar, V.; St John, A.L.; Rackham, O.J.L.; Ho, L. Coding and non-coding roles of MOCCI (C15ORF48) coordinate to regulate host inflammation and immunity. Nat. Commun., 2021, 12(1), 2130.
[http://dx.doi.org/10.1038/s41467-021-22397-5] [PMID: 33837217]
[124]
Ahmad, I.; Valverde, A.; Siddiqui, H.; Schaller, S.; Naqvi, A.R. Viral microRNAs: Interfering the interferon signaling. Curr. Pharm. Des., 2020, 26(4), 446-454.
[http://dx.doi.org/10.2174/1381612826666200109181238] [PMID: 31924149]
[125]
De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; Le, O.; Beauséjour, C.; Ambati, J.; Ambati, K.; Simon, M.; Seluanov, A.; Gorbunova, V.; Slagboom, P.E.; Helfand, S.L.; Neretti, N.; Sedivy, J.M. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature, 2019, 566(7742), 73-78.
[http://dx.doi.org/10.1038/s41586-018-0784-9] [PMID: 30728521]
[126]
Ender, C.; Krek, A.; Friedländer, M.R.; Beitzinger, M.; Weinmann, L.; Chen, W.; Pfeffer, S.; Rajewsky, N.; Meister, G. A human snoRNA with microRNA-like functions. Mol. Cell, 2008, 32(4), 519-528.
[http://dx.doi.org/10.1016/j.molcel.2008.10.017] [PMID: 19026782]
[127]
Jacob, M.D.; Audas, T.E.; Mullineux, S.T.; Lee, S. Where no RNA polymerase has gone before. Nucleus, 2012, 3(4), 315-319.
[http://dx.doi.org/10.4161/nucl.20585] [PMID: 22688644]
[128]
Li, Z.; Ender, C.; Meister, G.; Moore, P.S.; Chang, Y.; John, B. Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res., 2012, 40(14), 6787-6799.
[http://dx.doi.org/10.1093/nar/gks307] [PMID: 22492706]
[129]
Kumar, P.; Anaya, J.; Mudunuri, S.B.; Dutta, A. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol., 2014, 12(1), 78.
[http://dx.doi.org/10.1186/s12915-014-0078-0] [PMID: 25270025]
[130]
Venkatesh, T.; Suresh, P.S.; Tsutsumi, R. tRFs: miRNAs in disguise. Gene, 2016, 579(2), 133-138.
[http://dx.doi.org/10.1016/j.gene.2015.12.058] [PMID: 26743126]
[131]
Martinez, G.; Choudury, S.G.; Slotkin, R.K. tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res., 2017, 45(9), 5142-5152.
[http://dx.doi.org/10.1093/nar/gkx103] [PMID: 28335016]
[132]
Ruan, Q.; Wang, C.; Wu, Y.; Zhu, Q. Exosome microRNA-22 inhibiting proliferation, migration and invasion through regulating Twist1/CADM1 axis in osteosarcoma. Sci. Rep., 2024, 14(1), 761.
[http://dx.doi.org/10.1038/s41598-023-50612-4] [PMID: 38191892]
[133]
Mao, X.; Zhou, J.; Kong, L.; Zhu, L.; Yang, D.; Zhang, Z. A peptide encoded by lncRNA MIR7-3 host gene (MIR7-3HG) alleviates dexamethasone-induced dysfunction in pancreatic β-cells through the PI3K/AKT signaling pathway. Biochem. Biophys. Res. Commun., 2023, 647, 62-71.
[http://dx.doi.org/10.1016/j.bbrc.2023.01.004] [PMID: 36731335]
[134]
Michaille, J.J.; Awad, H.; Fortman, E.C.; Efanov, A.A.; Tili, E. miR-155 expression in antitumor immunity: The higher the better? Genes Chromosomes Cancer, 2019, 58(4), 208-218.
[http://dx.doi.org/10.1002/gcc.22698] [PMID: 30382602]
[135]
Jiang, M.; Qi, F.; Zhang, K.; Zhang, X.; Ma, J.; Xia, S.; Chen, L.; Yu, Z.; Chen, J.; Chen, D. MARCKSL1–2 reverses docetaxel-resistance of lung adenocarcinoma cells by recruiting SUZ12 to suppress HDAC1 and elevate miR-200b. Mol. Cancer, 2022, 21(1), 150.
[http://dx.doi.org/10.1186/s12943-022-01605-w] [PMID: 35864549]
[136]
Sukocheva, O.A.; Liu, J.; Neganova, M.E.; Beeraka, N.M.; Aleksandrova, Y.R.; Manogaran, P.; Grigorevskikh, E.M.; Chubarev, V.N.; Fan, R. Perspectives of using microRNA-loaded nanocarriers for epigenetic reprogramming of drug resistant colorectal cancers. Semin. Cancer Biol., 2022, 86(Pt 2), 358-375.
[http://dx.doi.org/10.1016/j.semcancer.2022.05.012] [PMID: 35623562]
[137]
Yu, D.; Lv, M.; Chen, W.; Zhong, S.; Zhang, X.; Chen, L.; Ma, T.; Tang, J.; Zhao, J. Role of miR-155 in drug resistance of breast cancer. Tumour Biol., 2015, 36(3), 1395-1401.
[http://dx.doi.org/10.1007/s13277-015-3263-z] [PMID: 25744731]
[138]
Hsu, H.H.; Kuo, W.W.; Shih, H.N.; Cheng, S.F.; Yang, C.K.; Chen, M.C.; Tu, C.C.; Viswanadha, V.P.; Liao, P.H.; Huang, C.Y. FOXC1 regulation of miR-31-5p confers oxaliplatin resistance by targeting LATS2 in colorectal cancer. Cancers (Basel), 2019, 11(10), 1576.
[http://dx.doi.org/10.3390/cancers11101576] [PMID: 31623173]
[139]
Tian, Y.; Chen, Z.H.; Wu, P.; Zhang, D.; Ma, Y.; Liu, X.F.; Wang, X.; Ding, D.; Cao, X.C.; Yu, Y. MIR497HG-Derived miR-195 and miR-497 mediate tamoxifen resistance via PI3K/AKT signaling in breast cancer. Adv. Sci. (Weinh.), 2023, 10(12), 2204819.
[http://dx.doi.org/10.1002/advs.202204819] [PMID: 36815359]
[140]
Rearick, D.; Prakash, A.; McSweeny, A.; Shepard, S.S.; Fedorova, L.; Fedorov, A. Critical association of ncRNA with introns. Nucleic Acids Res., 2011, 39(6), 2357-2366.
[http://dx.doi.org/10.1093/nar/gkq1080] [PMID: 21071396]
[141]
Soemedi, R.; Cygan, K.J.; Rhine, C.L.; Glidden, D.T.; Taggart, A.J.; Lin, C.L.; Fredericks, A.M.; Fairbrother, W.G. The effects of structure on pre-mRNA processing and stability. Methods, 2017, 125, 36-44.
[http://dx.doi.org/10.1016/j.ymeth.2017.06.001] [PMID: 28595983]
[142]
Gu, C.; Zhou, N.; Wang, Z.; Li, G.; Kou, Y.; Yu, S.; Feng, Y.; Chen, L.; Yang, J.; Tian, F. circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Mol. Ther. Nucleic Acids, 2018, 13, 633-641.
[http://dx.doi.org/10.1016/j.omtn.2018.10.008] [PMID: 30497053]
[143]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[144]
Zheng, X.; Chen, L.; Zhou, Y.; Wang, Q.; Zheng, Z.; Xu, B.; Wu, C.; Zhou, Q.; Hu, W.; Wu, C.; Jiang, J. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol. Cancer, 2019, 18(1), 47.
[http://dx.doi.org/10.1186/s12943-019-1010-6] [PMID: 30925892]
[145]
Pan, Z.; Cai, J.; Lin, J.; Zhou, H.; Peng, J.; Liang, J.; Xia, L.; Yin, Q.; Zou, B.; Zheng, J.; Qiao, L.; Zhang, L. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating snail in colon cancer. Mol. Cancer, 2020, 19(1), 71.
[http://dx.doi.org/10.1186/s12943-020-01179-5] [PMID: 32241279]
[146]
Kralovicova, J.; Patel, A.; Searle, M.; Vorechovsky, I. The role of short RNA loops in recognition of a single-hairpin exon derived from a mammalian-wide interspersed repeat. RNA Biol., 2015, 12(1), 54-69.
[http://dx.doi.org/10.1080/15476286.2015.1017207] [PMID: 25826413]
[147]
Legnini, I.; Di Timoteo, G.; Rossi, F.; Morlando, M.; Briganti, F.; Sthandier, O.; Fatica, A.; Santini, T.; Andronache, A.; Wade, M.; Laneve, P.; Rajewsky, N.; Bozzoni, I. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell, 2017, 66(1), 22-37.e9.
[http://dx.doi.org/10.1016/j.molcel.2017.02.017] [PMID: 28344082]
[148]
Dong, R.; Ma, X.K.; Chen, L.L.; Yang, L. Increased complexity of circRNA expression during species evolution. RNA Biol., 2017, 14(8), 1064-1074.
[http://dx.doi.org/10.1080/15476286.2016.1269999] [PMID: 27982734]
[149]
Aktaş, T.; Avşar Ilık, İ.; Maticzka, D.; Bhardwaj, V.; Pessoa Rodrigues, C.; Mittler, G.; Manke, T.; Backofen, R.; Akhtar, A. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature, 2017, 544(7648), 115-119.
[http://dx.doi.org/10.1038/nature21715] [PMID: 28355180]
[150]
de la Peña, M. Circular RNAs biogenesis in eukaryotes through self-cleaving hammerhead ribozymes. Adv. Exp. Med. Biol., 2018, 1087, 53-63.
[http://dx.doi.org/10.1007/978-981-13-1426-1_5] [PMID: 30259357]
[151]
Cervera, A.; de la Peña, M. Cloning and detection of genomic retrozymes and their circRNA intermediates. Methods Mol. Biol., 2021, 2167, 27-44.
[http://dx.doi.org/10.1007/978-1-0716-0716-9_3] [PMID: 32712913]
[152]
Welden, J.R.; Stamm, S. Pre-mRNA structures forming circular RNAs. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(11-12), 194410.
[http://dx.doi.org/10.1016/j.bbagrm.2019.194410] [PMID: 31421281]
[153]
Xia, X.; Li, X.; Li, F.; Wu, X.; Zhang, M.; Zhou, H.; Huang, N.; Yang, X.; Xiao, F.; Liu, D.; Yang, L.; Zhang, N. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1. Mol. Cancer, 2019, 18(1), 131.
[http://dx.doi.org/10.1186/s12943-019-1056-5] [PMID: 31470874]
[154]
Song, R.; Guo, P.; Ren, X.; Zhou, L.; Li, P.; Rahman, N.A.; Wołczyński, S.; Li, X.; Zhang, Y.; Liu, M.; Liu, J.; Li, X. A novel polypeptide CAPG-171aa encoded by circCAPG plays a critical role in triple-negative breast cancer. Mol. Cancer, 2023, 22(1), 104.
[http://dx.doi.org/10.1186/s12943-023-01806-x] [PMID: 37408008]
[155]
Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; Li, Z.; Ming, L.; Xie, B.; Zhang, N. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene, 2018, 37(13), 1805-1814.
[http://dx.doi.org/10.1038/s41388-017-0019-9] [PMID: 29343848]
[156]
Liang, W.C.; Wong, C.W.; Liang, P.P.; Shi, M.; Cao, Y.; Rao, S.T.; Tsui, S.K.W.; Waye, M.M.Y.; Zhang, Q.; Fu, W.M.; Zhang, J.F. Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol., 2019, 20(1), 84.
[http://dx.doi.org/10.1186/s13059-019-1685-4] [PMID: 31027518]
[157]
Song, R.; Ma, S.; Xu, J.; Ren, X.; Guo, P.; Liu, H.; Li, P.; Yin, F.; Liu, M.; Wang, Q.; Yu, L.; Liu, J.; Duan, B.; Rahman, N.A.; Wołczyński, S.; Li, G.; Li, X. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol. Cancer, 2023, 22(1), 16.
[http://dx.doi.org/10.1186/s12943-023-01719-9] [PMID: 36691031]
[158]
Ge, J.; Wang, J.; Xiong, F.; Jiang, X.; Zhu, K.; Wang, Y.; Mo, Y.; Gong, Z.; Zhang, S.; He, Y.; Li, X.; Shi, L.; Guo, C.; Wang, F.; Zhou, M.; Xiang, B.; Li, Y.; Li, G.; Xiong, W.; Zeng, Z. Epstein–Barr virus–encoded circular RNA CircBART2.2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res., 2021, 81(19), 5074-5088.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-4321] [PMID: 34321242]
[159]
Tagawa, T.; Gao, S.; Koparde, V.N.; Gonzalez, M.; Spouge, J.L.; Serquiña, A.P.; Lurain, K.; Ramaswami, R.; Uldrick, T.S.; Yarchoan, R.; Ziegelbauer, J.M. Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc. Natl. Acad. Sci. USA, 2018, 115(50), 12805-12810.
[http://dx.doi.org/10.1073/pnas.1816183115] [PMID: 30455306]
[160]
Zhao, J.; Lee, E.E.; Kim, J.; Yang, R.; Chamseddin, B.; Ni, C.; Gusho, E.; Xie, Y.; Chiang, C.M.; Buszczak, M.; Zhan, X.; Laimins, L.; Wang, R.C. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun., 2019, 10(1), 2300.
[http://dx.doi.org/10.1038/s41467-019-10246-5] [PMID: 31127091]
[161]
Cai, Z.; Lu, C.; He, J.; Liu, L.; Zou, Y.; Zhang, Z.; Zhu, Z.; Ge, X.; Wu, A.; Jiang, T.; Zheng, H.; Peng, Y. Identification and characterization of circRNAs encoded by MERS-CoV, SARS-CoV-1 and SARS-CoV-2. Brief. Bioinform., 2021, 22(2), 1297-1308.
[http://dx.doi.org/10.1093/bib/bbaa334] [PMID: 33757279]
[162]
Arora, A.; Kolberg, J.E.; Srinivasachar Badarinarayan, S.; Savytska, N.; Munot, D.; Müller, M.; Krchlíková, V.; Sauter, D.; Bansal, V. SARS-CoV-2 infection induces epigenetic changes in the LTR69 subfamily of endogenous retroviruses. Mob. DNA, 2023, 14(1), 11.
[http://dx.doi.org/10.1186/s13100-023-00299-1] [PMID: 37667401]