Current Medicinal Chemistry

Author(s): Xing Li, Yingshu Sun, Yilin Wang, Ye Zhou, Yixuan Bao, Zhuomiao Zhang, Shujing Liu, Huini Yang, Ruoyao Zhang, Peng Xia, Meiju Ji, Peng Hou* and Chao Chen*

DOI: 10.2174/0109298673300702240805055930

DownloadDownload PDF Flyer Cite As
Amplifying Radiotherapy by Evoking Mitochondrial Oxidative Stress using a High-performance Aggregation-induced Emission Sonosensitizer

Page: [380 - 395] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Developing effective methods to enhance tumor radiosensitivity is crucial for improving the therapeutic efficacy of radiotherapy (RT). Due to its deep tissue penetration, excellent safety profile, and precise controllability, sonosensitizer-based sonodynamic therapy (SDT) has recently garnered significant attention as a promising combined approach with RT.

Methods: However, the limited reactive oxygen species (ROS) generation ability in the aggregated state and the absence of specific organelle targeting in sonosensitizers hinder their potential to augment RT. This study introduces a fundamental principle guiding the design of high-performance sonosensitizers employed in the aggregated state. Building upon these principles, we develop a mitochondria-targeted sonosensitizer molecule (TCSVP) with aggregation- induced emission (AIE) characteristics by organic synthesis. Then, we demonstrate the abilities of TCSVP to target mitochondria and produce ROS under ultrasound in H460 cancer cells using confocal laser scanning microscopy (CLSM) and fluorescence microscopy. Subsequently, we examine the effectiveness of enhancing tumor radiosensitivity by utilizing TCSVP and ultrasound in both H460 cells and H460 and 4T1 tumor-bearing mice.

Results: The results indicate that evoking non-lethal mitochondrial oxidative stress in tumors by TCSVP under ultrasound stimulation can significantly improve tumor radiosensitivity (p <0.05). Additionally, the in vivo safety profile of TCSVP is thoroughly confirmed by histopathological analysis.

Conclusion: This work proposes strategies for designing efficient sonosensitizers and underscores that evoking non-lethal mitochondrial oxidative stress is an effective method to enhance tumor radiosensitivity.

Keywords: Radiotherapy, sonodynamic, aggregation-induced emission, mitochondrial targeting, oxidative stress, reactive oxygen species.

[1]
Roos, W.P.; Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med., 2006, 12(9), 440-450.
[http://dx.doi.org/10.1016/j.molmed.2006.07.007] [PMID: 16899408]
[2]
Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology, 2000, 7(3), 153-163.
[http://dx.doi.org/10.1016/S0928-4680(00)00053-5] [PMID: 10996508]
[3]
Kowalik, M.; Masternak, J.; Barszcz, B. Recent research trends on bismuth compounds in cancer chemo-and radiotherapy. Curr. Med. Chem., 2019, 26(4), 729-759.
[http://dx.doi.org/10.2174/0929867324666171003113540] [PMID: 28971764]
[4]
Vozenin, M.C.; Bourhis, J.; Durante, M. Towards clinical translation of FLASH radiotherapy. Nat. Rev. Clin. Oncol., 2022, 19(12), 791-803.
[http://dx.doi.org/10.1038/s41571-022-00697-z] [PMID: 36303024]
[5]
De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.M.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers, 2019, 5(1), 13.
[http://dx.doi.org/10.1038/s41572-019-0064-5] [PMID: 30792503]
[6]
Petroni, G.; Cantley, L.C.; Santambrogio, L.; Formenti, S.C.; Galluzzi, L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat. Rev. Clin. Oncol., 2022, 19(2), 114-131.
[http://dx.doi.org/10.1038/s41571-021-00579-w] [PMID: 34819622]
[7]
Price, J.M.; Prabhakaran, A.; West, C.M.L. Predicting tumour radiosensitivity to deliver precision radiotherapy. Nat. Rev. Clin. Oncol., 2023, 20(2), 83-98.
[http://dx.doi.org/10.1038/s41571-022-00709-y] [PMID: 36477705]
[8]
Ning, S.; Zhang, T.; Lyu, M.; Lam, J.W.Y.; Zhu, D.; Huang, Q.; Tang, B.Z. A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials, 2023, 295, 122034.
[http://dx.doi.org/10.1016/j.biomaterials.2023.122034] [PMID: 36746049]
[9]
Hua, Y.; Wang, Y.; Kang, X.; Xu, F.; Han, Z.; Zhang, C.; Wang, Z.Y.; Liu, J.Q.; Zhao, X.; Chen, X.; Zang, S.Q. A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. J. Nanobiotechnology, 2021, 19(1), 438.
[http://dx.doi.org/10.1186/s12951-021-01191-x] [PMID: 34930279]
[10]
Zhang, J.; Zou, H.; Gan, S.; He, B.; Huang, J.C.; Peng, C.; Lam, J.W.Y.; Zheng, L.; Tang, B.Z. Endowing AIE with extraordinary potential: A new Au (I)-containing AIEgen for bimodal bioimaging-guided multimodal synergistic cancer therapy. Adv. Funct. Mater., 2022, 32(2), 2108199.
[http://dx.doi.org/10.1002/adfm.202108199]
[11]
Thariat, J.; Hannoun-Levi, J.M.; Sun Myint, A.; Vuong, T.; Gérard, J.P. Past, present, and future of radiotherapy for the benefit of patients. Nat. Rev. Clin. Oncol., 2013, 10(1), 52-60.
[http://dx.doi.org/10.1038/nrclinonc.2012.203] [PMID: 23183635]
[12]
Chandra, R.A.; Keane, F.K.; Voncken, F.E.M.; Thomas, C.R., Jr. Contemporary radiotherapy: present and future. Lancet, 2021, 398(10295), 171-184.
[http://dx.doi.org/10.1016/S0140-6736(21)00233-6] [PMID: 34166607]
[13]
Duo, Y.; Chen, Z.; Li, K.; Yang, Y.; Wang, H.; Hu, J.; Luo, G. Targeted delivery of novel Au(I)-based AIEgen via inactivated cancer cells for trimodal chemo-radio-immunotherapy and vaccination against advanced tumor. Nano Today, 2023, 51, 101920.
[http://dx.doi.org/10.1016/j.nantod.2023.101920]
[14]
Robinson, P.; Coveñas, R.; Muñoz, M. Combination therapy of chemotherapy or radiotherapy and the neurokinin-1 receptor antagonist aprepitant: A new antitumor strategy? Curr. Med. Chem., 2023, 30(16), 1798-1812.
[http://dx.doi.org/10.2174/0929867329666220811152602] [PMID: 35959620]
[15]
Liu, J.; Hu, F.; Wu, M.; Tian, L.; Gong, F.; Zhong, X.; Chen, M.; Liu, Z.; Liu, B. Bioorthogonal coordination polymer nanoparticles with aggregation-induced emission for deep tumor-penetrating radio-and radiodynamic therapy. Adv. Mater., 2021, 33(9), 2007888.
[http://dx.doi.org/10.1002/adma.202007888] [PMID: 33491820]
[16]
Yang, C.; Ni, X.; Mao, D.; Ren, C.; Liu, J.; Gao, Y.; Ding, D.; Liu, J. Seeing the fate and mechanism of stem cells in treatment of ionizing radiation-induced injury using highly near-infrared emissive AIE dots. Biomaterials, 2019, 188, 107-117.
[http://dx.doi.org/10.1016/j.biomaterials.2018.10.009] [PMID: 30342204]
[17]
Duo, Y.; Chen, Z.; Li, Z.; Li, X.; Yao, Y.; Xu, T.; Gao, G.; Luo, G. Combination of bacterial-targeted delivery of gold-based AIEgen radiosensitizer for fluorescence-image-guided enhanced radio-immunotherapy against advanced cancer. Bioact. Mater., 2023, 30, 200-213.
[http://dx.doi.org/10.1016/j.bioactmat.2023.05.010] [PMID: 37663305]
[18]
Begg, A.C.; Stewart, F.A.; Vens, C. Strategies to improve radiotherapy with targeted drugs. Nat. Rev. Cancer, 2011, 11(4), 239-253.
[http://dx.doi.org/10.1038/nrc3007] [PMID: 21430696]
[19]
Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine, 2021, 16, 1083-1102.
[http://dx.doi.org/10.2147/IJN.S290438] [PMID: 33603370]
[20]
Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold nanoparticles as radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine, 2020, 15, 9407-9430.
[http://dx.doi.org/10.2147/IJN.S272902] [PMID: 33262595]
[21]
Kanotra, S.P.; Kanotra, S.; Gupta, A.; Paul, J. Chemoradiation in advanced head and neck cancers: A comparison of two radiosensitizers, paclitaxel and cisplatin. Indian J. Otolaryngol. Head Neck Surg., 2011, 63(3), 229-236.
[http://dx.doi.org/10.1007/s12070-011-0263-1] [PMID: 22754800]
[22]
Kulka, U.; Schaffer, M.; Siefert, A.; Schaffer, P.M.; Ölsner, A.; Kasseb, K.; Hofstetter, A.; Dühmke, E.; Jori, G. Photofrin as a radiosensitizer in an in vitro cell survival assay. Biochem. Biophys. Res. Commun., 2003, 311(1), 98-103.
[http://dx.doi.org/10.1016/j.bbrc.2003.09.170] [PMID: 14575700]
[23]
Lin, X.; Zhu, R.; Hong, Z.; Zhang, X.; Chen, S.; Song, J.; Yang, H. GSH-responsive radiosensitizers with deep penetration ability for multimodal imaging-guided synergistic radio-chemodynamic cancer therapy. Adv. Funct. Mater., 2021, 31(24), 2101278.
[http://dx.doi.org/10.1002/adfm.202101278]
[24]
Zhang, J.; Jiang, D.; Lyu, M.; Ren, S.; Zhou, Y.; Cao, Z. Synergistic radiosensitization mediated by chemodynamic therapy via a novel biodegradable peroxidases mimicking nanohybrid. Front. Oncol., 2022, 12, 872502.
[http://dx.doi.org/10.3389/fonc.2022.872502] [PMID: 35619898]
[25]
Gill, M.R.; Vallis, K.A. Transition metal compounds as cancer radiosensitizers. Chem. Soc. Rev., 2019, 48(2), 540-557.
[http://dx.doi.org/10.1039/C8CS00641E] [PMID: 30499573]
[26]
Xie, J.; Gong, L.; Zhu, S.; Yong, Y.; Gu, Z.; Zhao, Y. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater., 2019, 31(3), 1802244.
[http://dx.doi.org/10.1002/adma.201802244] [PMID: 30156333]
[27]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[28]
Shadel, G.S.; Horvath, T.L. Mitochondrial ROS signaling in organismal homeostasis. Cell, 2015, 163(3), 560-569.
[http://dx.doi.org/10.1016/j.cell.2015.10.001] [PMID: 26496603]
[29]
Chen, Q.; Vazquez, E.J.; Moghaddas, S.; Hoppel, C.L.; Lesnefsky, E.J. Production of reactive oxygen species by mitochondria: central role of complex III. J. Biol. Chem., 2003, 278(38), 36027-36031.
[http://dx.doi.org/10.1074/jbc.M304854200] [PMID: 12840017]
[30]
Kowaltowski, A.J.; de Souza-Pinto, N.C.; Castilho, R.F.; Vercesi, A.E. Mitochondria and reactive oxygen species. Free Radic. Biol. Med., 2009, 47(4), 333-343.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.004] [PMID: 19427899]
[31]
Yang, L.; Shi, L.; Liu, Y. ROS-mediated therapeutics combined with metal-based porphyrin nanoparticles and their applications in tumor treatment. Curr. Med. Chem., 2024.
[PMID: 37859412]
[32]
Chen, Y.; Li, N.; Wang, J.; Zhang, X.; Pan, W.; Yu, L.; Tang, B. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics, 2019, 9(1), 167-178.
[http://dx.doi.org/10.7150/thno.28033] [PMID: 30662560]
[33]
Li, N.; Yu, L.; Wang, J.; Gao, X.; Chen, Y.; Pan, W.; Tang, B. A mitochondria-targeted nanoradiosensitizer activating reactive oxygen species burst for enhanced radiation therapy. Chem. Sci., 2018, 9(12), 3159-3164.
[http://dx.doi.org/10.1039/C7SC04458E] [PMID: 29732098]
[34]
Zaffaroni, M.; Vincini, M.G.; Corrao, G.; Marvaso, G.; Pepa, M.; Viglietto, G.; Amodio, N.; Jereczek-Fossa, B.A. Unraveling mitochondrial determinants of tumor response to radiation therapy. Int. J. Mol. Sci., 2022, 23(19), 11343.
[http://dx.doi.org/10.3390/ijms231911343] [PMID: 36232638]
[35]
Ni, K.; Lan, G.; Veroneau, S.S.; Duan, X.; Song, Y.; Lin, W. Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat. Commun., 2018, 9(1), 4321.
[http://dx.doi.org/10.1038/s41467-018-06655-7] [PMID: 30333489]
[36]
Owari, T.; Tanaka, N.; Nakai, Y.; Miyake, M.; Anai, S.; Kishi, S.; Mori, S.; Fujiwara-Tani, R.; Hojo, Y.; Mori, T.; Kuwada, M.; Fujii, T.; Hasegawa, M.; Fujimoto, K.; Kuniyasu, H. 5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells. Br. J. Cancer, 2022, 127(2), 350-363.
[http://dx.doi.org/10.1038/s41416-022-01789-4] [PMID: 35365766]
[37]
Yu, C.Y.Y.; Xu, H.; Ji, S.; Kwok, R.T.K.; Lam, J.W.Y.; Li, X.; Krishnan, S.; Ding, D.; Tang, B.Z. Mitochondrion-anchoring photosensitizer with aggregation-induced emission characteristics synergistically boosts the radiosensitivity of cancer cells to ionizing radiation. Adv. Mater., 2017, 29(15), 1606167.
[http://dx.doi.org/10.1002/adma.201606167] [PMID: 28195448]
[38]
Son, S.; Kim, J.H.; Wang, X.; Zhang, C.; Yoon, S.A.; Shin, J.; Sharma, A.; Lee, M.H.; Cheng, L.; Wu, J.; Kim, J.S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev., 2020, 49(11), 3244-3261.
[http://dx.doi.org/10.1039/C9CS00648F] [PMID: 32337527]
[39]
Qian, X.; Zheng, Y.; Chen, Y. Micro/nanoparticle-augmented sonodynamic therapy (SDT): Breaking the depth shallow of photoactivation. Adv. Mater., 2016, 28(37), 8097-8129.
[http://dx.doi.org/10.1002/adma.201602012] [PMID: 27384408]
[40]
Harvey, C.J.; Pilcher, J.M.; Eckersley, R.J.; Blomley, M.J.K.; Cosgrove, D.O. Advances in ultrasound. Clin. Radiol., 2002, 57(3), 157-177.
[http://dx.doi.org/10.1053/crad.2001.0918] [PMID: 11952309]
[41]
Carovac, A.; Smajlovic, F.; Junuzovic, D. Application of ultrasound in medicine. Acta Inform. Med., 2011, 19(3), 168-171.
[http://dx.doi.org/10.5455/aim.2011.19.168-171] [PMID: 23408755]
[42]
Tsuru, H.; Shibaguchi, H.; Kuroki, M.; Yamashita, Y.; Kuroki, M. Tumor growth inhibition by sonodynamic therapy using a novel sonosensitizer. Free Radic. Biol. Med., 2012, 53(3), 464-472.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.025] [PMID: 22588110]
[43]
Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn. J. Cancer Res., 1989, 80(3), 219-222.
[http://dx.doi.org/10.1111/j.1349-7006.1989.tb02295.x] [PMID: 2470713]
[44]
Bunevicius, A.; Pikis, S.; Padilla, F.; Prada, F.; Sheehan, J. Sonodynamic therapy for gliomas. J. Neurooncol., 2022, 156(1), 1-10.
[http://dx.doi.org/10.1007/s11060-021-03807-6] [PMID: 34251601]
[45]
Lafond, M.; Yoshizawa, S.; Umemura, S. Sonodynamic therapy: Advances and challenges in clinical translation. J. Ultrasound Med., 2019, 38(3), 567-580.
[http://dx.doi.org/10.1002/jum.14733] [PMID: 30338863]
[46]
Zha, B.; Yang, J.; Dang, Q.; Li, P.; Shi, S.; Wu, J.; Cui, H.; Huangfu, L.; Li, Y.; Yang, D.; Zheng, Y. A phase I clinical trial of sonodynamic therapy combined with temozolomide in the treatment of recurrent glioblastoma. J. Neurooncol., 2023, 162(2), 317-326.
[http://dx.doi.org/10.1007/s11060-023-04292-9] [PMID: 36988745]
[47]
Liang, S.; Deng, X.; Xu, G.; Xiao, X.; Wang, M.; Guo, X.; Ma, P.; Cheng, Z.; Zhang, D.; Lin, J. A novel Pt–TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv. Funct. Mater., 2020, 30(13), 1908598.
[http://dx.doi.org/10.1002/adfm.201908598]
[48]
Yuan, M.; Liang, S.; Zhou, Y.; Xiao, X.; Liu, B.; Yang, C.; Ma, P.; Cheng, Z.; Lin, J. A robust oxygen-carrying hemoglobin-based natural sonosensitizer for sonodynamic cancer therapy. Nano Lett., 2021, 21(14), 6042-6050.
[http://dx.doi.org/10.1021/acs.nanolett.1c01220] [PMID: 34254814]
[49]
Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord. Chem. Rev., 2021, 445, 214087.
[http://dx.doi.org/10.1016/j.ccr.2021.214087]
[50]
Pang, X.; Xu, C.; Jiang, Y.; Xiao, Q.; Leung, A.W. Natural products in the discovery of novel sonosensitizers. Pharmacol. Ther., 2016, 162, 144-151.
[http://dx.doi.org/10.1016/j.pharmthera.2015.12.004] [PMID: 26706240]
[51]
Tian, Y.; Sang, W.; Tian, H.; Xie, L.; Wang, G.; Zhang, Z.; Li, W.; Dai, Y. A two-step flexible ultrasound strategy to enhance tumor radiotherapy via metal–phenolic network Nanoplatform. Adv. Funct. Mater., 2022, 32(36), 2205690.
[http://dx.doi.org/10.1002/adfm.202205690]
[52]
Wang, Z.; Yu, N.; Zhang, J.; Ren, Q.; Li, M.; Chen, Z. Nanoscale Hf-hematoporphyrin frameworks for synergetic sonodynamic/radiation therapy of deep-seated tumors. J. Colloid Interface Sci., 2022, 626, 803-814.
[http://dx.doi.org/10.1016/j.jcis.2022.06.174] [PMID: 35820215]
[53]
Son, S.; Zhang, C.; Won, M.; Jangili, P.; Choi, M.; Wu, J.; Kim, J.S. Ultrasound activatable antiangiogenic sonosensitizer for VEGFR associated glioblastoma tumor models. Aggregate, 2021, 2(4), e97.
[http://dx.doi.org/10.1002/agt2.97]
[54]
Zeng, W.; Xu, Y.; Yang, W.; Liu, K.; Bian, K.; Zhang, B. An Ultrasound-excitable aggregation-induced emission dye for enhanced sonodynamic therapy of tumors. Adv. Healthc. Mater., 2020, 9(17), 2000560.
[http://dx.doi.org/10.1002/adhm.202000560] [PMID: 33448676]
[55]
Zhang, Y.; Zhang, X.; Yang, H.; Yu, L.; Xu, Y.; Sharma, A.; Yin, P.; Li, X.; Kim, J.S.; Sun, Y. Advanced biotechnology-assisted precise sonodynamic therapy. Chem. Soc. Rev., 2021, 50(20), 11227-11248.
[http://dx.doi.org/10.1039/D1CS00403D] [PMID: 34661214]
[56]
Jia, S.; Gao, Z.; Wu, Z.; Gao, H.; Wang, H.; Ou, H.; Ding, D. Sonosensitized aggregation-induced emission dots with capacities of immunogenic cell death induction and multivalent blocking of programmed cell death-ligand 1 for amplified antitumor immunotherapy. CCS Chemistry, 2022, 4(2), 501-514.
[http://dx.doi.org/10.31635/ccschem.021.202101458]
[57]
Feng, G.; Zhang, G.Q.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev., 2020, 49(22), 8179-8234.
[http://dx.doi.org/10.1039/D0CS00671H] [PMID: 33196726]
[58]
Chen, C.; Ou, H.; Liu, R.; Ding, D. Regulating the photophysical property of organic/polymer optical agents for promoted cancer phototheranostics. Adv. Mater., 2020, 32(3), 1806331.
[http://dx.doi.org/10.1002/adma.201806331] [PMID: 30924971]
[59]
Chen, C.; Tang, Y.; Ding, D. Intramolecular motion-associated biomaterials for image-guided cancer surgery. Smart Mat. Med., 2020, 1, 24-31.
[http://dx.doi.org/10.1016/j.smaim.2020.05.001]
[60]
Sun, W.; Luo, L.; Feng, Y.; Cai, Y.; Zhuang, Y.; Xie, R.J.; Chen, X.; Chen, H. Aggregation-induced emission gold clustoluminogens for enhanced low-dose X-ray-induced photodynamic therapy. Angew. Chem. Int. Ed., 2020, 59(25), 9914-9921.
[http://dx.doi.org/10.1002/anie.201908712] [PMID: 31418982]
[61]
Lyu, M.; Zhang, T.; Li, Y.; Xiang, J.; Zhu, D.; Xia, L.; Guo, B.; Xu, Y.; Yu, H.; Tang, B. AIEgen-based nanotherapeutic strategy for enhanced FLASH irradiation to prevent tumour recurrence and avoid severe side effects. Chem. Eng. J., 2023, 473, 145179.
[http://dx.doi.org/10.1016/j.cej.2023.145179]
[62]
Xia, Q.; Zhang, Y.; Li, Y.; Li, Y.; Li, Y.; Feng, Z.; Fan, X.; Qian, J.; Lin, H. A historical review of aggregation-induced emission from 2001 to 2020: A bibliometric analysis. Aggregate, 2022, 3(1), e152.
[http://dx.doi.org/10.1002/agt2.152]
[63]
Chen, C.; Gao, H.; Ou, H.; Kwok, R.T.K.; Tang, Y.; Zheng, D.; Ding, D. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc., 2022, 144(8), 3429-3441.
[http://dx.doi.org/10.1021/jacs.1c11455] [PMID: 35050608]
[64]
Chen, C.; Ni, X.; Tian, H.W.; Liu, Q.; Guo, D.S.; Ding, D. Calixarene-based supramolecular AIE dots with highly inhibited nonradiative decay and intersystem crossing for ultrasensitive fluorescence image-guided cancer surgery. Angew. Chem. Int. Ed., 2020, 59(25), 10008-10012.
[http://dx.doi.org/10.1002/anie.201916430] [PMID: 31981392]
[65]
Chen, C.; Wang, Z.; Jia, S.; Zhang, Y.; Ji, S.; Zhao, Z.; Kwok, R.T.K.; Lam, J.W.Y.; Ding, D.; Shi, Y.; Tang, B.Z. Evoking highly immunogenic ferroptosis aided by intramolecular motion-induced photo-hyperthermia for cancer therapy. Adv. Sci., 2022, 9(10), 2104885.
[http://dx.doi.org/10.1002/advs.202104885] [PMID: 35132824]
[66]
Zhou, P.; Han, K. ESIPT-based AIE luminogens: Design strategies, applications, and mechanisms. Aggregate, 2022, 3(5), e160.
[http://dx.doi.org/10.1002/agt2.160]
[67]
Peng, Q.; Shuai, Z. Molecular mechanism of aggregation-induced emission. Aggregate, 2021, 2(5), e91.
[http://dx.doi.org/10.1002/agt2.91]
[68]
Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Tang, B.Z.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun., 2001, (18), 1740-1741.
[http://dx.doi.org/10.1039/b105159h] [PMID: 12240292]
[69]
Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: phenomenon, mechanism and applications. Chem. Commun., 2009, (29), 4332-4353.
[http://dx.doi.org/10.1039/b904665h] [PMID: 19597589]
[70]
Zhao, Z.; Zhang, H.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: New vistas at the aggregate level. Angew. Chem. Int. Ed., 2020, 59(25), 9888-9907.
[http://dx.doi.org/10.1002/anie.201916729] [PMID: 32048428]
[71]
Liu, Z.; Zou, H.; Zhao, Z.; Zhang, P.; Shan, G.G.; Kwok, R.T.K.; Lam, J.W.Y.; Zheng, L.; Tang, B.Z. Tuning organelle specificity and photodynamic therapy efficiency by molecular function design. ACS Nano, 2019, 13(10), 11283-11293.
[http://dx.doi.org/10.1021/acsnano.9b04430] [PMID: 31525947]
[72]
Liu, J.; Chen, W.; Zheng, C.; Hu, F.; Zhai, J.; Bai, Q.; Sun, N.; Qian, G.; Zhang, Y.; Dong, K.; Lu, T. Recent molecular design strategies for efficient photodynamic therapy and its synergistic therapy based on AIE photosensitizers. Eur. J. Med. Chem., 2022, 244, 114843.
[http://dx.doi.org/10.1016/j.ejmech.2022.114843] [PMID: 36265281]
[73]
Chen, C.; Ni, X.; Jia, S.; Liang, Y.; Wu, X.; Kong, D.; Ding, D. Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure. Adv. Mater., 2019, 31(52), 1904914.
[http://dx.doi.org/10.1002/adma.201904914] [PMID: 31696981]
[74]
Chen, C.; Zhang, R.; Zhang, J.; Zhang, Y.; Zhang, H.; Wang, Z.; Huang, X.; Chen, S.; Kwok, R.T.K.; Lam, J.W.Y.; Ding, D.; Tang, B.Z. Taming reactive oxygen species: mitochondria-targeting aggregation-induced emission luminogen for neuron protection via photosensitization-triggered autophagy. CCS Chemistry, 2022, 4(7), 2249-2257.
[http://dx.doi.org/10.31635/ccschem.021.202101217]
[75]
Li, S.; Chen, Y.; He, P.; Ma, Y.; Cai, Y.; Hou, X.; Zhang, G.; Zhang, X.; Wang, Z. Aggregation-induced emission (AIE) photosensitizer combined polydopamine nanomaterials for organelle-targeting photodynamic and photothermal therapy by the recognition of sialic acid. Adv. Healthcare. Mater., 2022, 11(15), 2200242.
[http://dx.doi.org/10.1002/adhm.202200242] [PMID: 35613621]
[76]
Tang, Y.; Wang, X.; Zhu, G.; Liu, Z.; Chen, X.M.; Bisoyi, H.K.; Chen, X.; Chen, X.; Xu, Y.; Li, J.; Li, Q. Hypoxia-responsive photosensitizer targeting dual organelles for photodynamic therapy of tumors. Small, 2023, 19(1), 2205440.
[http://dx.doi.org/10.1002/smll.202205440] [PMID: 36285777]
[77]
Xu, R.; Chi, W.; Zhao, Y.; Tang, Y.; Jing, X.; Wang, Z.; Zhou, Y.; Shen, Q.; Zhang, J.; Yang, Z.; Dang, D.; Meng, L. All-in-one theranostic platforms: Deep-red AIE nanocrystals to target dual-organelles for efficient photodynamic therapy. ACS Nano, 2022, 16(12), 20151-20162.
[http://dx.doi.org/10.1021/acsnano.2c04465] [PMID: 36250626]
[78]
He, M.Y.; Rancoule, C.; Rehailia-Blanchard, A.; Espenel, S.; Trone, J.C.; Bernichon, E.; Guillaume, E.; Vallard, A.; Magné, N. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Crit. Rev. Oncol. Hematol., 2018, 131, 96-101.
[http://dx.doi.org/10.1016/j.critrevonc.2018.09.004] [PMID: 30293712]
[79]
Yao, Y.; Chu, Y.; Xu, B.; Hu, Q.; Song, Q. Radiotherapy after surgery has significant survival benefits for patients with triple-negative breast cancer. Cancer Med., 2019, 8(2), 554-563.
[http://dx.doi.org/10.1002/cam4.1954] [PMID: 30632300]