Current Pharmaceutical Design

Author(s): Muthu Ragunath, Aling Shen, Lin Wei, Jun Peng* and Muthu Thiruvengadam*

DOI: 10.2174/0113816128301870240730071910

DownloadDownload PDF Flyer Cite As
Ribosome Biogenesis and Cancer: Insights into NOB1 and PNO1 Mechanisms

Page: [2911 - 2921] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Post-transcriptional modifications (PTMs) are pivotal in the regulation of gene expression, and pseudouridylation is emerging as a critical player. This modification, facilitated by enzymes such as NOB1 (PNO1), is integral to ribosome biogenesis. PNO1, in collaboration with the NIN1/RPN12 binding protein 1 homolog (NOB1), is vital for the maturation of ribosomes, transitioning 20S pre-rRNA into functional 18S rRNA. Recent studies have highlighted PNO1's potential involvement in cancer progression; however, its underlying mechanisms remain unclear. Relentless growth characterizing cancer underscores the burgeoning significance of epitranscriptomic modifications, including pseudouridylation, in oncogenesis. Given PNO1's emerging role, it is imperative to delineate its contribution to cancer development to identify novel therapeutic interventions. This review summarizes the current literature regarding the role of PNO1 in cancer progression and its molecular underpinnings in oncogenesis. Overexpression of PNO1 was associated with unfavorable prognosis and increased tumor malignancy. At the molecular level, PNO1 facilitates cancer progression by modulating mRNA stability, alternative splicing, and translation efficiency. Its role in pseudouridylation of oncogenic and tumor-suppressor transcripts further underscores its significance in cancer biology. Although disruption of ribosome biogenesis is known to precipitate oncogenesis, the precise mechanisms by which these alterations contribute to cancer remain unclear. This review elucidates the intricate process of ribosomal small subunit maturation, highlighting the roles of crucial ribosomal proteins (RPs) and RNA-binding proteins (RBPs) as well as the positioning and function of NOB1 and PNO1 within the 40S subunit. The involvement of these components in the maturation of the small subunit (SSU) and their significance in the context of cancer therapeutics has been thoroughly explored. PNO1's burgeoning significance in oncology makes it a potential target for cancer therapies. Strategies aimed at modulating PNO1-mediated pseudouridylation may provide new avenues for cancer treatment. However, further research is essential to unravel the complete spectrum of PNO1 mechanisms in cancer and harness this knowledge for the development of targeted and more efficacious anticancer therapies.

Keywords: Ribososme biogenesis, NOB1, PNO1, small subunit, ribosome maturation, 40S subunit.

[1]
Shen A, Chen Y, Liu L, et al. EBF1-mediated upregulation of ribosome assembly factor PNO1 contributes to cancer progression by negatively regulating the p53 signaling pathway. Cancer Res 2019; 79(9): 2257-70.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3238] [PMID: 30862720]
[2]
de la Cruz J, Karbstein K, Woolford JL Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem 2015; 84(1): 93-129.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033917] [PMID: 25706898]
[3]
Trerè D, Borzio M, Morabito A, Borzio F, Roncalli M, Derenzini M. Nucleolar hypertrophy correlates with hepatocellular carcinoma development in cirrhosis due to HBV infection. Hepatology 2003; 37(1): 72-8.
[http://dx.doi.org/10.1053/jhep.2003.50039] [PMID: 12500191]
[4]
Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S. The relationship between the nucleolus and cancer: Current evidence and emerging paradigms. Semin Cancer Biol 2016; 37-38: 36-50.
[http://dx.doi.org/10.1016/j.semcancer.2015.12.004] [PMID: 26721423]
[5]
Harold CM, Buhagiar AF, Cheng Y, Baserga SJ. Ribosomal RNA transcription regulation in breast cancer. Genes 2021; 12(4): 502.
[http://dx.doi.org/10.3390/genes12040502] [PMID: 33805424]
[6]
Pelletier J, Thomas G, Volarević S. Ribosome biogenesis in cancer: New players and therapeutic avenues. Nat Rev Cancer 2018; 18(1): 51-63.
[http://dx.doi.org/10.1038/nrc.2017.104] [PMID: 29192214]
[7]
Cheng J, Baßler J, Fischer P, et al. Thermophile 90S pre-ribosome structures reveal the reverse order of co-transcriptional 18S rRNA subdomain integration. Mol Cell 2019; 75(6): 1256-1269.e7.
[http://dx.doi.org/10.1016/j.molcel.2019.06.032] [PMID: 31378463]
[8]
Dragon F, Gallagher JEG, Compagnone-Post PA, et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 2002; 417(6892): 967-70.
[http://dx.doi.org/10.1038/nature00769] [PMID: 12068309]
[9]
Larburu N, Montellese C, O’Donohue MF, Kutay U, Gleizes PE, Plisson-Chastang C. Structure of a human pre-40S particle points to a role for RACK1 in the final steps of 18S rRNA processing. Nucleic Acids Res 2016; 44(17): 8465-78.
[http://dx.doi.org/10.1093/nar/gkw714] [PMID: 27530427]
[10]
Zorbas C, Nicolas E, Wacheul L, Huvelle E, Heurgué-Hamard V, Lafontaine DLJ. The human 18S rRNA base methyltransferases DIMT1L and WBSCR22-TRMT112 but not rRNA modification are required for ribosome biogenesis. Mol Biol Cell 2015; 26(11): 2080-95.
[http://dx.doi.org/10.1091/mbc.E15-02-0073] [PMID: 25851604]
[11]
Turowski TW, Lebaron S, Zhang E, et al. Rio1 mediates ATP-dependent final maturation of 40S ribosomal subunits. Nucleic Acids Res 2014; 42(19): 12189-99.
[http://dx.doi.org/10.1093/nar/gku878] [PMID: 25294836]
[12]
Heuer A, Thomson E, Schmidt C, et al. Cryo-EM structure of a late pre-40S ribosomal subunit from Saccharomyces cerevisiae. eLife 2017; 6: e30189.
[http://dx.doi.org/10.7554/eLife.30189] [PMID: 29155690]
[13]
Fatica A, Oeffinger M, Dlakić M, Tollervey D. NOB1p is required for cleavage of the 3′ end of 18S rRNA. Mol Cell Biol 2003; 23(5): 1798-807.
[http://dx.doi.org/10.1128/MCB.23.5.1798-1807.2003] [PMID: 12588997]
[14]
Woolls HA, Lamanna AC, Karbstein K. Roles of Dim2 in ribosome assembly. J Biol Chem 2011; 286(4): 2578-86.
[http://dx.doi.org/10.1074/jbc.M110.191494] [PMID: 21075849]
[15]
Ameismeier M, Cheng J, Berninghausen O, Beckmann R. Visualizing late states of human 40S ribosomal subunit maturation. Nature 2018; 558(7709): 249-53.
[http://dx.doi.org/10.1038/s41586-018-0193-0] [PMID: 29875412]
[16]
Zhou GJ, Zhang Y, Wang J, et al. Cloning and characterization of a novel human RNA binding protein gene PNO1. DNA Seq 2004; 15(3): 219-24.
[http://dx.doi.org/10.1080/10425170410001702159] [PMID: 15497447]
[17]
Wong AG, McBurney KL, Thompson KJ, Stickney LM, Mackie GA. S1 and KH domains of polynucleotide phosphorylase determine the efficiency of RNA binding and autoregulation. J Bacteriol 2013; 195(9): 2021-31.
[http://dx.doi.org/10.1128/JB.00062-13] [PMID: 23457244]
[18]
Yadav M, Singh RS, Hogan D, et al. The KH domain facilitates the substrate specificity and unwinding processivity of DDX43 helicase. J Biol Chem 2021; 296: 100085.
[http://dx.doi.org/10.1074/jbc.RA120.015824] [PMID: 33199368]
[19]
Ameismeier M, Zemp I, van den Heuvel J, et al. Structural basis for the final steps of human 40S ribosome maturation. Nature 2020; 587(7835): 683-7.
[http://dx.doi.org/10.1038/s41586-020-2929-x] [PMID: 33208940]
[20]
van den Heuvel J, Ashiono C, Gillet LC, et al. Processing of the ribosomal ubiquitin-like fusion protein FUBI-eS30/FAU is required for 40S maturation and depends on USP36. eLife 2021; 10: e70560.
[http://dx.doi.org/10.7554/eLife.70560] [PMID: 34318747]
[21]
Lamanna AC, Karbstein K. NOB1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain. Proc Natl Acad Sci USA 2009; 106(34): 14259-64.
[http://dx.doi.org/10.1073/pnas.0905403106] [PMID: 19706509]
[22]
Dai H, Zhang S, Ma R, Pan L. Celecoxib inhibits hepatocellular carcinoma cell growth and migration by targeting PNO1. Med Sci Monit 2019; 25: 7351-60.
[http://dx.doi.org/10.12659/MSM.919218] [PMID: 31568401]
[23]
Nait Slimane S, Marcel V, Fenouil T, et al. Ribosome biogenesis alterations in colorectal cancer. Cells 2020; 9(11): 2361.
[http://dx.doi.org/10.3390/cells9112361] [PMID: 33120992]
[24]
Plassart L, Shayan R, Montellese C, et al. The final step of 40S ribosomal subunit maturation is controlled by a dual key lock. eLife 2021; 10: e61254.
[http://dx.doi.org/10.7554/eLife.61254] [PMID: 33908345]
[25]
Li J, Liu L, Chen Y, et al. Ribosome assembly factor PNO1 is associated with progression and promotes tumorigenesis in triple-negative breast cancer. Oncol Rep 2022; 47(6): 108.
[http://dx.doi.org/10.3892/or.2022.8319] [PMID: 35445733]
[26]
Stepanchick A, Zhi H, Cavanaugh AH, Rothblum K, Schneider DA, Rothblum LI. DNA binding by the ribosomal DNA transcription factor rrn3 is essential for ribosomal DNA transcription. J Biol Chem 2013; 288(13): 9135-44.
[http://dx.doi.org/10.1074/jbc.M112.444265] [PMID: 23393135]
[27]
Sharma S, Marchand V, Motorin Y, Lafontaine DLJ. Identification of sites of 2′-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep 2017; 7(1): 11490.
[http://dx.doi.org/10.1038/s41598-017-09734-9] [PMID: 28904332]
[28]
Cerqueira AV, Lemos B. Ribosomal DNA and the nucleolus as keystones in nuclear architecture, organization, and function. Trends Genet 2019; 35(10): 710-23.
[http://dx.doi.org/10.1016/j.tig.2019.07.011] [PMID: 31447250]
[29]
Montanaro L, Treré D, Derenzini M. Nucleolus, ribosomes, and cancer. Am J Pathol 2008; 173(2): 301-10.
[http://dx.doi.org/10.2353/ajpath.2008.070752] [PMID: 18583314]
[30]
Narasimha A, Vasavi B, Harendra Kumar ML. Significance of nuclear morphometry in benign and malignant breast aspirates. Int J Appl Basic Med Res 2013; 3(1): 22-6.
[http://dx.doi.org/10.4103/2229-516X.112237] [PMID: 23776836]
[31]
Penzo M, Montanaro L, Treré D, Derenzini M. The ribosome biogenesis-cancer connection. Cells 2019; 8(1): 55.
[http://dx.doi.org/10.3390/cells8010055] [PMID: 30650663]
[32]
Derenzini M, Montanaro L, Treré D. What the nucleolus says to a tumour pathologist. Histopathology 2009; 54(6): 753-62.
[http://dx.doi.org/10.1111/j.1365-2559.2008.03168.x] [PMID: 19178588]
[33]
Stępiński D. The nucleolus, an ally, and an enemy of cancer cells. Histochem Cell Biol 2018; 150(6): 607-29.
[http://dx.doi.org/10.1007/s00418-018-1706-5] [PMID: 30105457]
[34]
Prakash V, Carson BB, Feenstra JM, et al. Ribosome biogenesis during cell cycle arrest fuels EMT in development and disease. Nat Commun 2019; 10(1): 2110.
[http://dx.doi.org/10.1038/s41467-019-10100-8] [PMID: 31068593]
[35]
Derenzini M, Montanaro L, Chillà A, et al. Key role of the achievement of an appropriate ribosomal RNA complement for G1-S phase transition in H4-II-E-C3 rat hepatoma cells. J Cell Physiol 2005; 202(2): 483-91.
[http://dx.doi.org/10.1002/jcp.20144] [PMID: 15389582]
[36]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[37]
Brighenti E, Calabrese C, Liguori G, et al. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: A new pathway connecting inflammation to cancer. Oncogene 2014; 33(35): 4396-406.
[http://dx.doi.org/10.1038/onc.2014.1] [PMID: 24531714]
[38]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883-99.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[39]
Narla A, Ebert BL. Ribosomopathies: Human disorders of ribosome dysfunction. Blood 2010; 115(16): 3196-205.
[http://dx.doi.org/10.1182/blood-2009-10-178129] [PMID: 20194897]
[40]
Zhang C, Comai L, Johnson DL. Expression of PTEN in PTEN-deficient cells represses Pol I transcription by disrupting the SL1 complex. Mol Cell Biol 2005; 25: 6899-911.
[http://dx.doi.org/10.1128/MCB.25.16.6899-6911.2005] [PMID: 16055704]
[41]
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48(4): 1313-24.
[http://dx.doi.org/10.3892/ijo.2016.3387] [PMID: 26892688]
[42]
Gregory B, Rahman N, Bommakanti A, et al. The small and large ribosomal subunits depend on each other for stability and accumulation. Life Sci Alliance 2019; 2(2): e201800150.
[http://dx.doi.org/10.26508/lsa.201800150] [PMID: 30837296]
[43]
Naiyer S, Singh SS, Kaur D, et al. Transcriptomic analysis of ribosome biogenesis and pre-rRNA processing during growth stress in Entamoeba histolytica. Exp Parasitol 2022; 239: 108308.
[http://dx.doi.org/10.1016/j.exppara.2022.108308] [PMID: 35718007]
[44]
Catalanotto C, Barbato C, Cogoni C, Benelli D. The RNA-binding function of ribosomal proteins and ribosome biogenesis factors in human health and disease. Biomedicines 2023; 11(11): 2969.
[http://dx.doi.org/10.3390/biomedicines11112969] [PMID: 38001969]
[45]
Schneider DA. RNA polymerase I activity is regulated at multiple steps in the transcription cycle: Recent insights into factors that influence transcription elongation. Gene 2012; 493(2): 176-84.
[http://dx.doi.org/10.1016/j.gene.2011.08.006] [PMID: 21893173]
[46]
Chen J, Zhang L, Ye K. Functional regions in the 5′ external transcribed spacer of yeast pre-rRNA. RNA 2020; 26(7): 866-77.
[http://dx.doi.org/10.1261/rna.074807.120] [PMID: 32213618]
[47]
Lin J, Lu J, Feng Y, Sun M, Ye K. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme. PLoS Biol 2013; 11(10): e1001669.
[http://dx.doi.org/10.1371/journal.pbio.1001669] [PMID: 24130456]
[48]
Barandun J, Hunziker M, Klinge S. Assembly and structure of the SSU processome - a nucleolar precursor of the small ribosomal subunit. Curr Opin Struct Biol 2018; 49: 85-93.
[http://dx.doi.org/10.1016/j.sbi.2018.01.008] [PMID: 29414516]
[49]
Hunziker M, Barandun J, Petfalski E, et al. UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly. Nat Commun 2016; 7(1): 12090.
[http://dx.doi.org/10.1038/ncomms12090] [PMID: 27354316]
[50]
Marmier-Gourrier N, Cléry A, Schlotter F, Senty-Ségault V, Branlant C. A second base pair interaction between U3 small nucleolar RNA and the 5′-ETS region is required for early cleavage of the yeast pre-ribosomal RNA. Nucleic Acids Res 2011; 39(22): 9731-45.
[http://dx.doi.org/10.1093/nar/gkr675] [PMID: 21890904]
[51]
Chaker-Margot M, Hunziker M, Barandun J, Dill BD, Klinge S. Stage-specific assembly events of the 6-MDa small-subunit processome initiate eukaryotic ribosome biogenesis. Nat Struct Mol Biol 2015; 22(11): 920-3.
[http://dx.doi.org/10.1038/nsmb.3111] [PMID: 26479197]
[52]
Phipps KR, Charette JM, Baserga SJ. The small subunit processome in ribosome biogenesis-progress and prospects. Wiley Interdiscip Rev RNA 2011; 2(1): 1-21.
[http://dx.doi.org/10.1002/wrna.57] [PMID: 21318072]
[53]
Barandun J, Chaker-Margot M, Hunziker M, Molloy KR, Chait BT, Klinge S. The complete structure of the small-subunit processome. Nat Struct Mol Biol 2017; 24(11): 944-53.
[http://dx.doi.org/10.1038/nsmb.3472] [PMID: 28945246]
[54]
Linnemann J, Pöll G, Jakob S, et al. Impact of two neighbouring ribosomal protein clusters on biogenesis factor binding and assembly of yeast late small ribosomal subunit precursors. PLoS One 2019; 14(1): e0203415.
[http://dx.doi.org/10.1371/journal.pone.0203415] [PMID: 30653518]
[55]
Bleichert F, Granneman S, Osheim YN, Beyer AL, Baserga SJ. The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation. Proc Natl Acad Sci USA 2006; 103(25): 9464-9.
[http://dx.doi.org/10.1073/pnas.0603673103] [PMID: 16769905]
[56]
Koš M, Tollervey D. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 2010; 37(6): 809-20.
[http://dx.doi.org/10.1016/j.molcel.2010.02.024] [PMID: 20347423]
[57]
Schäfer T, Strauss D, Petfalski E, Tollervey D, Hurt E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J 2003; 22(6): 1370-80.
[http://dx.doi.org/10.1093/emboj/cdg121] [PMID: 12628929]
[58]
Schäfer T, Maco B, Petfalski E, et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature 2006; 441(7093): 651-5.
[http://dx.doi.org/10.1038/nature04840] [PMID: 16738661]
[59]
Johnson MC, Ghalei H, Doxtader KA, Karbstein K, Stroupe ME. Structural heterogeneity in pre-40S ribosomes. Structure 2017; 25(2): 329-40.
[http://dx.doi.org/10.1016/j.str.2016.12.011] [PMID: 28111018]
[60]
Cheng J, Lau B, Thoms M, et al. The nucleoplasmic phase of pre-40S formation prior to nuclear export. Nucleic Acids Res 2022; 50(20): 11924-37.
[http://dx.doi.org/10.1093/nar/gkac961] [PMID: 36321656]
[61]
Johnson AG, Lapointe CP, Wang J, et al. RACK1 on and off the ribosome. RNA 2019; 25(7): 881-95.
[http://dx.doi.org/10.1261/rna.071217.119] [PMID: 31023766]
[62]
Woolford JL Jr, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195(3): 643-81.
[http://dx.doi.org/10.1534/genetics.113.153197] [PMID: 24190922]
[63]
Aspden JL, Eyre-Walker YC, Phillips RJ, et al. Extensive translation of small open reading frames revealed by poly-ribo-seq. eLife 2014; 3: e03528.
[http://dx.doi.org/10.7554/eLife.03528] [PMID: 25144939]
[64]
Haskell D, Zinovyeva A. KH domain containing RNA-binding proteins coordinate with microRNAs to regulate Caenorhabditis elegans development. G3 (Bethesda) 2021; 11(2): jkab013.
[http://dx.doi.org/10.1093/g3journal/jkab013] [PMID: 33585875]
[65]
Granneman S, Petfalski E, Swiatkowska A, Tollervey D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA–protein cross-linking. EMBO J 2010; 29(12): 2026-36.
[http://dx.doi.org/10.1038/emboj.2010.86] [PMID: 20453830]
[66]
Landry-Voyer AM, Mir Hassani Z, Avino M, Bachand F. Ribosomal protein uS5 and friends: Protein–protein interactions involved in ribosome assembly and beyond. Biomolecules 2023; 13(5): 853.
[http://dx.doi.org/10.3390/biom13050853] [PMID: 37238722]
[67]
Konikkat S, Woolford JL Jr. Principles of 60S ribosomal subunit assembly emerging from recent studies in yeast. Biochem J 2017; 474(2): 195-214.
[http://dx.doi.org/10.1042/BCJ20160516] [PMID: 28062837]
[68]
Ghalei H, Schaub FX, Doherty JR, et al. Hrr25/CK1δ-directed release of LTV1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. J Cell Biol 2015; 208(6): 745-59.
[http://dx.doi.org/10.1083/jcb.201409056] [PMID: 25778921]
[69]
Ferreira-Cerca S, Kiburu I, Thomson E, LaRonde N, Hurt E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res 2014; 42(13): 8635-47.
[http://dx.doi.org/10.1093/nar/gku542] [PMID: 24948609]
[70]
Parker MD, Collins JC, Korona B, Ghalei H, Karbstein K. A kinase-dependent checkpoint prevents escape of immature ribosomes into the translating pool. PLoS Biol 2019; 17(12): e3000329.
[http://dx.doi.org/10.1371/journal.pbio.3000329] [PMID: 31834877]
[71]
Weisser M, Ban N. Extensions, extra factors, and extreme complexity: Ribosomal structures provide insights into eukaryotic translation. Cold Spring Harb Perspect Biol 2019; 11(9): a032367.
[http://dx.doi.org/10.1101/cshperspect.a032367] [PMID: 31481454]
[72]
McCaughan UM, Jayachandran U, Shchepachev V, et al. Pre-40S ribosome biogenesis factor TSR1 is an inactive structural mimic of translational GTPases. Nat Commun 2016; 7(1): 11789.
[http://dx.doi.org/10.1038/ncomms11789] [PMID: 27250689]
[73]
Lebaron S, Schneider C, van Nues RW, et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat Struct Mol Biol 2012; 19(8): 744-53.
[http://dx.doi.org/10.1038/nsmb.2308] [PMID: 22751017]
[74]
García-Gómez JJ, Fernández-Pevida A, Lebaron S, et al. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3. PLoS Genet 2014; 10(3): e1004205.
[http://dx.doi.org/10.1371/journal.pgen.1004205] [PMID: 24603549]
[75]
Rolfe MD, Rice CJ, Lucchini S, et al. Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. J Bacteriol 2012; 194(3): 686-701.
[http://dx.doi.org/10.1128/JB.06112-11] [PMID: 22139505]
[76]
Vanrobays E, Leplus A, Osheim YN, Beyer AL, Wacheul L, Lafontaine DLJ. TOR regulates the subcellular distribution of Dim2, a KH domain protein required for cotranscriptional ribosome assembly and pre-40S ribosome export. RNA 2008; 14(10): 2061-73.
[http://dx.doi.org/10.1261/rna.1176708] [PMID: 18755838]
[77]
Zhao D, Yang J, Yang L. Insights for oxidative stress and mTOR signaling in myocardial ischemia/reperfusion injury under diabetes. Oxid Med Cell Longev 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/6437467] [PMID: 28298952]
[78]
Wang X, Wu T, Hu Y, et al. PNO1 tissue-specific expression and its functions related to the immune responses and proteasome activities. PLoS One 2012; 7(9): e46093.
[http://dx.doi.org/10.1371/journal.pone.0046093] [PMID: 23029399]
[79]
Verkhratsky A, Parpura V. Neurological and psychiatric disorders as a neuroglial failure. Period Biol 2014; 116(2): 115-24.
[PMID: 25544781]
[80]
Obeng EA, Carlson LM, Gutman DM, Harrington WJ Jr, Lee KP, Boise LH. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006; 107(12): 4907-16.
[http://dx.doi.org/10.1182/blood-2005-08-3531] [PMID: 16507771]
[81]
Tschochner H, Hurt E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 2003; 13(5): 255-63.
[http://dx.doi.org/10.1016/S0962-8924(03)00054-0] [PMID: 12742169]
[82]
Rössler I, Weigl S, Fernández-Fernández J, et al. The C-terminal tail of ribosomal protein Rps15 is engaged in cytoplasmic pre-40S maturation. RNA Biol 2022; 19(1): 560-74.
[http://dx.doi.org/10.1080/15476286.2022.2064073] [PMID: 35438042]
[83]
Pertschy B, Schneider C, Gnädig M, Schäfer T, Tollervey D, Hurt E. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18S rRNA processing catalyzed by the endonuclease NOB1. J Biol Chem 2009; 284(50): 35079-91.
[http://dx.doi.org/10.1074/jbc.M109.040774] [PMID: 19801658]
[84]
Campbell MG, Karbstein K. Protein-protein interactions within late pre-40S ribosomes. PLoS One 2011; 6(1): e16194.
[http://dx.doi.org/10.1371/journal.pone.0016194] [PMID: 21283762]
[85]
Koizumi S, Hamazaki J, Murata S. Transcriptional regulation of the 26S proteasome by Nrf1. Proc Jpn Acad, Ser B, Phys Biol Sci 2018; 94(8): 325-36.
[http://dx.doi.org/10.2183/pjab.94.021] [PMID: 30305478]
[86]
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci 2016; 17(10): 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[87]
Akbari Moqadam F, Lange-Turenhout EAM, Ariës IM, Pieters R, den Boer ML. MiR-125b, miR-100 and miR-99a co-regulate vincristine resistance in childhood acute lymphoblastic leukemia. Leuk Res 2013; 37(10): 1315-21.
[http://dx.doi.org/10.1016/j.leukres.2013.06.027] [PMID: 23915977]
[88]
Lin CKE, Kaptein JS, Sheikh J. Differential expression of microRNAs and their possible roles in patients with chronic idiopathic urticaria and active hives. Allergy Rhinol (Providence) 2017; 8(2): ar.2017.8.0199.
[http://dx.doi.org/10.2500/ar.2017.8.0199] [PMID: 28583230]
[89]
Dai H, Hou K, Cai Z, Zhou Q, Zhu S. Low-level miR-646 in colorectal cancer inhibits cell proliferation and migration by targeting NOB1 expression. Oncol Lett 2017; 14(6): 6708-14.
[http://dx.doi.org/10.3892/ol.2017.7032] [PMID: 29391877]
[90]
Ke W, Lu Z, Zhao X. NOB1: A potential biomarker or target in cancer. Curr Drug Targets 2019; 20(10): 1081-9.
[http://dx.doi.org/10.2174/1389450120666190308145346] [PMID: 30854959]
[91]
Dong S, Xue S, Sun Y, et al. MicroRNA-363-3p downregulation in papillary thyroid cancer inhibits tumor progression by targeting NOB1. J Investig Med 2021; 69(1): 66-74.
[http://dx.doi.org/10.1136/jim-2020-001562] [PMID: 33077486]
[92]
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome biogenesis: A central player in cancer metastasis and therapeutic resistance. Cancer Res 2022; 82(13): 2344-53.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-4087] [PMID: 35303060]
[93]
Jiao L, Liu Y, Yu XY, et al. Ribosome biogenesis in disease: New players and therapeutic targets. Signal Transduct Target Ther 2023; 8(1): 15.
[http://dx.doi.org/10.1038/s41392-022-01285-4] [PMID: 36617563]
[94]
Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz Gastroenterol 2019; 14(2): 89-103.
[http://dx.doi.org/10.5114/pg.2018.81072] [PMID: 31616522]
[95]
Li X, Han YR, Xuefeng X, et al. Lentivirus-mediated short hairpin RNA interference of CENPK inhibits growth of colorectal cancer cells with overexpression of Cullin 4A. World J Gastroenterol 2022; 28(37): 5420-43.
[http://dx.doi.org/10.3748/wjg.v28.i37.5420] [PMID: 36312839]
[96]
Liu L, Chen Y, Lin X, et al. Upregulation of SNTB1 correlates with poor prognosis and promotes cell growth by negative regulating PKN2 in colorectal cancer. Cancer Cell Int 2021; 21(1): 547.
[PMID: 34663329]
[97]
Saito A, Kamikawa Y, Ito T, et al. p53-independent tumor suppression by cell-cycle arrest via CREB/ATF transcription factor OASIS. Cell Rep 2023; 42(5): 112479.
[http://dx.doi.org/10.1016/j.celrep.2023.112479] [PMID: 37178686]
[98]
Bang S, Kaur S, Kurokawa M. Regulation of the p53 family proteins by the ubiquitin proteasomal pathway. Int J Mol Sci 2019; 21(1): 261.
[http://dx.doi.org/10.3390/ijms21010261] [PMID: 31905981]