Current Topics in Medicinal Chemistry

Author(s): Dora C.S. Costa, Thamires Q. Froes, Marina S. Mendes, Luana da S.M. Forezi, Vitor F. Ferreira, Marcelo S. Castilho* and Fernando de C. da Silva*

DOI: 10.2174/0115680266327024240726111230

DownloadDownload PDF Flyer Cite As
1H-1,2,3-triazol-1,4-naphthoquinone Derivatives: Novel Inhibitors Targeting Pyocyanin Biosynthesis for P. Aeruginosa Infection Treatment Advances

Page: [2161 - 2171] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: This study investigates the potential of eleven 1H-1,2,3-triazol-1,4-naphthoquinone conjugates as virulence factor inhibitors (like Pyocyanin) and their affinity for PhzM, a crucial enzyme for Pyocyanin biosynthesis in Pseudomonas aeruginosa infections.

Methods: A straightforward synthetic pathway enabled the production of these compounds, which were characterized and structurally confirmed through spectroscopic analyses. Evaluation of their impact on PhzM thermal stability identified promising candidates for PhzM binders.

Results: Concentration-response behavior elucidated their binding affinity, revealing them as the first reported micromolar affinity ligands for PhzM. Structure-activity relationship analysis emphasized the role of specific molecular moieties in binding affinity modulation, paving the way for future advanced inhibitors’ development.

Conclusion: These findings highlight the potential of naphthoquinone-triazole derivatives as leads for novel therapeutics against P. aeruginosa infections.

Keywords: 1H-1, 2, 3-Triazol-1, 4-naphthoquinone, Novel inhibitors, Pyocyanin, P. aeruginosa, Spectroscopic analyses, PhzM binders.

Graphical Abstract

[1]
Brinkac, L.; Voorhies, A.; Gomez, A.; Nelson, K.E. The threat of antimicrobial resistance on the human microbiome. Microb. Ecol., 2017, 74(4), 1001-1008.
[http://dx.doi.org/10.1007/s00248-017-0985-z] [PMID: 28492988]
[2]
Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science, 2016, 352(6285), 544-545.
[http://dx.doi.org/10.1126/science.aad9358] [PMID: 27126037]
[3]
Zhang, Q.Q.; Ying, G.G.; Pan, C.G.; Liu, Y.S.; Zhao, J.L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol., 2015, 49(11), 6772-6782.
[http://dx.doi.org/10.1021/acs.est.5b00729] [PMID: 25961663]
[4]
Centres for Disease Control and Prevention. Antimicrobial resistance & patient safety portal. 2024. Available From: https://arpsp.cdc.gov/profile/antibiotic-resistance/mdr-pseudomonas-aeruginosa
[5]
Anderson, L.; Close, G.L.; Konopinski, M.; Rydings, D.; Milsom, J.; Hambly, C.; Speakman, J.R.; Drust, B.; Morton, J.P. Case Study: Muscle atrophy, hypertrophy, and energy expenditure of a premier league soccer player during rehabilitation from anterior cruciate ligament injury. Int. J. Sport Nutr. Exerc. Metab., 2019, 29(5), 559-566.
[http://dx.doi.org/10.1123/ijsnem.2018-0391] [PMID: 31034244]
[6]
Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist., 2019, 12, 3903-3910.
[http://dx.doi.org/10.2147/IDR.S234610] [PMID: 31908502]
[7]
Årdal, C.; Baraldi, E.; Theuretzbacher, U.; Outterson, K.; Plahte, J.; Ciabuschi, F.; Røttingen, J.A. Insights into early stage of antibiotic development in small- and medium-sized enterprises: A survey of targets, costs, and durations. J. Pharm. Policy Pract., 2018, 11(1), 8.
[http://dx.doi.org/10.1186/s40545-018-0135-0] [PMID: 29632669]
[8]
Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: Learning from experience? J. Antimicrob. Chemother., 2018, 73(6), 1452-1459.
[http://dx.doi.org/10.1093/jac/dky019] [PMID: 29438542]
[9]
Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; Moreira, R.; Li, Y.; Luzhetskyy, A.; Medema, M.H.; Pernodet, J.L.; Stadler, M.; Tormo, J.R.; Genilloud, O.; Truman, A.W.; Weissman, K.J.; Takano, E.; Sabatini, S.; Stegmann, E.; Brötz-Oesterhelt, H.; Wohlleben, W.; Seemann, M.; Empting, M.; Hirsch, A.K.H.; Loretz, B.; Lehr, C.M.; Titz, A.; Herrmann, J.; Jaeger, T.; Alt, S.; Hesterkamp, T.; Winterhalter, M.; Schiefer, A.; Pfarr, K.; Hoerauf, A.; Graz, H.; Graz, M.; Lindvall, M.; Ramurthy, S.; Karlén, A.; van Dongen, M.; Petkovic, H.; Keller, A.; Peyrane, F.; Donadio, S.; Fraisse, L.; Piddock, L.J.V.; Gilbert, I.H.; Moser, H.E.; Müller, R. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem., 2021, 5(10), 726-749.
[http://dx.doi.org/10.1038/s41570-021-00313-1]
[10]
Maura, D.; Ballok, A.E.; Rahme, L.G. Considerations and caveats in anti-virulence drug development. Curr. Opin. Microbiol., 2016, 33, 41-46.
[http://dx.doi.org/10.1016/j.mib.2016.06.001] [PMID: 27318551]
[11]
Kalia, V.C. Quorum sensing inhibitors: An overview. Biotechnol. Adv., 2013, 31(2), 224-245.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.004] [PMID: 23142623]
[12]
Prazdnova, E.V.; Gorovtsov, A.V.; Vasilchenko, N.G.; Kulikov, M.P.; Statsenko, V.N.; Bogdanova, A.A.; Refeld, A.G.; Brislavskiy, Y.A.; Chistyakov, V.A.; Chikindas, M.L. Quorum-sensing inhibition by gram-positive bacteria. Microorganisms., 2022, 10(2), 350.
[http://dx.doi.org/10.3390/microorganisms10020350]
[13]
Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther., 2022, 7(1), 199.
[http://dx.doi.org/10.1038/s41392-022-01056-1] [PMID: 35752612]
[14]
Huang, H.; Shao, X.; Xie, Y.; Wang, T.; Zhang, Y.; Wang, X.; Deng, X. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat. Commun., 2019, 10(1), 2931.
[http://dx.doi.org/10.1038/s41467-019-10778-w] [PMID: 31270321]
[15]
Rada, B.; Leto, T.L. Pyocyanin effects on respiratory epithelium: Relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol., 2013, 21(2), 73-81.
[http://dx.doi.org/10.1016/j.tim.2012.10.004] [PMID: 23140890]
[16]
Ramos, I.; Dietrich, L.E.P.; Price-Whelan, A.; Newman, D.K. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res. Microbiol., 2010, 161(3), 187-191.
[http://dx.doi.org/10.1016/j.resmic.2010.01.003] [PMID: 20123017]
[17]
Higgins, S.; Heeb, S.; Rampioni, G.; Fletcher, M.P.; Williams, P.; Cámara, M. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front. Cell. Infect. Microbiol., 2018, 8, 252.
[http://dx.doi.org/10.3389/fcimb.2018.00252] [PMID: 30083519]
[18]
Jayaseelan, S.; Ramaswamy, D.; Dharmaraj, S. Pyocyanin: Production, applications, challenges and new insights. World J. Microbiol. Biotechnol., 2014, 30(4), 1159-1168.
[http://dx.doi.org/10.1007/s11274-013-1552-5] [PMID: 24214679]
[19]
da S M Forezi, L.; Froes, T.Q.; Cardoso, M.F.C.; de Oliveira Maciel, C.A.; Nicastro, G.G.; Baldini, R.L.; Costa, D.C.S.; Ferreira, V.F.; Castilho, M.S.; de C da Silva, F. Synthesis and biological evaluation of coumarins derivatives as potential inhibitors of the production of pseudomonas aeruginosa virulence factor pyocyanin. Curr. Top. Med. Chem., 2018, 18(2), 149-156.
[http://dx.doi.org/10.2174/1568026618666180329122704] [PMID: 29595112]
[20]
Froes, T.Q.; Guido, R.V.C.; Metwally, K.; Castilho, M.S. A novel scaffold to fight Pseudomonas aeruginosa pyocyanin production: Early steps to novel antivirulence drugs. Future Med. Chem., 2020, 12(16), 1489-1503.
[http://dx.doi.org/10.4155/fmc-2019-0351] [PMID: 32772556]
[21]
Nitulescu, G.; Margina, D.; Zanfirescu, A.; Olaru, O.T.; Nitulescu, G.M. Targeting bacterial sortases in search of anti-virulence therapies with low risk of resistance development. Pharmaceuticals (Basel), 2021, 14(5), 415.
[http://dx.doi.org/10.3390/ph14050415] [PMID: 33946434]
[22]
Froes, T.Q.; Chaves, B.T.; Mendes, M.S.; Ximenes, R.M.; da Silva, I.M.; da Silva, P.B.G.; de Albuquerque, J.F.C.; Castilho, M.S. Synthesis and biological evaluation of thiazolidinedione derivatives with high ligand efficiency to P. aeruginosa PhzS. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1217-1229.
[http://dx.doi.org/10.1080/14756366.2021.1931165] [PMID: 34080514]
[23]
Froes, T.Q.; Baldini, R.L.; Vajda, S.; Castilho, M.S. Structure-based druggability assessment of anti-virulence targets from Pseudomonas aeruginosa. Curr. Protein Pept. Sci., 2019, 20(12), 1189-1203.
[http://dx.doi.org/10.2174/1389203720666190417120758] [PMID: 31038064]
[24]
Parsons, J.F.; Greenhagen, B.T.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa . Biochemistry, 2007, 46(7), 1821-1828.
[http://dx.doi.org/10.1021/bi6024403] [PMID: 17253782]
[25]
Grøftehauge, M.K.; Hajizadeh, N.R.; Swann, M.J.; Pohl, E. Protein–ligand interactions investigated by thermal shift assays (TSA) and dual polarization interferometry (DPI). Acta Crystallogr. D Biol. Crystallogr., 2015, 71(1), 36-44.
[http://dx.doi.org/10.1107/S1399004714016617] [PMID: 25615858]
[26]
Bai, N.; Roder, H.; Dickson, A.; Karanicolas, J. Isothermal analysis of thermofluor data can readily provide quantitative binding affinities. Sci. Rep., 2019, 9(1), 2650.
[http://dx.doi.org/10.1038/s41598-018-37072-x] [PMID: 30804351]
[27]
Tietze, L.F.; Singidi, R.R.; Gericke, K.M. Total synthesis of the proposed structure of the anthrapyran metabolite delta-indomycinone. Chemistry, 2007, 13(35), 9939-9947.
[http://dx.doi.org/10.1002/chem.200700823] [PMID: 17886848]
[28]
Perez, A.L.; Lamoureux, G.; Herrera, A. Synthesis of iodinated naphthoquinones using morpholine-iodine complex. Synth. Commun., 2004, 34(18), 3389-3397.
[http://dx.doi.org/10.1081/SCC-200030621]
[29]
Sharma, J.; Singh, P.K.; Singh, K.P.; Khanna, R.N. Iodination of Naphthoquinones and Coumarin Catalyzed by Ceric Ammonium and Mercuric Nitrates. Org. Prep. Proced. Int., 1995, 27(1), 84-86.
[http://dx.doi.org/10.1080/00304949509458181]
[30]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; Ferreira, M.L.G.; da Silva, F.C.; Bastos, M.M.; Costa, M.S.; Lourenço, M.C.S.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.C.; Bezerra, F.A.F.M.; Camilo, A.L.S.; da Silva, G.P.; Costa, C.C.P. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[31]
da Silva, I.F.; Martins, P.R.C.; da Silva, e.g.; Ferreira, S.B.; Ferreira, V.F.; da Costa, K.R.C.; de Vasconcellos, M.C.; Lima, E.S.; da Silva, F.C. Synthesis of 1H-1,2,3-triazoles and study of their antifungal and cytotoxicity activities. Med. Chem., 2013, 9(8), 1085-1090.
[http://dx.doi.org/10.2174/1573406411309080010] [PMID: 23432315]
[32]
Costa, D.C.S. A stereoselective, base-free, palladium-catalyzed heck coupling between 3-halo-1,4-naphthoquinones and vinyl-1h-1,2,3-triazoles. ChemistrySelect, 2022, 7(24)
[33]
Hansford, G.S.; Holliman, F.G.; Herbert, R.B. Pigments of Pseudomonas species. Part IV. in vitro and in vivo Conversion of 5-methylphenazinium-1-carboxylate into aeruginosin A. J. Chem. Soc., Perkin Trans. 1, 1972, 1, 103-105.
[http://dx.doi.org/10.1039/p19720000103] [PMID: 4626193]
[34]
Santos, S.P.; Bandeiras, T.M.; Pinto, A.F.; Teixeira, M.; Carrondo, M.A.; Romão, C.V. Thermofluor-based optimization strategy for the stabilization and crystallization of Campylobacter jejuni desulforubrerythrin. Protein Expr. Purif., 2012, 81(2), 193-200.
[http://dx.doi.org/10.1016/j.pep.2011.10.001] [PMID: 22051151]
[35]
Wu, T.; Hornsby, M.; Zhu, L.; Yu, J.C.; Shokat, K.M.; Gestwicki, J.E. Protocol for performing and optimizing differential scanning fluorimetry experiments. STAR Protocols, 2023, 4(4), 102688.
[http://dx.doi.org/10.1016/j.xpro.2023.102688] [PMID: 37943662]
[36]
Kopra, K.; Valtonen, S.; Mahran, R.; Kapp, J.N.; Hassan, N.; Gillette, W.; Dennis, B.; Li, L.; Westover, K.D.; Plückthun, A.; Härmä, H. Thermal shift assay for small GTPase stability screening: Evaluation and suitability. Int. J. Mol. Sci., 2022, 23(13), 7095.
[http://dx.doi.org/10.3390/ijms23137095] [PMID: 35806100]
[37]
Redhead, M.; Satchell, R.; Morkūnaitė, V.; Swift, D.; Petrauskas, V.; Golding, E.; Onions, S.; Matulis, D.; Unitt, J. A combinatorial biophysical approach; FTSA and SPR for identifying small molecule ligands and PAINs. Anal. Biochem., 2015, 479, 63-73.
[http://dx.doi.org/10.1016/j.ab.2015.03.013] [PMID: 25837771]
[38]
Holdgate, G.A.; Anderson, M.; Edfeldt, F.; Geschwindner, S. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: Matching high information content with high throughput. J. Struct. Biol., 2010, 172(1), 142-157.
[http://dx.doi.org/10.1016/j.jsb.2010.06.024] [PMID: 20609391]
[39]
Leite, F.H.A.; Santiago, P.B.G.S.; Froes, T.Q.; da Silva Filho, J.; da Silva, S.G.; Ximenes, R.M.; de Faria, A.R.; Brondani, D.J.; de Albuquerque, J.F.C.; Castilho, M.S. Structure-guided discovery of thiazolidine-2,4-dione derivatives as a novel class of Leishmania major pteridine reductase 1 inhibitors. Eur. J. Med. Chem., 2016, 123, 639-648.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.060] [PMID: 27517809]
[40]
Vivoli, M.; Novak, H.R.; Littlechild, J.A.; Harmer, N.J. Determination of protein-ligand interactions using differential scanning fluorimetry. J. Vis. Exp., 2014, (91), 51809.
[PMID: 25285605]