Current Topics in Medicinal Chemistry

Author(s): Kiran Sharma*

DOI: 10.2174/0115680266322676240724114536

DownloadDownload PDF Flyer Cite As
Enhancement of Anticancer Potential of Artemisinin Derivatives through N-glycosylation

Page: [2074 - 2091] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Cancer cells have significantly higher intracellular free-metal ions levels than normal cells, and it is well known that artemisinin (ART) molecules or its derivatives sensitize cancer cells when its endoperoxide moiety combines with metal ions, resulting in the production of reactive oxygen species, lysosomal degradation of ferritin, or regulation of system Gpx4 leading to apoptosis, ferroptosis or cuproptosis. Artemisinin derivatives (ADs) are reported to interfere more efficiently with metal-regulatory-proteins (MRPs) controlling iron/copper homeostasis by interacting with cytoplasmic unbound metal ions and thereby promoting the association of MRP to mRNA molecules carrying the respective sequences. However, the simple artemisinin analogues are required to be administered in higher doses with repeated administration due to low solubility and smaller plasma half-lives. To overcome these problems, amino ARTs were introduced which are found to be more stable, and later on, a series of ARTs derivatives containing sugar moiety was developed in search of analogues having good water solubility and high pharmacological activity. This review focuses on the preparation of N-glycosylated amino-ART analogues with their application against cancer. The intrinsic capability of glycosylated ART compounds is to give sugar-- containing substrates, which can bind with lectin galectin-8 receptors on the cancer cells making these compounds more specific in targeting cancer. Various AD mechanism of action against cancer is also explored with clinical trials to facilitate the synthesis of newer derivatives. In the future, the latest nano-techniques can be used to create formulations of such compounds to make them more target-specific in cancer.

Keywords: Artemisinin, Artemisone, Glycosylation, Dihydroartemisinin, Anticancer, Ferroptosis, Cuproptosis.

Graphical Abstract

[1]
Loo, C.S.N.; Lam, N.S.K.; Yu, D.; Su, X.; Lu, F. Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol. Res., 2017, 117, 192-217.
[http://dx.doi.org/10.1016/j.phrs.2016.11.012] [PMID: 27867026]
[2]
Das, S. Artemisia annua (Qinghao): A pharmacological review. Int. J. Pharm. Sci. Res., 2012, 3(12), 4573-4577.
[3]
Slezakova, S.; Ruda-Kucerova, J. Anticancer activity of artemisinin and its derivatives. Anticancer Res., 2017, 37(11), 5995-6003.
[PMID: 29061778]
[4]
Kiani, B.H.; Kayani, W.K.; Khayam, A.U.; Dilshad, E.; Ismail, H.; Mirza, B. Artemisinin and its derivatives: A promising cancer therapy. Mol. Biol. Rep., 2020, 47(8), 6321-6336.
[http://dx.doi.org/10.1007/s11033-020-05669-z] [PMID: 32710388]
[5]
Wu, Y; Tang, W; Zuo, J Development of artemisinin drugs in the treatment of autoimmune diseases. Science Bulletin, 2016, 61(1), 0975.
[http://dx.doi.org/10.1007/s11434-015-0975-9]
[6]
Xing, J.; Bai, K.H.; Liu, T.; Wang, R.L.; Zhang, L.F.; Zhang, S.Q. The multiple-dosing pharmacokinetics of artemether, artesunate, and their metabolite dihydroartemisinin in rats. Xenobiotica, 2011, 41(3), 252-258.
[http://dx.doi.org/10.3109/00498254.2010.542257] [PMID: 21175296]
[7]
Jiang, Z.; Wang, Z.; Chen, L.; Zhang, C.; Liao, F.; Wang, Y.; Wang, Y.; Luo, P.; Luo, M.; Shi, C. Artesunate induces ER-derived-ROS-mediated cell death by disrupting labile iron pool and iron redistribution in hepatocellular carcinoma cells. Am. J. Cancer Res., 2021, 11(3), 691-711.
[PMID: 33791148]
[8]
Zhu, S.; Yu, Q.; Huo, C.; Li, Y.; He, L.; Ran, B.; Chen, J.; Li, Y.; Liu, W. Ferroptosis: A novel mechanism of artemisinin and its derivatives in cancer therapy. Curr. Med. Chem., 2021, 28(2), 329-345.
[http://dx.doi.org/10.2174/1875533XMTAzlNzkj1] [PMID: 31965935]
[9]
Huang, T.E.; Deng, Y.N.; Hsu, J.L.; Leu, W.J.; Marchesi, E.; Capobianco, M.L.; Marchetti, P.; Navacchia, M.L.; Guh, J.H.; Perrone, D.; Hsu, L.C. Evaluation of the anticancer activity of a bile acid-dihydroartemisinin hybrid ursodeoxycholic-dihydroartemisinin in hepatocellular carcinoma cells. Front. Pharmacol., 2020, 11, 599067.
[http://dx.doi.org/10.3389/fphar.2020.599067] [PMID: 33343369]
[10]
Zaki, H.; Belhassan, A.; Benlyas, M.; Lakhlifi, T.; Bouachrine, M. New dehydroabietic acid (DHA) derivatives with anticancer activity against HepG2 cancer cell lines as a potential drug targeting EGFR kinase domain. CoMFA study and virtual ligand-based screening. J. Biomol. Struct. Dyn., 2021, 39(8), 2993-3003.
[http://dx.doi.org/10.1080/07391102.2020.1759452] [PMID: 32319344]
[11]
O’Neill, P.M.; Barton, V.E.; Ward, S.A. The molecular mechanism of action of artemisinin--the debate continues. Molecules, 2010, 15(3), 1705-1721.
[http://dx.doi.org/10.3390/molecules15031705] [PMID: 20336009]
[12]
Yang, J.; He, Y.; Li, Y.; Zhang, X.; Wong, Y.K.; Shen, S.; Zhong, T.; Zhang, J.; Liu, Q.; Wang, J. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol. Ther., 2020, 216, 107697.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107697] [PMID: 33035577]
[13]
Derry, P.J.; Vo, A.T.T.; Gnanansekaran, A.; Mitra, J.; Liopo, A.V.; Hegde, M.L.; Tsai, A.L.; Tour, J.M.; Kent, T.A. The chemical basis of intracerebral hemorrhage and cell toxicity with contributions from eryptosis and ferroptosis. Front. Cell. Neurosci., 2020, 14, 603043.
[http://dx.doi.org/10.3389/fncel.2020.603043] [PMID: 33363457]
[14]
Xu, C.; Zhang, H.; Mu, L.; Yang, X. Artemisinins as anticancer drugs: Novel therapeutic approaches, molecular mechanisms, and clinical trials. Front. Pharmacol., 2020, 11, 529881.
[http://dx.doi.org/10.3389/fphar.2020.529881] [PMID: 33117153]
[15]
Zhang, C.J.; Wang, J.; Zhang, J.; Lee, Y.M.; Feng, G.; Lim, T.K.; Shen, H.M.; Lin, Q.; Liu, B. Mechanism-guided design and synthesis of a mitochondria-targeting artemisinin analogue with enhanced anticancer activity. Angew. Chem. Int. Ed., 2016, 55(44), 13770-13774.
[http://dx.doi.org/10.1002/anie.201607303] [PMID: 27709833]
[16]
Cai, X.; Hu, F.; Feng, G.; Kwok, R.T.K.; Liu, B.; Tang, B.Z. Organic Mitoprobes based on Fluorogens with Aggregation-Induced Emission. Isr. J. Chem., 2018, 58(8), 860-873.
[http://dx.doi.org/10.1002/ijch.201800031]
[17]
Guo, S.; Yao, X.; Jiang, Q.; Wang, K.; Zhang, Y.; Peng, H.; Tang, J.; Yang, W. Dihydroartemisinin-loaded magnetic nanoparticles for enhanced Chemodynamic therapy. Front. Pharmacol., 2020, 11, 226.
[http://dx.doi.org/10.3389/fphar.2020.00226] [PMID: 32210814]
[18]
de Lange, C.; Coertzen, D.; Smit, F.J.; Wentzel, J.F.; Wong, H.N.; Birkholtz, L.M.; Haynes, R.K.; N’Da, D.D. Synthesis, antimalarial activities and cytotoxicities of amino-artemisinin-1,2-disubstituted ferrocene hybrids. Bioorg. Med. Chem. Lett., 2018, 28(19), 3161-3163.
[http://dx.doi.org/10.1016/j.bmcl.2018.08.037] [PMID: 30174153]
[19]
Watson, D.J.; Laing, L.; Gibhard, L. Towards new transmission-blocking combination therapies - 10-amino-artemisinins & 11-aza-artemisinin. Antimicrob. Agents Chemother., 2021, 65, e00990-e21.
[http://dx.doi.org/10.1128/AAC.00990-21] [PMID: 34097488]
[20]
Çapcı, A.; Herrmann, L.; Sampath Kumar, H.M.; Fröhlich, T.; Tsogoeva, S.B. Artemisinin-derived dimers from a chemical perspective. Med. Res. Rev., 2021, 41(6), 2927-2970.
[http://dx.doi.org/10.1002/med.21814] [PMID: 34114227]
[21]
Fröhlich, T.; Çapcı Karagöz, A.; Reiter, C.; Tsogoeva, S.B. Artemisinin-derived dimers: potent antimalarial and anticancer agents. J. Med. Chem., 2016, 59(16), 7360-7388.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01380] [PMID: 27010926]
[22]
Gupta, A.; Gupta, G.S. Applications of mannose-binding lectins and mannan glycoconjugates in nanomedicine. J. Nanopart. Res., 2022, 24(11), 228.
[http://dx.doi.org/10.1007/s11051-022-05594-1] [PMID: 36373057]
[23]
Sharma, K. Skin permeation of Candesartan Cilexetil from transdermal patch containing Aloe Vera gel as penetration enhancer. Asian J. Pharm., 2016, 10(2), 121-130.
[24]
Wu, Y.; Parapini, S.; Williams, I.D.; Misiano, P.; Wong, H.N.; Taramelli, D.; Basilico, N.; Haynes, R.K. Facile Preparation of N-glycosylated 10-piperazinyl artemisinin derivatives and evaluation of their antimalarial and cytotoxic activities. Molecules, 2018, 23(7), 1713.
[http://dx.doi.org/10.3390/molecules23071713] [PMID: 30011856]
[25]
Wong, H.N.; Padín-Irizarry, V.; van der Watt, M.E.; Reader, J.; Liebenberg, W.; Wiesner, L.; Smith, P.; Eribez, K.; Winzeler, E.A.; Kyle, D.E.; Birkholtz, L.M.; Coertzen, D.; Haynes, R.K. Optimal 10-aminoartemisinins with potent transmission-blocking capabilities for new artemisinin combination therapies–activities against blood stage P. falciparum Including Pf KI3 C580Y mutants and liver stage P. berghei parasites. Front Chem., 2020, 7, 901.
[http://dx.doi.org/10.3389/fchem.2019.00901] [PMID: 31998692]
[26]
Chan, W.C.; Wai Chan, D.H.; Lee, K.W.; Tin, W.S.; Wong, H.N.; Haynes, R.K. Evaluation and optimization of synthetic routes from dihydroartemisinin to the alkylamino-artemisinins artemiside and artemisone: A test of N-glycosylation methodologies on a lipophilic peroxide. Tetrahedron, 2018, 74(38), 5156-5171.
[http://dx.doi.org/10.1016/j.tet.2018.04.027]
[27]
Yu, Y.; Yu, J.; Zou, X.; Xu, W.; Zhang, J.; Bian, H.; Dong, X.; Shen, Z. Studies on the stereoselective synthesis and immunosuppressive activity of dihydroartemisinin-O-glycoside derivatives. Bioorg. Med. Chem. Lett., 2020, 30(16), 127338.
[http://dx.doi.org/10.1016/j.bmcl.2020.127338] [PMID: 32631539]
[28]
Xie, L.; Zhai, X.; Liu, C.; Li, P.; Li, Y.; Guo, G.; Gong, P. Anti-tumor activity of new artemisinin-chalcone hybrids. Arch. Pharm., 2011, 344(10), 639-647.
[http://dx.doi.org/10.1002/ardp.201000391] [PMID: 21984014]
[29]
Jana, S.; Iram, S.; Thomas, J.; Liekens, S.; Dehaen, W. Synthesis and anticancer activity of novel aza-artemisinin derivatives. Bioorg. Med. Chem., 2017, 25(14), 3671-3676.
[http://dx.doi.org/10.1016/j.bmc.2017.04.041] [PMID: 28529044]
[30]
Li, S.; Li, G.; Yang, X.; Meng, Q.; Yuan, S.; He, Y.; Sun, D. Design, synthesis and biological evaluation of artemisinin derivatives containing fluorine atoms as anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(13), 2275-2278.
[http://dx.doi.org/10.1016/j.bmcl.2018.05.035] [PMID: 29789258]
[31]
Yu, J.Y.; Li, X.Q.; Wei, M.X. Synthesis and biological activities of artemisinin-piperazine-dithiocarbamate derivatives. Eur. J. Med. Chem., 2019, 169, 21-28.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.071] [PMID: 30852384]
[32]
Lin, L.; Lu, W.; Dai, T.; Chen, H.; Wang, T.; Yang, L.; Yang, X.; Liu, Y.; Sun, D. Novel artemisinin derivatives with potent anticancer activities and the anti-colorectal cancer effect by the mitochondria-mediated pathway. Bioorg. Chem., 2021, 106, 104496.
[http://dx.doi.org/10.1016/j.bioorg.2020.104496] [PMID: 33288320]
[33]
Wei, M.X.; Yu, J.Y.; Liu, X.X.; Li, X.Q.; Zhang, M.W.; Yang, P.W.; Yang, J.H. Synthesis of artemisinin-piperazine-furan ether hybrids and evaluation of in vitro cytotoxic activity. Eur. J. Med. Chem., 2021, 215, 113295.
[http://dx.doi.org/10.1016/j.ejmech.2021.113295] [PMID: 33636536]
[34]
Wier, PJ Use of toxicokinetics in developmental and reproductive toxicology. In: Developmental and Reproductive Toxicology; CRC Press, 2016; pp. 532-555.
[35]
Romanelli, M.N.; Manetti, D.; Braconi, L.; Dei, S.; Gabellini, A.; Teodori, E. The piperazine scaffold for novel drug discovery efforts: the evidence to date. Expert Opin. Drug Discov., 2022, 17(9), 969-984.
[http://dx.doi.org/10.1080/17460441.2022.2103535] [PMID: 35848922]
[36]
Zeng, Z.; Chen, D.; Chen, L.; He, B.; Li, Y. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. Eur. J. Med. Chem., 2023, 247, 115000.
[http://dx.doi.org/10.1016/j.ejmech.2022.115000] [PMID: 36538859]
[37]
Haynes, R. From artemisinin to new artemisinin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr. Top. Med. Chem., 2006, 6(5), 509-537.
[http://dx.doi.org/10.2174/156802606776743129] [PMID: 16719805]
[38]
Saeed, M.E.M.; Breuer, E.; Hegazy, M.F.; Efferth, T. Retrospective study of small pet tumors treated with Artemisia annua and iron. Int. J. Oncol., 2020, 56(1), 123-138.
[PMID: 31789393]
[39]
Cardoso, P.C.S.; Rocha, C.A.M.; Mota, T.C.; Bahia, M.O.; Correa, R.M.S.; Gomes, L.M.; Alcântara, D.D.F.A.; Araújo, T.M.T.; Moraes, L.S.; Burbano, R. in vitro assessment of cytotoxic, genotoxic and mutagenic effects of antimalarial drugs artemisinin and artemether in human lymphocytes. Drug Chem. Toxicol., 2019, 42(6), 608-614.
[http://dx.doi.org/10.1080/01480545.2018.1455207] [PMID: 29681192]
[40]
Haynes, R.K.; Chan, W.C.; Lung, C.M.; Uhlemann, A.C.; Eckstein, U.; Taramelli, D.; Parapini, S.; Monti, D.; Krishna, S. The Fe2+-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. ChemMedChem, 2007, 2(10), 1480-1497.
[http://dx.doi.org/10.1002/cmdc.200700108] [PMID: 17768732]
[41]
Sun, C.; Cao, Y.; Zhu, P.; Zhou, B. A mitochondria-targeting artemisinin derivative with sharply increased antitumor but depressed anti-yeast and anti-malaria activities. Sci. Rep., 2017, 7(1), 45665.
[http://dx.doi.org/10.1038/srep45665] [PMID: 28368011]
[42]
Li, D.; Zhang, J.; Zhao, X. Mechanisms and molecular targets of artemisinin in cancer treatment. Cancer Invest., 2021, 39(8), 675-684.
[http://dx.doi.org/10.1080/07357907.2021.1954190] [PMID: 34241563]
[43]
Zhang, Q.; Yi, H.; Yao, H.; Lu, L.; He, G.; Wu, M.; Zheng, C.; Li, Y.; Chen, S.; Li, L.; Yu, H.; Li, G.; Tao, X.; Fu, S.; Deng, X. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis. J. Cancer, 2021, 12(13), 4075-4085.
[http://dx.doi.org/10.7150/jca.57054] [PMID: 34093811]
[44]
Wong, H.N.; Lewies, A.; Haigh, M.; Viljoen, J.M.; Wentzel, J.F.; Haynes, R.K.; du Plessis, L.H. Anti-melanoma activities of artemisone and prenylated amino-artemisinins in combination with known anticancer drugs. Front. Pharmacol., 2020, 11, 558894.
[http://dx.doi.org/10.3389/fphar.2020.558894] [PMID: 33117161]
[45]
Haynes, R.K.; Cheu, K.W.; Chan, H.W.; Wong, H.N.; Li, K.Y.; Tang, M.M.K.; Chen, M.J.; Guo, Z.F.; Guo, Z.H.; Sinniah, K.; Witte, A.B.; Coghi, P.; Monti, D. Interactions between artemisinins and other antimalarial drugs in relation to the cofactor model--a unifying proposal for drug action. ChemMedChem, 2012, 7(12), 2204-2226.
[http://dx.doi.org/10.1002/cmdc.201200383] [PMID: 23112085]
[46]
Haynes, R.K.; Cheu, K.W.; Tang, M.M.K.; Chen, M.J.; Guo, Z.F.; Guo, Z.H.; Coghi, P.; Monti, D. Reactions of antimalarial peroxides with each of leucomethylene blue and dihydroflavins: flavin reductase and the cofactor model exemplified. ChemMedChem, 2011, 6(2), 279-291.
[http://dx.doi.org/10.1002/cmdc.201000508] [PMID: 21275052]
[47]
Egwu, C.O.; Pério, P.; Augereau, J.M.; Tsamesidis, I.; Benoit-Vical, F.; Reybier, K. Resistance to artemisinin in falciparum malaria parasites: A redox-mediated phenomenon. Free Radic. Biol. Med., 2022, 179, 317-327.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.08.016] [PMID: 34416340]
[48]
Mancuso, R.I.; Foglio, M.A.; Olalla Saad, S.T. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother. Pharmacol., 2021, 87(1), 1-22.
[http://dx.doi.org/10.1007/s00280-020-04170-5] [PMID: 33141328]
[49]
Sun, Q.; Wang, J.; Li, Y.; Zhuang, J.; Zhang, Q.; Sun, X.; Sun, D. Synthesis and evaluation of cytotoxic activities of artemisinin derivatives. Chem. Biol. Drug Des., 2017, 90(5), 1019-1028.
[http://dx.doi.org/10.1111/cbdd.13016] [PMID: 28489280]
[50]
Guan, X.; Guan, Y. Artemisinin induces selective and potent anticancer effects in drug resistant breast cancer cells by inducing cellular apoptosis and autophagy and G2/M cell cycle arrest. J. BUON, 2020, 25(3), 1330-1336.
[PMID: 32862573]
[51]
Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: process and function. Cell Death Differ., 2016, 23(3), 369-379.
[http://dx.doi.org/10.1038/cdd.2015.158] [PMID: 26794443]
[52]
Lin, R.; Zhang, Z.; Chen, L.; Zhou, Y.; Zou, P.; Feng, C.; Wang, L.; Liang, G. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett., 2016, 381(1), 165-175.
[http://dx.doi.org/10.1016/j.canlet.2016.07.033] [PMID: 27477901]
[53]
Wong, Y.K.; Xu, C.; Kalesh, K.A.; He, Y.; Lin, Q.; Wong, W.S.F.; Shen, H.M.; Wang, J. Artemisinin as an anticancer drug: Recent advances in target profiling and mechanisms of action. Med. Res. Rev., 2017, 37(6), 1492-1517.
[http://dx.doi.org/10.1002/med.21446] [PMID: 28643446]
[54]
Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: their growing importance in medicine. Trends Pharmacol. Sci., 2008, 29(10), 520-527.
[http://dx.doi.org/10.1016/j.tips.2008.07.004] [PMID: 18752857]
[55]
Li, Q; Weina, P; Hickma, M. The use of artemisinin compounds as angiogenesis inhibitors to treat cancer; intechopen, 2013.
[http://dx.doi.org/10.5772/54109]
[56]
Scuto, M.; Ontario, M.L.; Salinaro, A.T.; Caligiuri, I.; Rampulla, F.; Zimbone, V.; Modafferi, S.; Rizzolio, F.; Canzonieri, V.; Calabrese, E.J.; Calabrese, V. Redox modulation by plant polyphenols targeting vitagenes for chemoprevention and therapy: Relevance to novel anti-cancer interventions and mini-brain organoid technology. Free Radic. Biol. Med., 2022, 179, 59-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.12.267] [PMID: 34929315]
[57]
Ma, Z.; Woon, C.Y.N.; Liu, C.G.; Cheng, J.T.; You, M.; Sethi, G.; Wong, A.L.A.; Ho, P.C.L.; Zhang, D.; Ong, P.; Wang, L.; Goh, B.C. Repurposing artemisinin and its derivatives as anticancer drugs: A chance or challenge? Front. Pharmacol., 2021, 12, 828856.
[http://dx.doi.org/10.3389/fphar.2021.828856] [PMID: 35035355]
[58]
Posadino, A.M.; Giordo, R.; Pintus, G.; Mohammed, S.A.; Orhan, i.e.; Fokou, P.V.T.; Sharopov, F.; Adetunji, C.O.; Gulsunoglu-Konuskan, Z.; Ydyrys, A.; Armstrong, L.; Sytar, O.; Martorell, M.; Razis, A.F.A.; Modu, B.; Calina, D.; Habtemariam, S.; Sharifi-Rad, J.; Cho, W.C. Medicinal and mechanistic overview of artemisinin in the treatment of human diseases. Biomed. Pharmacother., 2023, 163, 114866.
[http://dx.doi.org/10.1016/j.biopha.2023.114866] [PMID: 37182516]
[59]
Zhang, Z.; Yu, S.Q.; Miao, L.Y.; Huang, X.Y.; Zhang, X.P.; Zhu, Y.P.; Xia, X.H.; Li, D.Q. Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: A randomized controlled trial. J. Chin. Integr. Med., 2008, 6(2), 134-138.
[http://dx.doi.org/10.3736/jcim20080206] [PMID: 18241646]
[60]
Jansen, F.H.; Adoubi, I.; J C, K.C.; DE Cnodder, T.; Jansen, N.; Tschulakow, A.; Efferth, T. First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res., 2011, 31(12), 4417-4422.
[PMID: 22199309]
[61]
Ameja, C.N.; Ogbe, P.D.; Ibubeleye, V.T.; Georgewill, U.O. Evaluation of the efficacy of artemether/lumefantrine/doxycycline combination against plasmodium berghei in mice. EAS J. Parasitol. Infect. Dis., 2023, 5(4), 26-42.
[http://dx.doi.org/10.36349/easjpid.2023.v05i04.001]
[62]
Deeken, J.F.; Wang, H.; Hartley, M.; Cheema, A.K.; Smaglo, B.; Hwang, J.J.; He, A.R.; Weiner, L.M.; Marshall, J.L.; Giaccone, G.; Liu, S.; Luecht, J.; Spiegel, J.Y.; Pishvaian, M.J. A phase I study of intravenous artesunate in patients with advanced solid tumor malignancies. Cancer Chemother. Pharmacol., 2018, 81(3), 587-596.
[http://dx.doi.org/10.1007/s00280-018-3533-8] [PMID: 29392450]
[63]
Trimble, C.L.; Levinson, K.; Maldonado, L.; Donovan, M.J.; Clark, K.T.; Fu, J.; Shay, M.E.; Sauter, M.E.; Sanders, S.A.; Frantz, P.S.; Plesa, M. A first-in-human proof-of-concept trial of intravaginal artesunate to treat cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecol. Oncol., 2020, 157(1), 188-194.
[http://dx.doi.org/10.1016/j.ygyno.2019.12.035] [PMID: 32005582]
[64]
Watson, J.A.; Peto, T.J.; White, N.J. Rectal artesunate suppositories for the pre-referral treatment of suspected severe malaria. PLoS Med., 2023, 20(11), e1004312.
[http://dx.doi.org/10.1371/journal.pmed.1004312] [PMID: 37943884]
[65]
von Hagens, C.; Walter-Sack, I.; Goeckenjan, M.; Storch-Hagenlocher, B.; Sertel, S.; Elsässer, M.; Remppis, B.A.; Munzinger, J.; Edler, L.; Efferth, T.; Schneeweiss, A.; Strowitzki, T. Long-term add-on therapy (compassionate use) with oral artesunate in patients with metastatic breast cancer after participating in a phase I study (ARTIC M33/2). Phytomedicine, 2019, 54, 140-148.
[http://dx.doi.org/10.1016/j.phymed.2018.09.178] [PMID: 30668363]
[66]
Krishna, S.; Ganapathi, S.; Ster, I.C.; Saeed, M.E.M.; Cowan, M.; Finlayson, C.; Kovacsevics, H.; Jansen, H.; Kremsner, P.G.; Efferth, T.; Kumar, D. A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine, 2015, 2(1), 82-90.
[http://dx.doi.org/10.1016/j.ebiom.2014.11.010] [PMID: 26137537]
[67]
Lourenço, T.; Vale, N. Pharmacological efficacy of repurposing drugs in the treatment of prostate cancer. Int. J. Mol. Sci., 2023, 24(4), 4154.
[http://dx.doi.org/10.3390/ijms24044154] [PMID: 36835564]
[68]
Ruwizhi, N.; Maseko, R.B.; Aderibigbe, B.A. Recent advances in the therapeutic efficacy of artesunate. Pharmaceutics, 2022, 14(3), 504.
[http://dx.doi.org/10.3390/pharmaceutics14030504] [PMID: 35335880]
[69]
Jiang, M.; Wu, Y.; Qi, L.; Li, L.; Song, D.; Gan, J.; Li, Y.; Ling, X.; Song, C. Dihydroartemisinin mediating PKM2-caspase-8/3-GSDME axis for pyroptosis in esophageal squamous cell carcinoma. Chem. Biol. Interact., 2021, 350, 109704.
[http://dx.doi.org/10.1016/j.cbi.2021.109704] [PMID: 34655567]
[70]
Yu, R.; Jin, L.; Li, F.; Fujimoto, M.; Wei, Q.; Lin, Z.; Ren, X.; Jin, Q.; Li, H.; Meng, F.; Jin, G. Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti-tumor immunity and STAT3-mediated apoptosis via IL-10 dependent manner. J. Dermatol. Sci., 2020, 99(3), 193-202.
[http://dx.doi.org/10.1016/j.jdermsci.2020.08.001] [PMID: 32859456]
[71]
Ma, Q.; Liao, H.; Xu, L.; Li, Q.; Zou, J.; Sun, R.; Xiao, D.; Liu, C.; Pu, W.; Cheng, J.; Zhou, X.; Huang, G.; Yao, L.; Zhong, X.; Guo, X. Autophagy-dependent cell cycle arrest in esophageal cancer cells exposed to dihydroartemisinin. Chin. Med., 2020, 15(1), 37.
[http://dx.doi.org/10.1186/s13020-020-00318-w] [PMID: 32351616]
[72]
Kumar, M.S.; Yadav, T.T.; Khair, R.R.; Peters, G.J.; Yergeri, M.C. Combination therapies of artemisinin and its derivatives as a viable approach for future cancer treatment. Curr. Pharm. Des., 2019, 25(31), 3323-3338.
[http://dx.doi.org/10.2174/1381612825666190902155957] [PMID: 31475891]
[73]
Hutterer, C.; Niemann, I.; Milbradt, J.; Fröhlich, T.; Reiter, C.; Kadioglu, O.; Bahsi, H.; Zeitträger, I.; Wagner, S.; Einsiedel, J.; Gmeiner, P.; Vogel, N.; Wandinger, S.; Godl, K.; Stamminger, T.; Efferth, T.; Tsogoeva, S.B.; Marschall, M. The broad-spectrum antiinfective drug artesunate interferes with the canonical nuclear factor kappa B (NF-κB) pathway by targeting RelA/p65. Antiviral Res., 2015, 124, 101-109.
[http://dx.doi.org/10.1016/j.antiviral.2015.10.003] [PMID: 26546752]
[74]
Cheng, R.; Li, C.; Li, C.; Wei, L.; Li, L.; Zhang, Y.; Yao, Y.; Gu, X.; Cai, W.; Yang, Z.; Ma, J.; Yang, X.; Gao, G. The artemisinin derivative artesunate inhibits corneal neovascularization by inducing ROS-dependent apoptosis in vascular endothelial cells. Invest. Ophthalmol. Vis. Sci., 2013, 54(5), 3400-3409.
[http://dx.doi.org/10.1167/iovs.12-11068] [PMID: 23611999]
[75]
Efferth, T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. Phytomedicine, 2017, 37, 58-61.
[http://dx.doi.org/10.1016/j.phymed.2017.11.003] [PMID: 29174651]
[76]
Mazumder, K.; Aktar, A.; Roy, P.; Biswas, B.; Hossain, M.E.; Sarkar, K.K.; Bachar, S.C.; Ahmed, F.; Monjur-Al-Hossain, A.S.M.; Fukase, K. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship. Molecules, 2022, 27(9), 3036.
[http://dx.doi.org/10.3390/molecules27093036] [PMID: 35566385]
[77]
Zech, J.; Salaymeh, N.; Hunt, N.H.; Mäder, K.; Golenser, J. Efficient treatment of experimental cerebral malaria by an artemisone-SMEDDS system: impact of application route and dosing frequency. Antimicrob. Agents Chemother., 2021, 65(4), e02106-20.
[http://dx.doi.org/10.1128/AAC.02106-20] [PMID: 33558284]
[78]
Patel, O.P.S.; Beteck, R.M.; Legoabe, L.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur. J. Med. Chem., 2021, 213, 113193.
[http://dx.doi.org/10.1016/j.ejmech.2021.113193] [PMID: 33508479]
[79]
Duarte, D.; Cardoso, A.; Vale, N. Synergistic growth inhibition of HT-29 colon and MCF-7 breast cancer cells with simultaneous and sequential combinations of antineoplastics and cns drugs. Int. J. Mol. Sci., 2021, 22(14), 7408.
[http://dx.doi.org/10.3390/ijms22147408] [PMID: 34299028]
[80]
Dwivedi, A.; Mazumder, A.; du Plessis, L.; du Preez, J.L.; Haynes, R.K.; du Plessis, J. in vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine, 2015, 11(8), 2041-2050.
[http://dx.doi.org/10.1016/j.nano.2015.07.010] [PMID: 26282380]
[81]
Konstat-Korzenny, E.; Ascencio-Aragón, J.; Niezen-Lugo, S.; Vázquez-López, R. Artemisinin and its synthetic derivatives as a possible therapy for cancer. Med. Sci., 2018, 6(1), 19.
[http://dx.doi.org/10.3390/medsci6010019] [PMID: 29495461]
[82]
Wu, Z.; Gao, C.; Wu, Y.; Zhu, Q.; Yan Chen; Xin Liu; Chuen Liu Inhibitive effect of artemether on tumor growth and angiogenesis in the rat C6 orthotopic brain gliomas model. Integr. Cancer Ther., 2009, 8(1), 88-92.
[http://dx.doi.org/10.1177/1534735408330714] [PMID: 19174507]
[83]
Pirali-Hamedani, Z.; Abbasi, A.; Hassan, Z.M. Synthesis of artemether-loaded albumin nanoparticles and measurement of their anti-cancer effects. Biomedicines, 2022, 10(11), 2713.
[http://dx.doi.org/10.3390/biomedicines10112713] [PMID: 36359230]
[84]
Aweeka, F.T.; German, P.I. Clinical pharmacology of artemisinin-based combination therapies. Clin. Pharmacokinet., 2008, 47(2), 91-102.
[http://dx.doi.org/10.2165/00003088-200847020-00002] [PMID: 18193915]
[85]
Moreira Souza, A.C.; Grabe-Guimarães, A.; Cruz, J.S.; Santos-Miranda, A.; Farah, C.; Teixeira Oliveira, L.; Lucas, A.; Aimond, F.; Sicard, P.; Mosqueira, V.C.F.; Richard, S. Mechanisms of artemether toxicity on single cardiomyocytes and protective effect of nanoencapsulation. Br. J. Pharmacol., 2020, 177(19), 4448-4463.
[http://dx.doi.org/10.1111/bph.15186] [PMID: 32608017]
[86]
Azimi Mohamadabadi, M.; Hassan, Z.M.; Zavaran Hosseini, A.; Gholamzad, M.; Noori, S.; Mahdavi, M.; Maroof, H. Arteether exerts antitumor activity and reduces CD4+CD25+FOXP3+ T-reg cells in vivo. Iran. J. Immunol., 2013, 10(3), 139-149.
[PMID: 24076591]
[87]
Jabbarzadegan, M.; Rajayi, H.; Mofazzal Jahromi, M.A.; Yeganeh, H.; Yousefi, M.; Muhammad Hassan, Z.; Majidi, J. Application of arteether-loaded polyurethane nanomicelles to induce immune response in breast cancer model. Artif. Cells Nanomed. Biotechnol., 2017, 45(4), 808-816.
[http://dx.doi.org/10.1080/21691401.2016.1178131] [PMID: 27263545]
[88]
Kong, J.; Yang, Y.; Wang, W.; Cheng, K.; Zhu, P. Artemisinic acid: A promising molecule potentially suitable for the semi-synthesis of artemisinin. RSC Advances, 2013, 3(21), 7622-7641.
[http://dx.doi.org/10.1039/c3ra40525g]
[89]
Zhu, X.X.; Yang, L.; Li, Y.J.; Zhang, D.; Chen, Y.; Kostecká, P.; Kmoníèková, E.; Zídek, Z. Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis. Pharmacol. Rep., 2013, 65(2), 410-420.
[http://dx.doi.org/10.1016/S1734-1140(13)71016-8] [PMID: 23744425]