Current Pharmaceutical Design

Author(s): Veerachamy Alagarsamy*, Mohaideen Thasthagir Sulthana, Viswas Raja Solomon*, Aithamraju Satishchandra, Vishaka Sumant Kulkarni, Bandi Narendhar, Sankaranarayanan Murugesan, Mohammed Muzaffar-Ur-Rehman and Ala Chandu

DOI: 10.2174/0113816128297758240723104452

DownloadDownload PDF Flyer Cite As
Identification of Potential Inhibitors from Medicinal Plant-based Phytochemicals for the Influential C4 Target of Diabetic Retinopathy by Molecular Docking Studies

Page: [307 - 319] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Diabetic retinopathy is the major cause of vision failure in diabetic patients, and the current treatment involves the practice of glucocorticoids or VEGF antagonists that are “off-label”. A few small organic molecules against DR were discovered many years ago. Nutraceuticals are naturally available functional foods that endorse different health benefits, including vitamins, antioxidants, minerals, fatty acids, and amino acids that can defer the development of some diseases.

Methods: Numerous studies reported that nutraceuticals encourage multiple therapeutic benefits and provide protection against various diseases. In diabetes, nutraceuticals contribute to improving insulin sensitivity, metabolism regulation, and lower hyperglycemia. The major aim of this study is to discover the most active drug from natural or plant sources. In this work, 42 phytochemical constituents from 4 kinds of plants were docked with the C4 target of diabetic retinopathy by an in silico molecular docking study.

Results: According to the binding energy, all the phytoconstituents possessed good to high attraction towards the target, and 6 phytochemicals, such as terchebulin, punicalagin, chebulagic acid, casuarinin, punicalin, and pedunculagin, disclosed superior binding energy towards the target than standard ruboxistaurin via the interactions of conventional hydrogen bonding, pi-alkyl interactions, etc. Molecular dynamic simulation studies further established the stability of the phytoconstituents, and ADMET studies proved the safety profile of these phytoconstituents.

Conclusion: Hence, the current study suggested that the phytochemicals from various herbs inhibit the C4 target of diabetic retinopathy and can be utilized as lead compounds to develop analogs or repurposed for the treatment of DR.

Keywords: Diabetic retinopathy, herbal plants, in silico docking, C4 target, ADMET studies, potential inhibitors.

[1]
Srivastava P, Tiwari A. A new insight of herbal promises against ocular disorders: An occuloinformatics approach. Curr Top Med Chem 2015; 16(6): 634-54.
[http://dx.doi.org/10.2174/1568026615666150819105716] [PMID: 26286213]
[2]
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in diabetic retinopathy. Rev Diabet Stud 2015; 12(1-2): 159-95.
[http://dx.doi.org/10.1900/RDS.2015.12.159] [PMID: 26676667]
[3]
Amoaku WM, Ghanchi F, Bailey C, et al. Diabetic retinopathy and diabetic macular oedema pathways and management: UK Consensus Working Group. Eye 2020; 34(S1) (Suppl. 1): 1-51.
[http://dx.doi.org/10.1038/s41433-020-0961-6]
[4]
Hainsworth DP, Bebu I, Aiello LP, et al. Risk factors for retinopathy in type 1 diabetes: The DCCT/EDIC study. Diabetes Care 2019; 42(5): 875-82.
[http://dx.doi.org/10.2337/dc18-2308] [PMID: 30833368]
[5]
Song KH, Jeong JS, Kim MK, et al. Discordance in risk factors for the progression of diabetic retinopathy and diabetic nephropathy in patients with type 2 diabetes mellitus. J Diabetes Investig 2019; 10(3): 745-52.
[http://dx.doi.org/10.1111/jdi.12953] [PMID: 30300472]
[6]
Estacio RO, McFarling E, Biggerstaff S, Jeffers BW, Johnson D, Schrier RW. Overt albuminuria predicts diabetic retinopathy in Hispanics with NIDDM. Am J Kidney Dis 1998; 31(6): 947-53.
[http://dx.doi.org/10.1053/ajkd.1998.v31.pm9631838] [PMID: 9631838]
[7]
Chew EY, Davis MD, Danis RP, et al. The effects of medical management on the progression of diabetic retinopathy in persons with type 2 diabetes: The ACCORD eye study. Ophthalmology 2014; 121(12): 2443-51.
[http://dx.doi.org/10.1016/j.ophtha.2014.07.019] [PMID: 25172198]
[8]
Kaštelan S, Tomić M, Gverović Antunica A, Ljubić S, Salopek Rabatić J, Karabatić M. Body mass index: A risk factor for retinopathy in type 2 diabetic patients. Mediators Inflamm 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/436329] [PMID: 24347825]
[9]
Wong TY, Sun J, Kawasaki R, et al. Guidelines on diabetic eye care: The International Council of Ophthalmology recommendation for screening, follow-up, referral, and treatment based on resource settings. Ophthalmology 2018; 125(10): 1608-22.
[http://dx.doi.org/10.1016/j.ophtha.2018.04.007] [PMID: 29776671]
[10]
Solomon SD, Chew E, Duh EJ, et al. Diabetic retinopathy: A position statement by the American Diabetes Association. Diabetes Care 2017; 40(3): 412-8.
[http://dx.doi.org/10.2337/dc16-2641] [PMID: 28223445]
[11]
Teo ZL, Tham YC, Yu M, et al. Global prevalence of diabetic retinopathy and projection of burden through 2045: Systematic review and meta-analysis. Ophthalmology 2021; 128(11): 1580-91.
[http://dx.doi.org/10.1016/j.ophtha.2021.04.027] [PMID: 33940045]
[12]
Yanai R, Thanos A, Connor KM. Complement involvement in neovascular ocular diseases. Adv Exp Med Biol 2012; 946: 161-83.
[http://dx.doi.org/10.1007/978-1-4614-0106-3_10] [PMID: 21948368]
[13]
Stahl A, Connor KM, Sapieha P, et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 2010; 51(6): 2813-26.
[http://dx.doi.org/10.1167/iovs.10-5176] [PMID: 20484600]
[14]
Rivera JC, Dabouz R, Noueihed B, Omri S, Tahiri H, Chemtob S. Ischemic retinopathies: Oxidative stress and inflammation. Oxid Med Cell Longev 2017; 2017: 1-16.
[http://dx.doi.org/10.1155/2017/3940241] [PMID: 29410732]
[15]
Fett AL, Hermann MM, Muether PS, Kirchhof B, Fauser S. Immunohistochemical localization of complement regulatory proteins in the human retina. Histol Histopathol 2012; 27(3): 357-64.
[PMID: 22237713]
[16]
Morgan BP, Harris CL. The complement system. In: Morgan BP, Harris CL, Eds. Complement regulatory proteins. San Diego: Academic Press 1999; pp. 1-13.
[17]
Streilein JW, Grajewski RS, Chan CC, et al. Immunoregulatory mechanisms of the eye. Prog Retin Eye Res 1999; 18(3): 357-70.
[http://dx.doi.org/10.1016/S1350-9462(98)00022-6] [PMID: 10192517]
[18]
Wenkel H, Streilein JW. Evidence that retinal pigment epithelium functions as an immune-privileged tissue. Invest Ophthalmol Vis Sci 2000; 41(11): 3467-73.
[PMID: 11006240]
[19]
Chen M, Muckersie E, Robertson M, Forrester JV, Xu H. Up-regulation of complement factor B in retinal pigment epithelial cells is accompanied by complement activation in the aged retina. Exp Eye Res 2008; 87(6): 543-50.
[http://dx.doi.org/10.1016/j.exer.2008.09.005] [PMID: 18926817]
[20]
Xu H, Chen M. Targeting the complement system for the management of retinal inflammatory and degenerative diseases. Eur J Pharmacol 2016; 787: 94-104.
[http://dx.doi.org/10.1016/j.ejphar.2016.03.001] [PMID: 26948311]
[21]
Patz A. Clinical and experimental studies on retinal neovascularization. XXXIX Edward Jackson Memorial Lecture. Am J Ophthalmol 1982; 94(6): 715-43.
[http://dx.doi.org/10.1016/0002-9394(82)90297-5] [PMID: 6184997]
[22]
Fujita T, Hemmi S, Kajiwara M, et al. Complement-mediated chronic inflammation is associated with diabetic microvascular complication. Diabetes Metab Res Rev 2013; 29(3): 220-6.
[http://dx.doi.org/10.1002/dmrr.2380] [PMID: 23280928]
[23]
Elman MJ, Aiello LP, Beek RW, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2010; 117(6): 1064-77.
[24]
Michaelides M, Kaines A, Hamilton RD. A prospective randomized trial of intravitreal bevacizumab or laser therapy in the management of diabetic macular edema (BOLT Study). 12-month data: Report 2. Ophthalmology 2010; 1078-86.
[http://dx.doi.org/10.1016/j.ophtha.2010.03.045]
[25]
Mitchell P, Bandello F, Schmidt-Erfurth U, et al. The RESTORE Study. Ophthalmology 2011; 118(4): 615-25.
[http://dx.doi.org/10.1016/j.ophtha.2011.01.031] [PMID: 21459215]
[26]
Nguyen QD, Brown DM, Marcus DM, et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012; 119(4): 789-801.
[http://dx.doi.org/10.1016/j.ophtha.2011.12.039] [PMID: 22330964]
[27]
Brown DM, Schmidt-Erfurth U, Do DV, et al. Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 2015; 122(10): 2044-52.
[http://dx.doi.org/10.1016/j.ophtha.2015.06.017] [PMID: 26198808]
[28]
Wells JA, Glassman AR, Ayala AR, et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 2015; 372(13): 1193-203.
[http://dx.doi.org/10.1056/NEJMoa1414264] [PMID: 25692915]
[29]
Diabetic T, Study R. Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 1976; 81(4): 383-96.
[http://dx.doi.org/10.1016/0002-9394(76)90292-0] [PMID: 944535]
[30]
Riaskoff S. Photocoagulation treatment of proliferative diabetic retinopathy. Bull Soc Belge Ophtalmol 1981; 197: 9-17.
[PMID: 6182936]
[31]
Yang J, Miao X, Yang FJ, et al. Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med 2021; 47(5): 75.
[http://dx.doi.org/10.3892/ijmm.2021.4908] [PMID: 33693955]
[32]
Matos AL, Bruno DF, Ambrósio AF, Santos PF. The benefits of flavonoids in diabetic retinopathy. Nutrients 2020; 12(10): 3169.
[http://dx.doi.org/10.3390/nu12103169] [PMID: 33081260]
[33]
Parveen A, Kim JH, Oh BG, Subedi L, Khan Z, Kim SY. Phytochemicals: Target-based therapeutic strategies for diabetic retinopathy. Molecules 2018; 23(7): 1519.
[http://dx.doi.org/10.3390/molecules23071519] [PMID: 29937497]
[34]
Mohapatra PK, Chopdar KS, Dash GC, Mohanty AK, Raval MK. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. J Biomol Struct Dyn 2023; 41(2): 435-44.
[http://dx.doi.org/10.1080/07391102.2021.2007170] [PMID: 34821198]
[35]
D’souza JJ, D’souza PP, Fazal F, Kumar A, Bhat HP, Baliga MS. Anti-diabetic effects of the Indian indigenous fruit Emblica officinalis Gaertn: Active constituents and modes of action. Food Funct 2014; 5(4): 635-44.
[http://dx.doi.org/10.1039/c3fo60366k] [PMID: 24577384]
[36]
Hassan Bulbul MR, Uddin Chowdhury MN, Naima TA, et al. A comprehensive review on the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022; 8(8): e10220.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10220] [PMID: 36051270]
[37]
Derosa G, D’Angelo A, Maffioli P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother Res 2022; 36(10): 3709-65.
[http://dx.doi.org/10.1002/ptr.7564] [PMID: 35912631]
[38]
RCSB Protein Data Bank (RCSB PDB). Available from: https://www.rcsb.org
[39]
[40]
Alagarsamy V, Sundar PS, Narendhar B, et al. An in silico investigation to identify promising inhibitors for SARS-CoV-2 Mpro target. Med Chem 2023; 19(9): 925-38.
[http://dx.doi.org/10.2174/1573406419666230413112802] [PMID: 37069723]
[41]
Alagarsamy V, Solomon VR, Murugesan S, et al. In silico screening of some active phytochemicals to identify promising inhibitors against SARS-CoV-2 targets. Curr Drug Discov Technol 2023; 20.
[PMID: 37861016]
[42]
Krieger E, Vriend G. YASARA View-molecular graphics for all devices-from smartphones to workstations. Bioinformatics 2014; 30(20): 2981-2.
[http://dx.doi.org/10.1093/bioinformatics/btu426] [PMID: 24996895]
[43]
Alagarsamy V, Sundar PS, Narendhar B, et al. Screening of some ayurvedic phytochemicals to identify potential inhibitors against SARS-CoV-2 Mpro by in silico computational approach. Antiinfect Agents 2024; 22: 22.
[http://dx.doi.org/10.2174/0122113525255835240107162255]
[44]
Alagarsamy V, Sundar PS, Solomon VR, et al. Computational screening of some phytochemicals to identify best modulators for ligand binding domain of estrogen receptor alpha. Curr Pharm Des 2024; 30(20): 1599-609.
[http://dx.doi.org/10.2174/0113816128287431240408045732] [PMID: 38698754]
[45]
(a) Release S. 4: Desmond molecular dynamics system. DE Shaw Research, New York, NY 2017.;
(b) Maestro-Desmond Interoperability tools. New York, NY: Schrödinger 2020
[46]
Heinecke A. Chapter 5 - Molecular dynamics simulations. The Design Development of Novel Drugs and Vaccines. Academic Press 2015; pp. 65-81.
[http://dx.doi.org/10.1016/B978-0-12-821471-8.00005-2]
[47]
Banks JL. Integrated modeling program, applied chemical theory (IMPACT). J Comput Chem 2005; 26(16): 1752-80.
[http://dx.doi.org/10.1002/jcc.20292]