Current Chemical Biology

Author(s): Ratish Chandra Mishra*, Rosy Kumari, Mamta Kumari, Shivani Yadav and Jaya Parkash Yadav

DOI: 10.2174/0122127968301442240802112802

DownloadDownload PDF Flyer Cite As
Evaluation of Antidandruff Potential of Punica Granatum Peel Fractions by In Vitro and In Silico Method

Page: [13 - 29] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Dandruff is not a disease in the traditional sense but rather a common scalp condition. It is usually a mild and harmless issue characterized by the flaking of dead skin cells from the scalp. Although it may not be a serious health concern, it can be a source of discomfort and embarrassment for some individuals. This study aimed to determine the antimicrobial potential and phytochemical analysis of Punica Granatum peel.

Methods: The methanol extract of the peel was fractionated using column chromatography. The antimicrobial activity was assayed by In vitro and In silico methods against the microbes that are dominantly found in dandruff sufferers viz. Staphylococcus epidermidis, Propionibacterium acne, and Malassezia furfur.

Results: Aqueous fraction (Fr-V) and its hexane sub-fraction (Va) were most active with the maximum zone of Inhibition (ZOI) in a range of 36-42 mm at P<0.05. Minimum Inhibitory Concentration (MIC) of sample fractions was in the range of 0.05-0.81 mg/mL. GC-MS analysis determined that methyl palmitate, 1-hexacosene, 1-heneicosyl formate, and 7-tetradecene in Fr-V, whereas methyl oleate and methyl stearate in Fr-Va, were the major phytoconstituents. Among all 1-Heneicosyl formate, 10-Heneicosene, and 1-Hexacosene showed the best docking score against Mflip1 lipase of Malassezia furfur i.e., -7.76, -7.43 and -7.34 kcal/mol.

Conclusion: Treatment for dandruff involves anti-dandruff shampoos containing active ingredients like pyrithione zinc, salicylic acid, ketoconazole, or selenium sulfide. People consider plant- based ingredients and natural remedies as alternatives to chemical ingredients for various purposes including skincare and haircare. Thereby, bioactive compounds identified in peel fractions could be used in anti-dandruff products.

Keywords: Anti-dandruff, column chromatography, GC-MS, MIC, molecular docking, Punica granatum peel.

Graphical Abstract

[1]
Suvitha, S.; Abilasha, R. General awareness about seborrheic dermatitis/dandruff among dental students – A questionnaire-based study. Drug Invention Today, 2019, 11(5), 1245.
[2]
Grimshaw, S.G.; Smith, A.M.; Arnold, D.S.; Xu, E.; Hoptroff, M.; Murphy, B. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS One, 2019, 14(12), e0225796.
[http://dx.doi.org/10.1371/journal.pone.0225796] [PMID: 31851674]
[3]
Schwartz, J.R.; DeAngelis, Y.M.; Dawson, T.L. Dandruff and Seborrheic dermatitis: A head scratcher. In: Practical Modern Hair Science; Allured Press, 2012; pp. 389-413.
[4]
Mishra, R.C.; Kumari, R.; Yadav, J.P. Screening of antimicrobial efficacy of traditionally used Indian plants against microorganisms associated with dandruff. Indian J. Tradit. Knowl., 2021, 20(4), 934-939.
[5]
Polak-Witka, K.; Rudnicka, L.; Blume-Peytavi, U.; Vogt, A. The role of the microbiome in scalp hair follicle biology and disease. Exp. Dermatol., 2020, 29(3), 286-294.
[http://dx.doi.org/10.1111/exd.13935] [PMID: 30974503]
[6]
Hobi, S.; Cafarchia, C.; Romano, V.; Barrs, V.R. Malassezia: zoonotic implications, parallels and differences in colonization and disease in humans and animals. J. Fungi (Basel), 2022, 8(7), 708.
[http://dx.doi.org/10.3390/jof8070708] [PMID: 35887463]
[7]
Azzam, S.Z.; Cayme, G.J.; Martinez, L.R. Polymicrobial interactions involving fungi and their importance for the environment and in human disease. Microb. Pathog., 2020, 140, 103942.
[http://dx.doi.org/10.1016/j.micpath.2019.103942] [PMID: 31881258]
[8]
Kumari, K.M.U.; Yadav, N.P.; Luqman, S. Promising essential oils/plant extracts in the prevention and treatment of dandruff pathogenesis. Curr. Top. Med. Chem., 2022, 22(13), 1104-1133.
[http://dx.doi.org/10.2174/1568026622666220531120226] [PMID: 35642120]
[9]
Trüeb, R.M.; Gavazzoni Dias, M.F. Fungal diseases of the hair and scalp. In: Hair in infectious disease; Springer International Publishing: Cham, 2023; pp. 151-195.
[http://dx.doi.org/10.1007/978-3-031-30754-6_5]
[10]
Yin, C.S.; Minh Nguyen, T.T.; Yi, E.J.; Zheng, S.; Bellere, A.D.; Zheng, Q.; Jin, X.; Kim, M.; Park, S.; Oh, S.; Yi, T.H. Efficacy of probiotics in hair growth and dandruff control: A systematic review and meta-analysis. Heliyon, 2024, 10(9), e29539.
[http://dx.doi.org/10.1016/j.heliyon.2024.e29539] [PMID: 38698995]
[11]
Kovitwanichkanont, T.; Chong, A. Superficial fungal infections. Aust. J. Gen. Pract., 2019, 48(10), 706-711.
[http://dx.doi.org/10.31128/AJGP-05-19-4930] [PMID: 31569324]
[12]
da Costa, I.M.; dos Santos, A.J.; Bergamini, T.A.; Urasaki, N.A.; Nakao, L.Y.; Scandorieiro, S.; dos Reis, M.G.; Morandi, D.H.; Alves, N.C.; Reis, G.F.; Panagio, L.A. Pityriasis versicolor: Causes and new active ingredients as a potential treatment. Uniting Knowledge Integrated Scientific Research For Global Development, 2023, 149.
[http://dx.doi.org/10.56238/uniknowindevolp-149]
[13]
Mehta, A.; Guleria, S.; Sharma, R.; Gupta, R. The lipases and their applications with emphasis on food industry. In: Microbial Biotechnology in Food and Health; Academic Press, 2021; pp. 143-164.
[http://dx.doi.org/10.1016/B978-0-12-819813-1.00006-2]
[14]
Lim, S.Y.; Steiner, J.M.; Cridge, H. Lipases: It’s not just pancreatic lipase! Am. J. Vet. Res., 2022, 83(8), ajvr.22.03.0048.
[http://dx.doi.org/10.2460/ajvr.22.03.0048] [PMID: 35895796]
[15]
Heath, R.S.; Ruscoe, R.E.; Turner, N.J. The beauty of biocatalysis: Sustainable synthesis of ingredients in cosmetics. Nat. Prod. Rep., 2022, 39(2), 335-388.
[http://dx.doi.org/10.1039/D1NP00027F] [PMID: 34879125]
[16]
Kim, S.; Shin, S.; Kim, S.N.; Na, Y. Understanding the characteristics of the scalp for developing scalp care products. Journal of Cosmetics Dermatological Sciences and Applications, 2021, 11(3), 204-216.
[http://dx.doi.org/10.1136/bmjopen-2021-053137]
[17]
Coderch, L.; Alonso, C.; García, M.T.; Pérez, L.; Martí, M. Hair lipid structure: Effect of surfactants. Cosmetics, 2023, 10(4), 107.
[http://dx.doi.org/10.3390/cosmetics10040107]
[18]
Shamloul, G.; Khachemoune, A. An updated review of the sebaceous gland and its role in health and diseases Part 1: Embryology, evolution, structure, and function of sebaceous glands. Dermatol. Ther., 2021, 34(1), e14695.
[http://dx.doi.org/10.1111/dth.14695] [PMID: 33354858]
[19]
Torres, M.; de Cock, H.; Celis Ramírez, A.M. In vitro or in vivo models, the next frontier for unraveling interactions between Malassezia spp. and hosts. How much do we know? J. Fungi, 2020, 6(3), 155.
[http://dx.doi.org/10.3390/jof6030155] [PMID: 32872112]
[20]
Ianiri, G.; LeibundGut-Landmann, S.; Dawson, T.L., Jr Malassezia: a commensal, pathogen, and mutualist of human and animal skin. Annu. Rev. Microbiol., 2022, 76(1), 757-782.
[http://dx.doi.org/10.1146/annurev-micro-040820-010114] [PMID: 36075093]
[21]
Vanderwolf, K.; Kyle, C.; Davy, C. A review of sebum in mammals in relation to skin diseases, skin function, and the skin microbiome. PeerJ, 2023, 11, e16680.
[http://dx.doi.org/10.7717/peerj.16680] [PMID: 38144187]
[22]
Wilson, M.; Wilson, P.J. Close Encounters of the microbial kind; Springer: Cham, 2021.
[http://dx.doi.org/10.1007/978-3-030-56978-5]
[23]
Vijaya Chandra, S.H.; Srinivas, R.; Dawson, T.L., Jr; Common, J.E. Cutaneous Malassezia: commensal, pathogen, or protector? Front. Cell. Infect. Microbiol., 2021, 10, 614446.
[http://dx.doi.org/10.3389/fcimb.2020.614446] [PMID: 33575223]
[24]
Mangion, S.E.; Mackenzie, L.; Roberts, M.S.; Holmes, A.M. Seborrheic dermatitis: Topical therapeutics and formulation design. Eur. J. Pharm. Biopharm., 2023, 185, 148-164.
[http://dx.doi.org/10.1016/j.ejpb.2023.01.023] [PMID: 36842718]
[25]
Keymer, A.; Pimprikar, P.; Wewer, V.; Huber, C.; Brands, M.; Bucerius, S.L.; Delaux, P.M.; Klingl, V.; Röpenack-Lahaye, E.; Wang, T.L.; Eisenreich, W.; Dörmann, P.; Parniske, M.; Gutjahr, C. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife, 2017, 6, e29107.
[http://dx.doi.org/10.7554/eLife.29107] [PMID: 28726631]
[26]
Poojary, P.V.; Sarkar, S.; Poojary, A.A.; Mallya, P.; Selvaraj, R.; Koteshwara, A.; Aranjani, J.M.; Lewis, S. Novel anti‐dandruff shampoo incorporated with ketoconazole‐coated zinc oxide nanoparticles using green tea extract. J. Cosmet. Dermatol., 2024, 23(2), 563-575.
[http://dx.doi.org/10.1111/jocd.16027] [PMID: 37909853]
[27]
Arora, P.; Nainwal, L.M.; Jain, S. Essential oils as potential source of anti-dandruff agents: A review. Comb. Chem. High Throughput Screen., 2022, 25(9), 1411-1426.
[http://dx.doi.org/10.2174/1386207324666210712094148] [PMID: 34254910]
[28]
Gebremedhin, G.; Tesfay, T.; Chaithanya, K.K.; Kamalakararao, K.; Kamalakararao, K. Phytochemical screening and in vitro anti-dandruff activities of bark extracts of neem ( Azadirachta indica ) Drug Invention Today, 2020, 13(5), 707-713.
[29]
Hoenigl, M.; Arastehfar, A.; Arendrup, M.C.; Brüggemann, R.; Carvalho, A.; Chiller, T.; Chen, S.; Egger, M.; Feys, S.; Gangneux, J.P.; Gold, J.A.W.; Groll, A.H.; Heylen, J.; Jenks, J.D.; Krause, R.; Lagrou, K.; Lamoth, F.; Prattes, J.; Sedik, S.; Wauters, J.; Wiederhold, N.P.; Thompson, G.R., III Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin. Microbiol. Rev., 2024, 37(2), e00074-23.
[http://dx.doi.org/10.1128/cmr.00074-23] [PMID: 38602408]
[30]
Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and mechanisms of antifungal resistance. Antibiotics, 2020, 9(6), 312.
[http://dx.doi.org/10.3390/antibiotics9060312] [PMID: 32526921]
[31]
Sheth, U.; Dande, P. Pityriasis capitis : Causes, pathophysiology, current modalities, and future approach. J. Cosmet. Dermatol., 2021, 20(1), 35-47.
[http://dx.doi.org/10.1111/jocd.13488] [PMID: 32416039]
[32]
Patidar, K. Polyherbal anti-dandruff shampoo: basic concept, benefits, and challenges. Asian J. Pharm., 2018, 12(3), 850-857.
[http://dx.doi.org/10.22377/ajp.v12i03.2619]
[33]
Gebashe, F.C.; Naidoo, D.; Amoo, S.O.; Masondo, N.A. Cosmeceuticals: A newly expanding industry in South Africa. Cosmetics, 2022, 9(4), 77.
[http://dx.doi.org/10.3390/cosmetics9040077]
[34]
Ghazal, H.; Adam, Y.; Idrissi Azami, A.; Sehli, S.; Nyarko, H.N.; Chaouni, B.; Olasehinde, G.; Isewon, I.; Adebiyi, M.; Ajani, O.; Matovu, E.; Obembe, O.; Ajamma, Y.; Kuzamunu, G.; Pandam Salifu, S.; Kayondo, J.; Benkahla, A.; Adebiyi, E. Plant genomics in Africa: Present and prospects. Plant J., 2021, 107(1), 21-36.
[http://dx.doi.org/10.1111/tpj.15272] [PMID: 33837593]
[35]
Balato, A.; Caiazzo, G.; Di Caprio, R.; Scala, E.; Fabbrocini, G.; Granger, C. Exploring anti-fungal, anti-microbial and anti-inflammatory properties of a topical non-steroidal barrier cream in face and chest seborrheic dermatitis. Dermatol. Ther. (Heidelb.), 2020, 10(1), 87-98.
[http://dx.doi.org/10.1007/s13555-019-00339-w] [PMID: 31705438]
[36]
Gebremariam, A.; Gebrezgabher, B.G.; Desta, K.T.; Sbhatu, D.B.; Berhe, G.G.; Abdirkadir, M.; Tsegay, E. Aloe adigratana Reynolds: Preliminary phytochemical screening, proximate content, essential oil analysis, and in vitro antifungal activity studies of its leaf peels and gel. J. Exp. Pharmacol., 2023, 15, 321-332.
[http://dx.doi.org/10.2147/JEP.S420990] [PMID: 37664179]
[37]
Yasin, M.; Younis, A.; Javed, T.; Akram, A.; Ahsan, M.; Shabbir, R.; Ali, M.M.; Tahir, A.; El-Ballat, E.M.; Sheteiwy, M.S.; Sammour, R.H.; Hano, C.; Alhumaydhi, F.A.; El-Esawi, M.A. River tea tree oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants, 2021, 10(10), 2105.
[http://dx.doi.org/10.3390/plants10102105] [PMID: 34685914]
[38]
Corona-Gómez, L.; Hernández-Andrade, L.; Mendoza-Elvira, S.; Suazo, F.M.; Ricardo-González, D.I.; Quintanar-Guerrero, D. In vitro antimicrobial effect of essential tea tree oil( Melaleuca alternifolia ), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. Int. J. Vet. Sci. Med., 2022, 10(1), 72-79.
[http://dx.doi.org/10.1080/23144599.2022.2123082] [PMID: 36259046]
[39]
Abelan, U.S.; de Oliveira, A.C.; Cacoci, É.S.P.; Martins, T.E.A.; Giacon, V.M.; Velasco, M.V.R.; Lima, C.R.R.C. Potential use of essential oils in cosmetic and dermatological hair products: A review. J. Cosmet. Dermatol., 2022, 21(4), 1407-1418.
[http://dx.doi.org/10.1111/jocd.14286] [PMID: 34129742]
[40]
Lim, D.Z.J.; Lim, F.C.; Tey, H.L. Clinical efficacy of a gentle anti‐dandruff itch‐relieving shampoo formulation. Int. J. Cosmet. Sci., 2023, 45(6), 769-774.
[http://dx.doi.org/10.1111/ics.12885] [PMID: 37539788]
[41]
Ayatollahi, A.; Firooz, A.; Lotfali, E.; Mojab, F.; Fattahi, M. Herbal therapy for the management of seborrheic dermatitis: A narrative review. Recent Advances in Anti-Infective Drug Discovery, 2021, 16(3), 209-226.
[http://dx.doi.org/10.2174/2772434416666211029113213] [PMID: 35026970]
[42]
Gallo, M.; Ferrara, L.; Calogero, A.; Montesano, D.; Naviglio, D. Relationships between food and diseases: What to know to ensure food safety. Food Res. Int., 2020, 137, 109414.
[http://dx.doi.org/10.1016/j.foodres.2020.109414] [PMID: 33233102]
[43]
Kumar, M.; Devi, A.; Sharma, M.; Kaur, P.; Mandal, U.K. Review on perfume and present status of its associated allergens. J. Cosmet. Dermatol., 2021, 20(2), 391-399.
[http://dx.doi.org/10.1111/jocd.13507] [PMID: 32445606]
[44]
Okole, B.; Pillai, S.K.; Ndzotoyi, P.; Phasha, V. Use of herbal extract-based nanoemulsions for hair care application. In: Nanotechnology for the preparation of cosmetics using plant-Based extracts; Elsevier, 2022; pp. 203-233.
[http://dx.doi.org/10.1016/B978-0-12-822967-5.00007-2]
[45]
Ge, S.; Duo, L.; Wang, J.; GegenZhula; Yang, J.; Li, Z.; Tu, Y. A unique understanding of traditional medicine of pomegranate, Punica granatum L. and its current research status. J. Ethnopharmacol., 2021, 271, 113877.
[http://dx.doi.org/10.1016/j.jep.2021.113877] [PMID: 33515685]
[46]
Ranjha, M.M.; Shafique, B.; Wang, L.; Irfan, S.; Safdar, M.N.; Murtaza, M.A.; Nadeem, M.; Mahmood, S. A comprehensive review on phytochemistry, bioactivity and medicinal value of bioactive compounds of pomegranate (Punica granatum ) Adv. Tradit. Med., 2021, 23(1), 1-21.
[http://dx.doi.org/10.1007/s13596-021-00566-7]
[47]
Ruan, J.H.; Li, J.; Adili, G.; Sun, G.Y.; Abuduaini, M.; Abdulla, R.; Maiwulanjiang, M.; Aisa, H.A. Phenolic compounds and bioactivities from pomegranate (Punica granatum L.) peels. J. Agric. Food Chem., 2022, 70(12), 3678-3686.
[http://dx.doi.org/10.1021/acs.jafc.1c08341] [PMID: 35312314]
[48]
Bhinge, S.D.; Bhutkar, M.A.; Randive, D.S.; Wadkar, G.H.; Todkar, S.S.; Savali, A.S.; Chittapurkar, H.R. Screening of hair growth promoting activity of Punica granatum L. (pomegranate) leaves extracts and its potential to exhibit antidandruff and anti-lice effect. Heliyon, 2021, 7(4), e06903.
[http://dx.doi.org/10.1016/j.heliyon.2021.e06903] [PMID: 33997417]
[49]
Akbarnejad, F. Dermatology benefits of Punica granatum: A Review of the potential benefits of Punica granatum in skin disorders. Asian Journal of Green Chemistry, 2023, 7, 208-222.
[http://dx.doi.org/10.22034/ajgc.2023.388077.1388]
[50]
Benedetti, G.; Zabini, F.; Tagliavento, L.; Meneguzzo, F.; Calderone, V.; Testai, L. An overview of the health benefits, extraction methods and improving the properties of pomegranate. Antioxidants, 2023, 12(7), 1351.
[http://dx.doi.org/10.3390/antiox12071351] [PMID: 37507891]
[51]
Dimitrijevic, J.; Tomovic, M.; Bradic, J.; Petrovic, A.; Jakovljevic, V.; Andjic, M.; Živković, J.; Milošević, S.Đ.; Simanic, I.; Dragicevic, N. Punica granatum L.(Pomegranate) extracts and their effects on healthy and diseased skin. Pharmaceutics, 2024, 16(4), 458.
[http://dx.doi.org/10.3390/pharmaceutics16040458] [PMID: 38675119]
[52]
Maphetu, N.; Unuofin, J.O.; Masuku, N.P.; Olisah, C.; Lebelo, S.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother., 2022, 153, 113256.
[http://dx.doi.org/10.1016/j.biopha.2022.113256] [PMID: 36076615]
[53]
Marcelino, S.; Mandim, F.; Taofiq, O.; Pires, T.C.S.P.; Finimundy, T.C.; Prieto, M.A.; Barros, L. Valorization of Punica granatum L. leaves extracts as a source of bioactive molecules. Pharmaceuticals, 2023, 16(3), 342.
[http://dx.doi.org/10.3390/ph16030342] [PMID: 36986442]
[54]
Chandrasekar, R. A comprehensive review on herbal cosmetics in the management of skin diseases. Res. J. Top. Cosmet. Sci., 2020, 11(1), 32-44.
[http://dx.doi.org/10.5958/2321-5844.2020.00007.2]
[55]
Thombare, S.; Shirsath, P. Herbal Cosmetics and skin care formulations. Int. J. Pharma Sci., 2023, 1(10), 1-15.
[http://dx.doi.org/10.5281/zenodo.8422885]
[56]
De Oliveira, F.L.; Arruda, T.Y.P.; Da Silva Lima, R.; Casarotti, S.N.; Morzelle, M.C. Pomegranate as a natural source of phenolic antioxidants. J. Food Bioact., 2020, 9
[http://dx.doi.org/10.31665/JFB.2020.9214]
[57]
Jacob, J.; Lakshmanapermalsamy, P.; Illuri, R.; Bhosle, D.; Sangli, G.K.; Mundkinajeddu, D. In vitro evaluation of antioxidant potential of isolated compounds and various extracts of peel of Punica granatum L. Pharmacognosy Res., 2018, 10(1), 44-48.
[http://dx.doi.org/10.4103/pr.pr_36_17] [PMID: 29568186]
[58]
Balli, D.; Cecchi, L.; Khatib, M.; Bellumori, M.; Cairone, F.; Carradori, S.; Zengin, G.; Cesa, S.; Innocenti, M.; Mulinacci, N. Characterization of arils juice and peel decoction of fifteen varieties of Punica granatum L.: A focus on anthocyanins, ellagitannins and polysaccharides. Antioxidants, 2020, 9(3), 238.
[http://dx.doi.org/10.3390/antiox9030238] [PMID: 32183156]
[59]
Kumari, R.; Mishra, R.C.; Sheoran, R.; Yadav, J.P. Fractionation of antimicrobial compounds from Acacia nilotica twig extract against oral pathogens. Biointerface Res. Appl. Chem., 2020, 10(6), 7097-7105.
[http://dx.doi.org/10.33263/BRIAC106.70977105]
[60]
Kumari, R.; Mishra, R.C.; Yadav, A.; Yadav, J.P. Screening of traditionally used medicinal plants for their antimicrobial efficacy against oral pathogens and GC-MS analysis of Acacia nilotica extract. Indian J. Tradit. Knowl., 2019, 18(1), 162-168.
[61]
Raja, V.; Ahmad, S.I.; Irshad, M.; Wani, W.A.; Siddiqi, W.A.; Shreaz, S. Anticandidal activity of ethanolic root extract of Juglans regia (L.): Effect on growth, cell morphology, and key virulence factors. J. Mycol. Med., 2017, 27(4), 476-486.
[http://dx.doi.org/10.1016/j.mycmed.2017.07.002] [PMID: 28784433]
[62]
Mishra, R.C.; Kumari, R.; Yadav, J.P. Comparative antidandruff efficacy of plant extracts prepared from conventional and supercritical fluid extraction method and chemical profiling using GCMS. J. Dermatolog. Treat., 2022, 33(2), 989-995.
[http://dx.doi.org/10.1080/09546634.2020.1799919] [PMID: 32691649]
[63]
Mishra, R.C.; Kumari, R.; Yadav, J.P. Comparative study of antidandruff efficacy of Punica granatum peel and its biosynthesized silver nanoparticles. J. Bionanosci., 2018, 12(4), 508-514.
[http://dx.doi.org/10.1166/jbns.2018.1562]
[64]
Zazharskyi, V.; Davydenko, P.; Kulishenko, O.; Borovik, I.; Brygadyrenko, V.; Zazharska, N. Gyógynövényfőzetek in vitro antibakteriális hatása Staphylococcus aureus, Staphylococcus epidermidis és Pseudomonas aeruginosa. Magy. Állatorv. Lapja, 2019, 141, 693-704.
[65]
Bhore, P.B.; Khanvilkar, V.V. Silica gel: A keystone in chromatographic techniques. Int. J. Pharm. Sci. Res., 2019, 10(1), 12-22.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10(1).12-22]
[66]
Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci., 2011, 15(7), 775-780.
[PMID: 21780546]
[67]
Javed, S.; Javaid, A.; Al-Taie, A.H.; Qureshi, M.Z. Identification of antimicrobial compounds from n-hexane stem extract of Kochia indica by GC-MS analysis. Mycopath, 2020, 16(2), 51-55.
[68]
Zhao, F.; Wang, P.; Lucardi, R.; Su, Z.; Li, S. Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. Toxins, 2020, 12(1), 35.
[http://dx.doi.org/10.3390/toxins12010035] [PMID: 31935944]
[69]
Silva, K.; Jadhav, D.Y.; Rathnayaka, R.M.U.S.K.; Sahoo, A.K. Investigation of nutrient content, phytochemical content, antioxidant activity and antibacterial activity of inedible portion of pomegranate (Punica granatum L.). European J. Med. Plants, 2014, 4(5), 610-622.
[http://dx.doi.org/10.9734/EJMP/2014/7561]
[70]
Pinto, M.A.; Araújo, S.G.; Morais, M.; Sá, N.P.; Lima, C.M.; Rosa, C.A.; Siqueira, E.P.; Johann, S.; Lima, L.A.R.S. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An. Acad. Bras. Cienc., 2017, 89(3), 1671-1681.
[http://dx.doi.org/10.1590/0001-3765201720160908] [PMID: 28876392]
[71]
Shawky, B.T.; Nagah, M.; Ghareeb, M.A.; El-Sherbiny, G.M.; Moghannem, S.A.; Abdel-Aziz, M.S. Evaluation of antioxidants, total phenolics and antimicrobial activities of ethyl acetate extracts from Fungi grown on rice straw. J. Renew. Mater., 2019, 7(7), 662-677.
[http://dx.doi.org/10.32604/jrm.2019.04524]
[72]
Dey, G.R.; Das, T.N. Septum bleed during GC-MS analysis: Utility of septa of various makes. J. Chromatogr. Sci., 2013, 51(2), 117-121.
[http://dx.doi.org/10.1093/chromsci/bms114] [PMID: 22781185]
[73]
Cao, L.; Coventry, B.; Goreshnik, I.; Huang, B.; Sheffler, W.; Park, J.S.; Jude, K.M.; Marković, I.; Kadam, R.U.; Verschueren, K.H.G.; Verstraete, K.; Walsh, S.T.R.; Bennett, N.; Phal, A.; Yang, A.; Kozodoy, L.; DeWitt, M.; Picton, L.; Miller, L.; Strauch, E.M.; DeBouver, N.D.; Pires, A.; Bera, A.K.; Halabiya, S.; Hammerson, B.; Yang, W.; Bernard, S.; Stewart, L.; Wilson, I.A.; Ruohola-Baker, H.; Schlessinger, J.; Lee, S.; Savvides, S.N.; Garcia, K.C.; Baker, D. Design of protein-binding proteins from the target structure alone. Nature, 2022, 605(7910), 551-560.
[http://dx.doi.org/10.1038/s41586-022-04654-9] [PMID: 35332283]
[74]
Zaib, S.; Rana, N.; Ali, H.S.; Hussain, N.; Areeba; Ogaly, H.A.; Al-Zahrani, F.A.M.; Khan, I. Discovery of druggable potent inhibitors of serine proteases and farnesoid X receptor by ligand-based virtual screening to obstruct SARS-CoV-2. Int. J. Biol. Macromol., 2023, 253(Pt 7), 127379.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.127379] [PMID: 37838109]
[75]
Decherchi, S.; Cavalli, A. Thermodynamics and kinetics of drug-target binding by molecular simulation. Chem. Rev., 2020, 120(23), 12788-12833.
[http://dx.doi.org/10.1021/acs.chemrev.0c00534] [PMID: 33006893]
[76]
Gulwe, A.; Mishra, D.; Gomare, K. Docking studies of lipase (Mflip1) from Malassezia furfur (Robin) with propanamide, n-methyl-2-amino and 1-propanol, 3-(dimethylamino) predicting inhibitory activity. Int. J. Pharm. Res., 2020, 12(1), 1-5.
[http://dx.doi.org/10.31838/ijpr/2020.12.01.011]