Anti-Infective Agents

Author(s): Somayeh Dehghani Sanij, Pegah Shakib* and Abbas Morovvati*

DOI: 10.2174/0122113525314697240711070000

DownloadDownload PDF Flyer Cite As
The Frequency of Aminoglycoside and Vancomycin-resistant Genes in Enterococci Isolated from Chicken Meat in Qom City, Iran

Article ID: e22113525314697 Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background and Purpose: Considering the emergence of antibiotic resistance in enterococci and the possibility of transmission of resistant strains to humans, their spread in natural reservoirs is of particular importance. The food chain is known as a source of enterococci that is resistant to antimicrobial agents, and these bacteria are present in foods of animal origin, such as meat and milk. Hence, the purpose of this study was to investigate the frequency of aminoglycoside- and vancomycin-resistant genes in Enterococcus spp isolates isolated from chicken meat in Qom City, Iran.

Methods: After collecting and culturing 200 chicken meat samples from September 2021 to August 2022, enterococci were isolated and identified using biochemical and microbial standard tests. Antibiotic sensitivity and resistance of the isolates, aph(2")1c ، aph(2")1b ، aph(2")1d ، ant(3') ، aph(3')IIIa ، ant(4')1a ،ant( و (' 6 aac(6'), vanA and vanB genes were determined.

Results: From 200 chicken meat samples, 40(40%) isolates of Enterococcus faecalis and 60 (60%) isolates of Enterococcus faecium were isolated. Resistance to gentamicin, tobramycin, amikacin, neomycin, tetracycline, chloramphenicol, vancomycin, and ampicillin were 33, 30, 33, 20, 69, 38, 28, and 45, respectively. Frequency of aph(2")1c, aph(2")1b, aph(2")1d, ant(3'), aph(3')IIIa, ant(4')1a, ant(6') and aac (6'), vanA and vanB were reported to be 13%, 2%, 3%, 45%, 20%, 7%, 19%, 21%, 7%, and 6%, respectively.

Conclusion: To reduce the infection with this organism and to prevent and control its spread and mortality, investigating the epidemiology and determining the frequency of resistance to aminoglycosides are important.

Keywords: Enterococcus, aminoglycoside, vancomycin, antimicrobial resistance, chicken meat, cell wall.

[1]
Jabbari Shiadeh, S.M.; Pormohammad, A.; Hashemi, A.; Lak, P. Global prevalence of antibiotic resistance in blood-isolated Enterococcus faecalis and Enterococcus faecium: a systematic review and meta-analysis. Infect. Drug Resist., 2019, 12, 2713-2725.
[http://dx.doi.org/10.2147/IDR.S206084] [PMID: 31564921]
[2]
Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol., 2018, 41, 76-82.
[http://dx.doi.org/10.1016/j.mib.2017.11.030] [PMID: 29227922]
[3]
Bhardwaj, S.; Dhawale, K.B.J.; Patil, M.; Divase, S. Enterococcus faecium and Enterococcus faecalis, the nosocomial pathogens with special reference to multi-drug resistance and phenotypic characterization. Int. J. Pharm. Pharm. Sci., 2013, 2(1), 1-10.
[4]
Tripathi, A.; Shukla, S.K.; Singh, A.; Prasad, K.N. Prevalence, outcome and risk factor associated with vancomycin-resistant Enterococcus faecalis and Enterococcus faecium at a Tertiary Care Hospital in Northern India. Indian J. Med. Microbiol., 2016, 34(1), 38-45.
[http://dx.doi.org/10.4103/0255-0857.174099] [PMID: 26776117]
[5]
Gök, Ş.M.; Türk Dağı, H.; Kara, F.; Arslan, U.; Fındık, D. Investigation of antibiotic resistance and virulence factors of Enterococcus faecium and Enterococcus faecalis strains isolated from clinical samples. Mikrobiyol. Bul., 2020, 54(1), 26-39.
[PMID: 32050876]
[6]
Kim, M.H.; Moon, D.C.; Kim, S.J.; Mechesso, A.F.; Song, H.J.; Kang, H.Y.; Choi, J.H.; Yoon, S.S.; Lim, S.K. Nationwide surveillance on antimicrobial resistance profiles of Enterococcus faecium and Enterococcus faecalis isolated from healthy food animals in South Korea, 2010 to 2019. Microorganisms, 2021, 9(5), 925.
[http://dx.doi.org/10.3390/microorganisms9050925] [PMID: 33925822]
[7]
Doi, Y.; Arakawa, Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin. Infect. Dis., 2007, 45(1), 88-94.
[http://dx.doi.org/10.1086/518605] [PMID: 17554708]
[8]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), a027029.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[9]
Manoharan, H.; Lalitha, A.K.V.; Mariappan, S.; Sekar, U.; Venkataramana, G.P. Molecular Characterization of High-Level Aminoglycoside Resistance among Enterococcus Species. J. Lab. Physicians, 2022, 14(3), 290-294.
[http://dx.doi.org/10.1055/s-0042-1742423] [PMID: 36119421]
[10]
Cattoir, V.; Giard, J.C. Antibiotic resistance in Enterococcus faecium clinical isolates. Expert Rev. Anti Infect. Ther., 2014, 12(2), 239-248.
[http://dx.doi.org/10.1586/14787210.2014.870886] [PMID: 24392717]
[11]
Jaimee, G.; Halami, P.M. Conjugal transfer of aac(6′)Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR. Microb. Pathog., 2017, 110, 546-553.
[http://dx.doi.org/10.1016/j.micpath.2017.07.049] [PMID: 28774859]
[12]
Kanchugal, P.S.; Selmer, M. Structural recognition of spectinomycin by resistance enzyme ANT (9) from Enterococcus faecalis. Antimicrob. Agents Chemother., 2020, 64(6), e00371-20.
[http://dx.doi.org/10.1128/AAC.00371-20] [PMID: 32253216]
[13]
Ramin, B.; Asadpour, L.; Forouhesh Tehrani, H.; Amirmozafari, N. Detection and distribution of various HLAR gene in Enterococcus faecalis and Enterococcus faecium by multiplex-PCR. Modern Medical Laboratory Journal, 2018, 1(2), 68-76.
[http://dx.doi.org/10.30699/mmlj17.1.2.68]
[14]
Kolar, M.; Urbanek, K.; Vagnerova, I.; Koukalova, D. The influence of antibiotic use on the occurrence of vancomycin-resistant enterococci. J. Clin. Pharm. Ther., 2006, 31(1), 67-72.
[http://dx.doi.org/10.1111/j.1365-2710.2006.00701.x] [PMID: 16476122]
[15]
Shen, H.; Liu, Y.; Qu, J.; Cao, B. Comparison of vanA gene mRNA levels between vancomycin-resistant Enterococci presenting the VanA or VanB phenotype with identical Tn1546-like elements. J. Microbiol. Immunol. Infect., 2016, 49(6), 866-871.
[http://dx.doi.org/10.1016/j.jmii.2014.09.003] [PMID: 25556043]
[16]
Manero, A.; Blanch, A.R. Identification of Enterococcus spp. with a biochemical key. Appl. Environ. Microbiol., 1999, 65(10), 4425-4430.
[http://dx.doi.org/10.1128/AEM.65.10.4425-4430.1999] [PMID: 10508070]
[17]
Sorlózano, A.; Panesso, D.; Navarro-Marí, J.M.; Arias, C.A.; Gutiérrez-Fernández, J. Characterization of daptomycin non-susceptible Enterococcus faecium producing urinary tract infection in a renal transplant recipient. Rev. Esp. Quimioter., 2015, 28(4), 207-209.
[PMID: 26200029]
[18]
Kuzucu, C.; Cizmeci, Z.; Durmaz, R.; Durmaz, B.; Ozerol, I.H. The prevalence of fecal colonization of enterococci, the resistance of the isolates to ampicillin, vancomycin, and high-level aminoglycosides, and the clonal relationship among isolates. Microb. Drug Resist., 2005, 11(2), 159-164.
[http://dx.doi.org/10.1089/mdr.2005.11.159] [PMID: 15910231]
[19]
Gaca, A.O.; Lemos, J.A. Adaptation to adversity: the intermingling of stress tolerance and pathogenesis in enterococci. Microbiol. Mol. Biol. Rev., 2019, 83(3), e00008-19.
[http://dx.doi.org/10.1128/MMBR.00008-19] [PMID: 31315902]
[20]
Ike, Y. Pathogenicity of Enterococci. Jpn. J. Bacteriol., 2017, 72(2), 189-211.
[http://dx.doi.org/10.3412/jsb.72.189] [PMID: 28659548]
[21]
Landete, J.M. Peirotén, Á.; Medina, M.; Arqués, J.L.; Rodríguez-Mínguez, E. Virulence and antibiotic resistance of enterococci isolated from healthy breastfed infants. Microb. Drug Resist., 2018, 24(1), 63-69.
[http://dx.doi.org/10.1089/mdr.2016.0320] [PMID: 28708453]
[22]
Giménez-Pereira, M.L. Enterococci in milk products; Master Degree, Massey University Palmerston North, 2005.
[23]
McAuley, C.M.; Gobius, K.S.; Britz, M.L.; Craven, H.M. Heat resistance of thermoduric enterococci isolated from milk. Int. J. Food Microbiol., 2012, 154(3), 162-168.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.12.033] [PMID: 22260926]
[24]
Hugas, M.; Garriga, M.; Aymerich, M.T. Functionalty of enterococci in meat products. Int. J. Food Microbiol., 2003, 88(2-3), 223-233.
[http://dx.doi.org/10.1016/S0168-1605(03)00184-3] [PMID: 14596994]
[25]
Arias, C.A.; Murray, B.E. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol., 2012, 10(4), 266-278.
[http://dx.doi.org/10.1038/nrmicro2761] [PMID: 22421879]
[26]
Feizabadi, M.M.; Maleknejad, P.; Asgharzadeh, A.; Asadi, S.; Shokrzadeh, L.; Sayadi, S. Prevalence of aminoglycoside-modifying enzymes genes among isolates of Enterococcus faecalis and Enterococcus faecium in Iran. Microb. Drug Resist., 2006, 12(4), 265-268.
[http://dx.doi.org/10.1089/mdr.2006.12.265] [PMID: 17227212]
[27]
Amini, F.; Krimpour, H.A.; Ghaderi, M.; Vaziri, S.; Ferdowsi, S.; Azizi, M.; Amini, S. Prevalence of aminoglycoside resistance genes in Enterococcus strains in Kermanshah, Iran. Iran. J. Med. Sci., 2018, 43(5), 487-493.
[PMID: 30214101]
[28]
Nateghian, A.; Arjmandi, K.; Vosough, P.; Karimi, A.; Behzad, A.; Navidnia, M. Detrmination of Vancomycin resistant enterococci (VRE) carriage, molecular epidemiology and the related risk factors in children with ALL in Ali-asghar children hospital and Mahak hospital, Tehran, Iran. Iran. J. Med. Microbiol., 2010, 4(1), 17-25.
[29]
Rice, L.B. Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control, 2006, 34(5)(Suppl. 1), S11-S19.
[http://dx.doi.org/10.1016/j.ajic.2006.05.220] [PMID: 16813977]
[30]
Kraszewska, Z.; Skowron, K.; Kwiecińska-Piróg, J.; Grudlewska-Buda, K.; Przekwas, J.; Wiktorczyk-Kapischke, N.; Wałecka-Zacharska, E.; Gospodarek-Komkowska, E. Antibiotic resistance of Enterococcus spp. isolated from the urine of patients hospitalized in the University Hospital in North-Central Poland, 2016–2021. Antibiotics, 2022, 11(12), 1749.
[http://dx.doi.org/10.3390/antibiotics11121749] [PMID: 36551406]
[31]
Li, W.; Wang, A. Genomic islands mediate environmental adaptation and the spread of antibiotic resistance in multiresistant Enterococci - evidence from genomic sequences. BMC Microbiol., 2021, 21(1), 55.
[http://dx.doi.org/10.1186/s12866-021-02114-4] [PMID: 33386072]
[32]
Chajęcka-Wierzchowska, W.; Zarzecka, U.; Zadernowska, A. Enterococci isolated from plant-derived food - Analysis of antibiotic resistance and the occurrence of resistance genes. Lebensm. Wiss. Technol., 2021, 139, 110549.
[http://dx.doi.org/10.1016/j.lwt.2020.110549]
[33]
Padmasini, E.; Padmaraj, R.; Ramesh, S.S. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India. ScientificWorldJournal, 2014, 2014, 1-5.
[http://dx.doi.org/10.1155/2014/329157] [PMID: 24672306]
[34]
Facklam, R.R.; Collins, M.D. Identification of Enterococcus species isolated from human infections by a conventional test scheme. J. Clin. Microbiol., 1989, 27(4), 731-734.
[http://dx.doi.org/10.1128/jcm.27.4.731-734.1989] [PMID: 2656745]
[35]
Różańska, H.; Lewtak-Piłat, A.; Osek, J. Antimicrobial resistance of Enterococcus faecalis isolated from meat. J. Vet. Res., 2015, 59(2), 229-233.
[36]
Khanmohammadi, S.; Nahaei, M.R.; Rezaee, M.A.; Sadeghi, J. Frequency of vancomycin resistance and vanA gene in enterococci isolated from Tabriz Children’s teaching and treatment center. Med J Tabriz Univ Med Sci, 2018, 40(4), 16-23.
[37]
Nasaj, M.; Mousavi, S.M.; Hosseini, S.M.; Arabestani, M.R. Prevalence of virulence factors and vancomycin-resistant genes among Enterococcus faecalis and E. faecium isolated from clinical specimens. Iran. J. Public Health, 2016, 45(6), 806-813.
[PMID: 27648425]
[38]
Gousia, P.; Economou, V.; Bozidis, P.; Papadopoulou, C. Vancomycin-resistance phenotypes, vancomycin-resistance genes, and resistance to antibiotics of enterococci isolated from food of animal origin. Foodborne Pathog. Dis., 2015, 12(3), 214-220.
[http://dx.doi.org/10.1089/fpd.2014.1832] [PMID: 25562594]