Effects of High-altitude Hypoxia on Drug Metabolism and Pharmacokinetics of Sedative-hypnotic Drugs and Regulatory Mechanism
  • * (Excluding Mailing and Handling)

Abstract

Sedative hypnotics effectively improve sleep quality under high-altitude hypoxia by reducing central nervous system excitability. High-altitude hypoxia causes sleep disorders and modifies the metabolism and mechanisms of drug action, impacting medication therapy's effectiveness. This review aims to provide a theoretical basis for the treatment of central nervous system diseases in high-altitude areas by summarizing the progress and mechanism of sedative-hypnotics in hypoxic environments, as well as the impact of highaltitude hypoxia on sleep.

[1]
Robbins, R.; Quan, S.F.; Buysse, D.J.; Weaver, M.D.; Walker, M.P.; Drake, C.L.; Monten, K.; Barger, L.K.; Rajaratnam, S.M.W.; Roth, T.; Czeisler, C.A. A nationally representative survey assessing restorative sleep in US adults. Frontiers in Sleep, 2022, 1, 935228.
[http://dx.doi.org/10.3389/frsle.2022.935228] [PMID: 36042946]
[2]
K Pavlova, M.; Latreille, V. Sleep Disorders. Am. J. Med., 2019, 132(3), 292-299.
[http://dx.doi.org/10.1016/j.amjmed.2018.09.021] [PMID: 30292731]
[3]
Varghese, N.E.; Lugo, A.; Ghislandi, S.; Colombo, P.; Pacifici, R.; Gallus, S. Sleep dissatisfaction and insufficient sleep duration in the Italian population. Sci. Rep., 2020, 10(1), 17943.
[http://dx.doi.org/10.1038/s41598-020-72612-4] [PMID: 33087728]
[4]
Zhou, X.; Nian, Y.; Qiao, Y.; Yang, M.; Xin, Y.; Li, X. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude. Curr. Drug Metab., 2018, 19(11), 960-969.
[http://dx.doi.org/10.2174/1389200219666180529112913] [PMID: 29807512]
[5]
Fisher, J.M.; Wrighton, S.A.; Watkins, P.B.; Schmiedlin-Ren, P.; Calamia, J.C.; Shen, D.D.; Kunze, K.L.; Thummel, K.E. First-pass midazolam metabolism catalyzed by 1alpha,25-dihydroxy vitamin D3-modified Caco-2 cell monolayers. J. Pharmacol. Exp. Ther., 1999, 289(2), 1134-1142.
[PMID: 10215697]
[6]
Denlinger, C.S.; Ligibel, J.A.; Are, M.; Baker, K.S.; Demark-Wahnefried, W.; Friedman, D.L.; Goldman, M.; Jones, L.; King, A.; Ku, G.H.; Kvale, E.; Langbaum, T.S.; Leonardi-Warren, K.; McCabe, M.S.; Melisko, M.; Montoya, J.G.; Mooney, K.; Morgan, M.A.; Moslehi, J.J.; O’Connor, T.; Overholser, L.; Paskett, E.D.; Raza, M.; Syrjala, K.L.; Urba, S.G.; Wakabayashi, M.T.; Zee, P.; McMillian, N.; Freedman-Cass, D. Survivorship: Sleep disorders, version 1.2014. J. Natl. Compr. Canc. Netw., 2014, 12(5), 630-642.
[http://dx.doi.org/10.6004/jnccn.2014.0067] [PMID: 24812132]
[7]
Garrido, E.; Botella de Maglia, J.; Castillo, O. Acute, subacute and chronic mountain sickness. Rev. Clin. Esp. (Barc.), 2021, 221(8), 481-490.
[http://dx.doi.org/10.1016/j.rceng.2019.12.009] [PMID: 34583826]
[8]
Pena, E.; El Alam, S.; Siques, P.; Brito, J. Oxidative stress and diseases associated with high-altitude exposure. Antioxidants, 2022, 11(2), 267.
[http://dx.doi.org/10.3390/antiox11020267] [PMID: 35204150]
[9]
Nathansen, A.B.; Møller, A.M. Prophylaxis and treatment of mountain sickness. Ugeskr. Laeger, 2023, 185(13), 06220421.
[PMID: 36999289]
[10]
Tseng, C.H.; Lin, F.C.; Chao, H.S.; Tsai, H.C.; Shiao, G.M.; Chang, S.C. Impact of rapid ascent to high altitude on sleep. Sleep Breath., 2015, 19(3), 819-26.
[http://dx.doi.org/10.1007/s11325-014-1093-7.]
[11]
Nussbaumer-Ochsner, Y.; Schuepfer, N.; Ursprung, J.; Siebenmann, C.; Maggiorini, M.; Bloch, K.E. Sleep and breathing in high altitude pulmonary edema susceptible subjects at 4,559 meters. Sleep, 2012, 35(10), 1413-1421.
[http://dx.doi.org/10.5665/sleep.2126] [PMID: 23024440]
[12]
Furian, M.; Bitos, K.; Hartmann, S.E.; Muralt, L.; Lichtblau, M.; Bader, P.R.; Rawling, J.M.; Ulrich, S.; Poulin, M.J.; Bloch, K.E. Acute high altitude exposure, acclimatization and re-exposure on nocturnal breathing. Front. Physiol., 2022, 13, 965021.
[http://dx.doi.org/10.3389/fphys.2022.965021] [PMID: 36134332]
[13]
Lancaster, G.; Debevec, T.; Millet, G.P.; Poussel, M.; Willis, S.J.; Mramor, M.; Goričar, K.; Osredkar, D.; Dolžan, V.; Stefanovska, A. Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans. J. Physiol., 2020, 598(10), 2001-2019.
[http://dx.doi.org/10.1113/JP278829] [PMID: 31957891]
[14]
Anholm, J.D.; Powles, A.C.P.; Downey, R., III; Houston, C.S.; Sutton, J.R.; Bonnet, M.H.; Cymerman, A. Operation Everest II: Arterial oxygen saturation and sleep at extreme simulated altitude. Am. Rev. Respir. Dis., 1992, 145(4_pt_1), 817-826.
[http://dx.doi.org/10.1164/ajrccm/145.4_Pt_1.817] [PMID: 1554208]
[15]
Pramsohler, S.; Schilz, R.; Patzak, A.; Rausch, L.; Netzer, N.C. Periodic breathing in healthy young adults in normobaric hypoxia equivalent to 3500 m, 4500 m, and 5500 m altitude. Sleep Breath., 2019, 23(2), 703-709.
[http://dx.doi.org/10.1007/s11325-019-01829-z] [PMID: 30972693]
[16]
Kryger, M.; Glas, R.; Jackson, D.; McCullough, R.E.; Scoggin, C.; Grover, R.F.; Weil, J.V. Impaired oxygenation during sleep in excessive polycythemia of high altitude: Improvement with respiratory stimulation. Sleep, 1978, 1(1), 3-17.
[http://dx.doi.org/10.1093/sleep/1.1.3] [PMID: 756057]
[17]
Ju, J.D.; Zhang, C.; Sgambati, F.P.; Lopez, L.M.; Pham, L.V.; Schwartz, A.R.; Accinelli, R.A. Acute altitude acclimatization in young healthy volunteers: Nocturnal oxygenation increases over time, whereas periodic breathing persists. High Alt. Med. Biol., 2021, 22(1), 14-23.
[http://dx.doi.org/10.1089/ham.2020.0009] [PMID: 33185483]
[18]
Bird, J.D.; Kalker, A.; Rimke, A.N.; Chan, J.S.; Chan, G.; Saran, G.; Jendzjowsky, N.G.; Wilson, R. J.A.; Brutsaert, T.D.; Sherpa, M.T.; Day, T.A. Severity of central sleep apnea does not affect sleeping oxygen saturation during ascent to high altitude. J Appl Physiol (1985)., 2021, 131(5), 1432-1443.
[http://dx.doi.org/10.1152/japplphysiol.00363.2021.]
[19]
Beaumont, M.; Batéjat, D.; Coste, O.; van Beers, P.; Colas, A.; Clère, J.M.; Piérard, C. Effects of zolpidem and zaleplon on sleep, respiratory patterns and performance at a simulated altitude of 4,000 m. Neuropsychobiology, 2004, 49(3), 154-162.
[http://dx.doi.org/10.1159/000076723] [PMID: 15034230]
[20]
Tanner, J.B.; Tanner, S.M.E.; Thapa, G.B.; Chang, Y.; Watson, K.L.M.; Staunton, E.; Howarth, C.; Basnyat, B.; Harris, N.S. A randomized trial of temazepam versus acetazolamide in high altitude sleep disturbance. High Alt. Med. Biol., 2013, 14(3), 234-239.
[http://dx.doi.org/10.1089/ham.2013.1023] [PMID: 24028643]
[21]
Erman, M.K. Influence of pharmacokinetic profiles on safety and efficacy of hypnotic medications. J Clin Psychiatry, 2006, 67, 9-12. Available from: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/469008
[22]
Wang, Q.; Jiang, T.; Li, C. Overview of recent literature on diazepam adverse reactions. Chinese Journal of Drug Abuse Prevention and Control., 2014, 20(04), 233-234.
[23]
Liu, F.; Lu, Z. Interpretation of the key points of the expert consensus on the clinical use of benzodiazepines. World Clinical., 2018, 39(10), 716-720.
[24]
Li, W.; Wang, L.; Fan, Z. Catabolic kinetics of diazepam and its I and II phase metabolites in human urine. Chinese forensic impurities., 2023, 38(3), 273-276.
[25]
Hofmann, J.I.; Schwarz, C.; Rudolph, U.; Antkowiak, B. Effects of diazepam on low-frequency and high-frequency electrocortical γ-power mediated by α1- and α2-GABAA receptors. Int. J. Mol. Sci., 2019, 20(14), 3486.
[http://dx.doi.org/10.3390/ijms20143486] [PMID: 31315211]
[26]
Howland, R.H. Safety and abuse liability of Oxazepam: Is this benzodiazepine drug underutilized? J. Psychosoc. Nurs. Ment. Health Serv., 2016, 54(4), 22-25.
[http://dx.doi.org/10.3928/02793695-20160322-01] [PMID: 27042924]
[27]
Luo, T.; Hao, W. Research progress of oxazepam. Int. J. Psychiatry, 2010, 37(4), 244-247.
[28]
Denisov, I.G.; Grinkova, Y.V.; Camp, T.; McLean, M.A.; Sligar, S.G. Midazolam as a probe for drug–drug interactions mediated by CYP3A4: Homotropic allosteric mechanism of site-specific hydroxylation. Biochemistry, 2021, 60(21), 1670-1681.
[http://dx.doi.org/10.1021/acs.biochem.1c00161] [PMID: 34015213]
[29]
Venkatapura Chandrashekar, D.; DuBois, B.; Mehvar, R. UPLC-MS/MS analysis of the Michaelis-Menten kinetics of CYP3A-mediated midazolam 1′- and 4-hydroxylation in rat brain microsomes. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2021, 1180, 122892.
[http://dx.doi.org/10.1016/j.jchromb.2021.122892] [PMID: 34388602]
[30]
Salman, S.; Tang, E.K.Y.; Cheung, L.C.; Nguyen, M.N.; Sommerfield, D.; Slevin, L.; Lim, L.Y.; von Ungern Sternberg, B.S. A novel, palatable paediatric oral formulation of midazolam: Pharmacokinetics, tolerability, efficacy and safety. Anaesthesia, 2018, 73(12), 1469-1477.
[http://dx.doi.org/10.1111/anae.14318] [PMID: 29984832]
[31]
Hollister, L.E. Principles of therapeutic applications of benzodiazepines. J. Psychoactive Drugs, 1983, 15(1-2), 41-44.
[http://dx.doi.org/10.1080/02791072.1983.10472120] [PMID: 6136568]
[32]
Włodarczyk, A.; Szarmach, J.; Cubała, W.J.; Wiglusz, M.S. Benzodiazepines in combination with antipsychotic drugs for schizophrenia: GABA-ergic targeted therapy. Psychiatr. Danub., 2017, 29(3), 345-348.
[PMID: 28953788]
[33]
Zhu, J.; Yang, J.; Nian, Y.; Liu, G.; Duan, Y.; Bai, X.; Wang, Q.; Zhou, Y.; Wang, X.; Qu, N.; Li, X. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia. Front. Pharmacol., 2021, 12, 692349.
[http://dx.doi.org/10.3389/fphar.2021.692349] [PMID: 34220516]
[34]
Gong, W.; Liu, S.; Xu, P.; Fan, M.; Xue, M. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats. Molecules, 2015, 20(4), 6901-6912.
[http://dx.doi.org/10.3390/molecules20046901] [PMID: 25913929]
[35]
Vij, A.G.; Kishore, K.; Dey, J. Effect of intermittent hypobaric hypoxia on efficacy & clearance of drugs. Indian J. Med. Res., 2012, 135(2), 211-216.
[PMID: 22446863]
[36]
Wilbraham, D.; Berg, P.H.; Tsai, M.; Liffick, E.; Loo, L.S.; Doty, E.G.; Sellers, E. Abuse potential of Lasmiditan: A phase 1 randomized, placebo- and alprazolam-controlled crossover study. J. Clin. Pharmacol., 2020, 60(4), 495-504.
[http://dx.doi.org/10.1002/jcph.1543] [PMID: 31745991]
[37]
Bland, H.; Li, X.; Mangin, E.; Yee, K.L.; Lines, C.; Herring, W.J.; Gillespie, G. Effects of bedtime dosing with suvorexant and zolpidem on balance and psychomotor performance in healthy elderly participants during the night and in the morning. J. Clin. Psychopharmacol., 2021, 41(4), 414-420.
[http://dx.doi.org/10.1097/JCP.0000000000001439] [PMID: 34181362]
[38]
Pasupuleti, B.; Gone, V.; Baddam, R.; Venisetty, R.K.; Prasad, O.P. Clinical impact of co-medication of levetiracetam and clobazam with proton pump inhibitors: A drug interaction study. Curr. Drug Metab., 2020, 21(2), 126-131.
[http://dx.doi.org/10.2174/1389200221666200218121050] [PMID: 32067615]
[39]
Hirota, N.; Ito, K.; Iwatsubo, T.; Green, C.E.; Tyson, C.A.; Shimada, N.; Suzuki, H.; Sugiyama, Y. In Vitro / in vivo scaling of alprazolam metabolism by CYP3A4 and CYP3A5 in humans. Biopharm. Drug Dispos., 2001, 22(2), 53-71.
[http://dx.doi.org/10.1002/bdd.261] [PMID: 11745908]
[40]
Wu, Q.; Hu, Y.; Wang, C.; Wei, W.; Gui, L.; Zeng, W.; Liu, C.; Jia, W.; Miao, J.; Lan, K. Reevaluate in vitro CYP3A Index reactions of benzodiazepines and steroids between humans and dogs. Drug Metab. Dispos., 2022, 50(6), 741-749.
[http://dx.doi.org/10.1124/dmd.122.000864] [PMID: 35351776]
[41]
Senda, C.; Kishimoto, W.; Sakai, K.; Nagakura, A.; Igarashi, T. Identification of human cytochrome P450 isoforms involved in the metabolism of brotizolam. Xenobiotica, 1997, 27(9), 913-922.
[http://dx.doi.org/10.1080/004982597240082] [PMID: 9381732]
[42]
Ujiie, Y.; Fukasawa, T.; Yasui-Furukori, N.; Suzuki, A.; Tateishi, T.; Otani, K. Rifampicin markedly decreases plasma concentration and hypnotic effect of brotizolam. Ther. Drug Monit., 2006, 28(3), 299-302.
[http://dx.doi.org/10.1097/01.ftd.0000200010.33430.0e] [PMID: 16778710]
[43]
Giraud, C.; Tran, A.; Rey, E.; Vincent, J.; Tréluyer, J.M.; Pons, G. In vitro characterization of clobazam metabolism by recombinant cytochrome P450 enzymes: Importance of CYP2C19. Drug Metab. Dispos., 2004, 32(11), 1279-1286.
[http://dx.doi.org/10.1124/dmd.32.11.1279] [PMID: 15483195]
[44]
Tolbert, D.; Larsen, F. A comprehensive overview of the clinical pharmacokinetics of clobazam. J. Clin. Pharmacol., 2019, 59(1), 7-19.
[http://dx.doi.org/10.1002/jcph.1313] [PMID: 30285275]
[45]
Greenblatt, D.J.; Harmatz, J.S.; Zhang, Q.; Chen, Y.; Shader, R.I. Slow accumulation and elimination of diazepam and its active metabolite with extended treatment in the elderly. J. Clin. Pharmacol., 2021, 61(2), 193-203.
[http://dx.doi.org/10.1002/jcph.1726] [PMID: 32856316]
[46]
Zubiaur, P.; Figueiredo-Tor, L.; Villapalos-García, G.; Soria-Chacartegui, P.; Navares-Gómez, M.; Novalbos, J.; Matas, M.; Calleja, S.; Mejía-Abril, G.; Román, M.; Ochoa, D.; Abad-Santos, F. Association between CYP2C19 and CYP2B6 phenotypes and the pharmacokinetics and safety of diazepam. Biomed. Pharmacother., 2022, 155, 113747.
[http://dx.doi.org/10.1016/j.biopha.2022.113747] [PMID: 36162369]
[47]
Al Bahri, A.A.; Hamnett, H.J. Etizolam and its major metabolites: A short review. J. Anal. Toxicol., 2023, 47(3), 216-226.
[http://dx.doi.org/10.1093/jat/bkac096] [PMID: 36477341]
[48]
Jie, Z.; Qin, S.; Liu, F.; Xu, D.; Sun, J.; Qin, G.; Hou, X.; Xu, P.; Zhang, W.; Gao, C.; Lu, J. Analysis on dynamic changes of etizolam and its metabolites and exploration of its development prospect using UPLC-Q-exactive-MS. J. Pharm. Biomed. Anal., 2024, 240, 115936.
[http://dx.doi.org/10.1016/j.jpba.2023.115936] [PMID: 38183733]
[49]
Kilicarslan, T.; Haining, R.L.; Rettie, A.E.; Busto, U.; Tyndale, R.F.; Sellers, E.M. Flunitrazepam metabolism by cytochrome P450S 2C19 and 3A4. Drug Metab. Dispos., 2001, 29(4 Pt 1), 460-465.
[PMID: 11259331]
[50]
Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. Metabolites replace the parent drug in the drug arena. The cases of fonazepam and nifoxipam. Forensic Toxicol., 2017, 35(1), 1-10.
[http://dx.doi.org/10.1007/s11419-016-0338-5] [PMID: 28127407]
[51]
van Groen, B.D.; Krekels, E.H.J.; Mooij, M.G.; van Duijn, E.; Vaes, W.H.J.; Windhorst, A.D.; van Rosmalen, J.; Hartman, S.J.F.; Hendrikse, N.H.; Koch, B.C.P.; Allegaert, K.; Tibboel, D.; Knibbe, C.A.J.; de Wildt, S.N. The oral bioavailability and metabolism of midazolam in stable critically Ill children: A pharmacokinetic microtracing study. Clin. Pharmacol. Ther., 2021, 109(1), 140-149.
[http://dx.doi.org/10.1002/cpt.1890] [PMID: 32403162]
[52]
Jeong, W.; Sunwoo, J.; You, Y.; Park, J.S.; Min, J.H.; In, Y.N.; Ahn, H.J.; Jeon, S.Y.; Hong, J.H.; Song, J.H.; Kang, H.; Nguyen, M.T.T.; Kim, J.; Kang, C. Distribution and elimination kinetics of midazolam and metabolites after post-resuscitation care: A prospective observational study. Sci. Rep., 2024, 14(1), 4574.
[http://dx.doi.org/10.1038/s41598-024-54968-z] [PMID: 38403792]
[53]
Miura, M.; Ohkubo, T. In vitro metabolism of quazepam in human liver and intestine and assessment of drug interactions. Xenobiotica, 2004, 34(11-12), 1001-1011.
[http://dx.doi.org/10.1080/02772240400015214] [PMID: 15801544]
[54]
Zhou, J.; Yamaguchi, K.; Ohno, Y. Quantitative analysis of quazepam and its metabolites in human blood, urine, and bile by liquid chromatography–tandem mass spectrometry. Forensic Sci. Int., 2014, 241, e5-e12.
[http://dx.doi.org/10.1016/j.forsciint.2014.04.027] [PMID: 24856286]
[55]
Li, X.; Wang, X.; Li, Y.; Zhu, J.; Su, X.; Yao, X.; Fan, X.; Duan, Y. The activity, protein, and mRNA expression of CYP2E1 and CYP3A1 in rats after exposure to acute and chronic high altitude hypoxia. High Alt. Med. Biol., 2014, 15(4), 491-496.
[http://dx.doi.org/10.1089/ham.2014.1026] [PMID: 25330250]
[56]
Li, X.; Wang, X.; Li, Y.; Yuan, M.; Zhu, J.; Su, X.; Yao, X.; Fan, X.; Duan, Y. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology, 2014, 93(1-2), 76-83.
[http://dx.doi.org/10.1159/000358128] [PMID: 24557547]
[57]
Li, W.; Li, J.; Wang, R.; Xie, H.; Jia, Z. MDR1 will play a key role in pharmacokinetic changes under hypoxia at high altitude and its potential regulatory networks. Drug Metab. Rev., 2015, 47(2), 191-198.
[http://dx.doi.org/10.3109/03602532.2015.1007012] [PMID: 25639892]
[58]
Ribeiro, A.L.; Ribeiro, V. Drug metabolism and transport under hypoxia. Curr. Drug Metab., 2013, 14(9), 969-975.
[http://dx.doi.org/10.2174/1389200211314090003] [PMID: 24160293]
[59]
Zhang, J.; Zhang, M.; Zhang, J.; Wang, R. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats. Eur. J. Pharm. Sci., 2020, 153, 105490.
[http://dx.doi.org/10.1016/j.ejps.2020.105490] [PMID: 32721527]
[60]
Taskshita, Y.; Ransohoff, R.M. Blood-brain barrier and neurolongical diseasea. Clin. Exp. Immunol., 2015, 6, 351-261.
[61]
Guo, P.; Zhou, Q.; Luo, H.; Yuan, Y.; Zhou, B. Effects of sodium heptadecyl saponin on changes in blood-cerebrospinal fluid barrier permeability and its anti-leakage mechanism in rats exposed to hypoxia. J. PLA Med. Sci., 2012, 37(02), 98-103.
[62]
Liu, M.; Alkayed, N.J. Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J. Cereb. Blood Flow Metab., 2005, 25(8), 939-948.
[http://dx.doi.org/10.1038/sj.jcbfm.9600085] [PMID: 15729289]
[63]
Ronaldson, P.T.; Davis, T.P. Regulation of blood–brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J. Cereb. Blood Flow Metab., 2020, 40(1_suppl), S6-S24.
[http://dx.doi.org/10.1177/0271678X20951995] [PMID: 32928017]
[64]
Duan, Y.; Zhu, J.; Yang, J.; Liu, G.; Bai, X.; Qu, N.; Wang, X.; Li, X. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR. Front. Pharmacol., 2020, 11, 574176.
[http://dx.doi.org/10.3389/fphar.2020.574176] [PMID: 33041817]
[65]
Yang, J. Transcriptional regulation of CYP450 by HNF1α and HNF4α under plateau hypoxia. Qinghai University, 2023.
[66]
Payne, C.T.; Tabassum, S.; Wu, S.; Hu, H.; Gusdon, A.M.; Choi, H.A.; Ren, X.S. Role of microRNA-34a in blood–brain barrier permeability and mitochondrial function in ischemic stroke. Front. Cell. Neurosci., 2023, 17, 1278334.
[http://dx.doi.org/10.3389/fncel.2023.1278334] [PMID: 37927446]
[67]
Caballero-Garrido, E.; Pena-Philippides, J.C.; Lordkipanidze, T.; Bragin, D.; Yang, Y.; Erhardt, E.B.; Roitbak, T. In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J. Neurosci., 2015, 35(36), 12446-12464.
[http://dx.doi.org/10.1523/JNEUROSCI.1641-15.2015] [PMID: 26354913]
[68]
Redell, J.B.; Zhao, J.; Dash, P.K. Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. J. Neurosci. Res., 2011, 89(2), 212-221.
[http://dx.doi.org/10.1002/jnr.22539] [PMID: 21162128]
[69]
Duan, Y.; Zhu, J.; Yang, J.; Gu, W.; Bai, X.; Liu, G.; Xiangyang, L. A decade’s review of miRNA: A Center of transcriptional regulation of drugmetabolizing enzymes and transporters under hypoxia. Curr. Drug Metab., 2021, 22(9), 709-725.
[http://dx.doi.org/10.2174/1389200222666210514011313] [PMID: 33992050]
[70]
Nakano, M.; Nakajima, M. Pharmacology magazine. Folia pharmacologica Japonica, 2019. Available from: https://jams.med.or.jp/journal_list/005_8e.html
[71]
Yu, A.M.; Tian, Y.; Tu, M.J.; Ho, P.Y.; Jilek, J.L. MicroRNA pharmacoepigenetics: Posttranscriptional regulation mechanisms behind variable drug disposition and strategy to develop more effective therapy. Drug Metab. Dispos., 2016, 44(3), 308-319.
[http://dx.doi.org/10.1124/dmd.115.067470] [PMID: 26566807]
[72]
Rieger, J.K.; Reutter, S.; Hofmann, U.; Schwab, M.; Zanger, U.M. Inflammation-associated microRNA-130b down-regulates cytochrome P450 activities and directly targets CYP2C9. Drug Metab. Dispos., 2015, 43(6), 884-888.
[http://dx.doi.org/10.1124/dmd.114.062844] [PMID: 25802328]
[73]
Kugler, N.; Klein, K.; Zanger, U.M. MiR-155 and other microRNAs downregulate drug metabolizing cytochromes P450 in inflammation. Biochem. Pharmacol., 2020, 171, 113725.
[http://dx.doi.org/10.1016/j.bcp.2019.113725] [PMID: 31758923]
[74]
Xie, Y.; Shao, Y.; Deng, X.; Wang, M.; Chen, Y. MicroRNA-298 reverses multidrug resistance to antiepileptic drugs by suppressing MDR1/P-gp expression in vitro. Front. Neurosci., 2018, 12, 602.
[http://dx.doi.org/10.3389/fnins.2018.00602] [PMID: 30210283]
[75]
Jiang, W.; Wu, Y.; Jiang, W. MicroRNA-18a decreases choroidal endothelial cell proliferation and migration by inhibiting HIF1A expression. Med. Sci. Monit., 2015, 21, 1642-1647.
[http://dx.doi.org/10.12659/MSM.893068] [PMID: 26044722]
[76]
Umezu, T.; Tadokoro, H.; Azuma, K.; Yoshizawa, S.; Ohyashiki, K.; Ohyashiki, J.H. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood, 2014, 124(25), 3748-3757.
[http://dx.doi.org/10.1182/blood-2014-05-576116] [PMID: 25320245]
[77]
Dai, L.; Lou, W.; Zhu, J.; Zhou, X.; Di, W. MiR-199a inhibits the angiogenic potential of endometrial stromal cells under hypoxia by targeting HIF-1α/VEGF pathway. Int. J. Clin. Exp. Pathol., 2015, 8(5), 4735-4744.
[PMID: 26191163]
[78]
Ghosh, G.; Subramanian, I.V.; Adhikari, N.; Zhang, X.; Joshi, H.P.; Basi, D.; Chandrashekhar, Y.S.; Hall, J.L.; Roy, S.; Zeng, Y.; Ramakrishnan, S. Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-α isoforms and promotes angiogenesis. J. Clin. Invest., 2010, 120(11), 4141-4154.
[http://dx.doi.org/10.1172/JCI42980] [PMID: 20972335]
[79]
Altamura, A.C.; Moliterno, D.; Paletta, S.; Maffini, M.; Mauri, M.C.; Bareggi, S. Understanding the pharmacokinetics of anxiolytic drugs. Expert Opin. Drug Metab. Toxicol., 2013, 9(4), 423-440.
[http://dx.doi.org/10.1517/17425255.2013.759209] [PMID: 23330992]
[80]
Griffin, C.E., III; Kaye, A.M.; Bueno, F.R.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J., 2013, 13(2), 214-223.
[PMID: 23789008]
[81]
Nilsson, G.E.; Lutz, P.L. Role of GABA in hypoxia tolerance, metabolic depression and hibernation—Possible links to neurotransmitter evolution. Comp. Biochem. Physiol. C Comp. Pharmacol., 1993, 105(3), 329-336.
[http://dx.doi.org/10.1016/0742-8413(93)90069-W] [PMID: 7900957]
[82]
Kaufmann, W.A.; Humpel, C.; Alheid, G.F.; Marksteiner, J. Compartmentation of alpha 1 and alpha 2 GABAA receptor subunits within rat extended amygdala: Implications for benzodiazepine action. Brain Res., 2003, 964(1), 91-99.
[http://dx.doi.org/10.1016/S0006-8993(02)04082-9] [PMID: 12573516]
[83]
Abbott, N.J. Prediction of blood–brain barrier permeation in drug discovery from in vivo, in vitro and in silico models. Drug Discov. Today. Technol., 2004, 1(4), 407-416.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.014] [PMID: 24981621]
[84]
Alavijeh, M.S.; Chishty, M.; Qaiser, M.Z.; Palmer, A.M. Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx, 2005, 2(4), 554-571.
[http://dx.doi.org/10.1602/neurorx.2.4.554] [PMID: 16489365]
[85]
Kulkarni, A.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Pardeshi, C.V. Brain–blood ratio: Implications in brain drug delivery. Expert Opin. Drug Deliv., 2016, 13(1), 85-92.
[http://dx.doi.org/10.1517/17425247.2016.1092519] [PMID: 26393289]