Current Proteomics

Author(s): Hiba K. Almaadani and Venkata Satish Kumar Mattaparthi*

DOI: 10.2174/0115701646301703240730054408

DownloadDownload PDF Flyer Cite As
The Effect of N52R Mutation at the SPN-ARR Interface on the Conformational Dynamics of SHANK3

Page: [162 - 173] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition. The genetic basis of ASD involves numerous loci converging on neural pathways, particularly affecting excitatory synapses. SHANK3, an essential protein in the post-synaptic neurons, has been implicated in ASD, with mutations affecting its N-terminal, including the SPN domain.

Objective: This study aims to investigate the impact of the N52R mutation on SHANK3 and assess the dynamics, stability, flexibility, and compactness of the N52R mutant compared to SHANK3 WT.

Methods: Molecular dynamics simulations were conducted to investigate the structural dynamics of SHANK3 WT and the N52R mutant. The simulations involved heating dynamics, density equilibrium, and production dynamics. The trajectories were analyzed for RMSD, RMSF, Rg, hydrogen bond analysis, and secondary structure.

Results: The simulations revealed that the N52R mutant disrupts the stability and folding of SHANK3, affecting intramolecular contacts between SPN and ARR. This disruption opens up the distance between SPN and ARR domains, potentially influencing the protein's interactions with partners, including αCaMKII and α-Fodrin. The altered conformation of the SPN-ARR tandem in the N52R mutant suggests a potential impact on dendritic spine shape and synaptic plasticity.

Conclusion: The findings shed light on the structural consequences of the N52R mutation in SHANK3, emphasizing its role in influencing intramolecular interactions and potential effects on synaptic function. Understanding these molecular dynamics contributes to unraveling the intricate relationship between genetic variations in SHANK3 and clinical traits associated with ASD. Further investigations are warranted to explore the physiological implications of these structural alterations in vivo.

Keywords: Autism spectrum disorder, SHANK3 gene, N52R mutation, MD simulation, αCaMKII, clinical traits.

Graphical Abstract

[1]
Nisar, S.; Haris, M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol. Psychiatry, 2023, 1-14.
[2]
Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res., 2022, 15(5), 778-790.
[http://dx.doi.org/10.1002/aur.2696] [PMID: 35238171]
[3]
Ghafouri-Fard, S.; Pourtavakoli, A.; Hussen, B.M.; Taheri, M.; Ayatollahi, S.A. A review on the role of genetic mutations in the autism spectrum disorder. Mol. Neurobiol., 2023, 60(9), 5256-5272.
[http://dx.doi.org/10.1007/s12035-023-03405-9] [PMID: 37278883]
[4]
Molloy, C.J.; Cooke, J.; Gatford, N.J.F.; Rivera-Olvera, A.; Avazzadeh, S.; Homberg, J.R.; Grandjean, J.; Fernandes, C.; Shen, S.; Loth, E.; Srivastava, D.P.; Gallagher, L. Bridging the translational gap: What can synaptopathies tell us about autism? Front. Mol. Neurosci., 2023, 16, 1191323.
[http://dx.doi.org/10.3389/fnmol.2023.1191323] [PMID: 37441676]
[5]
Monteiro, P.; Feng, G. SHANK proteins: Roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci., 2017, 18(3), 147-157.
[http://dx.doi.org/10.1038/nrn.2016.183] [PMID: 28179641]
[6]
Satterstrom, F. K.; Kosmicki, J. A.; Wang, J.; Breen, M. S.; De Rubeis, S.; An, J.-Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 2020, 180(3), 568-584.
[http://dx.doi.org/10.1016/j.cell.2019.12.036]
[7]
Fu, J.M.; Satterstrom, F.K.; Peng, M.; Brand, H.; Collins, R.L.; Dong, S.; Wamsley, B.; Klei, L.; Wang, L.; Hao, S.P.; Stevens, C.R.; Cusick, C.; Babadi, M.; Banks, E.; Collins, B.; Dodge, S.; Gabriel, S.B.; Gauthier, L.; Lee, S.K.; Liang, L.; Ljungdahl, A.; Mahjani, B.; Sloofman, L.; Smirnov, A.N.; Barbosa, M.; Betancur, C.; Brusco, A.; Chung, B.H.Y.; Cook, E.H.; Cuccaro, M.L.; Domenici, E.; Ferrero, G.B.; Gargus, J.J.; Herman, G.E.; Hertz-Picciotto, I.; Maciel, P.; Manoach, D.S.; Passos-Bueno, M.R.; Persico, A.M.; Renieri, A.; Sutcliffe, J.S.; Tassone, F.; Trabetti, E.; Campos, G.; Cardaropoli, S.; Carli, D.; Chan, M.C.Y.; Fallerini, C.; Giorgio, E.; Girardi, A.C.; Hansen-Kiss, E.; Lee, S.L.; Lintas, C.; Ludena, Y.; Nguyen, R.; Pavinato, L.; Pericak-Vance, M.; Pessah, I.N.; Schmidt, R.J.; Smith, M.; Costa, C.I.S.; Trajkova, S.; Wang, J.Y.T.; Yu, M.H.C.; Aleksic, B.; Artomov, M.; Benetti, E.; Biscaldi-Schafer, M.; Børglum, A.D.; Carracedo, A.; Chiocchetti, A.G.; Coon, H.; Doan, R.N.; Fernández-Prieto, M.; Freitag, C.M.; Gerges, S.; Guter, S.; Hougaard, D.M.; Hultman, C.M.; Jacob, S.; Kaartinen, M.; Kolevzon, A.; Kushima, I.; Lehtimäki, T.; Rizzo, C.L.; Maltman, N.; Manara, M.; Meiri, G.; Menashe, I.; Miller, J.; Minshew, N.; Mosconi, M.; Ozaki, N.; Palotie, A.; Parellada, M.; Puura, K.; Reichenberg, A.; Sandin, S.; Scherer, S.W.; Schlitt, S.; Schmitt, L.; Schneider-Momm, K.; Siper, P.M.; Suren, P.; Sweeney, J.A.; Teufel, K.; del Pilar Trelles, M.; Weiss, L.A.; Yuen, R.; Cutler, D.J.; De Rubeis, S.; Buxbaum, J.D.; Daly, M.J.; Devlin, B.; Roeder, K.; Sanders, S.J.; Talkowski, M.E. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat. Genet., 2022, 54(9), 1320-1331.
[http://dx.doi.org/10.1038/s41588-022-01104-0] [PMID: 35982160]
[8]
Zhou, X.; Feliciano, P.; Shu, C.; Wang, T.; Astrovskaya, I.; Hall, J.B.; Obiajulu, J.U.; Wright, J.R.; Murali, S.C.; Xu, S.X.; Brueggeman, L.; Thomas, T.R.; Marchenko, O.; Fleisch, C.; Barns, S.D.; Snyder, L.G.; Han, B.; Chang, T.S.; Turner, T.N.; Harvey, W.T.; Nishida, A.; O’Roak, B.J.; Geschwind, D.H.; Adams, A.; Amatya, A.; Andrus, A.; Bashar, A.; Berman, A.; Brown, A.; Camba, A.; Gulsrud, A.C.; Krentz, A.D.; Shocklee, A.D.; Esler, A.; Lash, A.E.; Fanta, A.; Fatemi, A.; Fish, A.; Goler, A.; Gonzalez, A.; Gutierrez, A., Jr; Hardan, A.; Hess, A.; Hirshman, A.; Holbrook, A.; Ace, A.J.; Griswold, A.J.; Gruber, A.J.; Jarratt, A.; Jelinek, A.; Jorgenson, A.; Juarez, A.P.; Kim, A.; Kitaygorodsky, A.; Luo, A.; Rachubinski, A.L.; Wainer, A.L.; Daniels, A.M.; Mankar, A.; Mason, A.; Miceli, A.; Milliken, A.; Morales-Lara, A.; Stephens, A.N.; Nguyen, A.N.; Nicholson, A.; Paolicelli, A.M.; McKenzie, A.P.; Gupta, A.R.; Raven, A.; Rhea, A.; Simon, A.; Soucy, A.; Swanson, A.; Sziklay, A.; Tallbull, A.; Tesng, A.; Ward, A.; Zick, A.; Hilscher, B.A.; Bell, B.; Enright, B.; Robertson, B.E.; Hauf, B.; Jensen, B.; Lobisi, B.; Vernoia, B.M.; Schwind, B.; VanMetre, B.; Erickson, C.A.; Sullivan, C.A.W.; Albright, C.; Anglo, C.; Buescher, C.; Bradley, C.C.; Campo-Soria, C.; Cohen, C.; Colombi, C.; Diggins, C.; Edmonson, C.; Rice, C.E.; Fassler, C.; Gray, C.; Gunter, C.; Walston, C.H.; Klaiman, C.; Leonczyk, C.; Martin, C.L.; Lord, C.; Taylor, C.M.; McCarthy, C.; Ochoa-Lubinoff, C.; Ortiz, C.; Pierre, C.; Rosenberg, C.R.; Rigby, C.; Roche, C.; Shrier, C.; Smith, C.; Van Wade, C.; White-Lehman, C.; Zaro, C.; Zha, C.; Bentley, D.; Correa, D.; Sarver, D.E.; Giancarla, D.; Amaral, D.G.; Howes, D.; Istephanous, D.; Coury, D.L.; Li, D.; Limon, D.; Limpoco, D.; Phillips, D.; Rambeck, D.; Rojas, D.; Srishyla, D.; Stamps, D.; Montes, D.V.; Cho, D.; Cho, D.; Fox, E.A.; Bahl, E.; Berry-Kravis, E.; Blank, E.; Bower, E.; Brooks, E.; Courchesne, E.; Dillon, E.; Doyle, E.; Given, E.; Grimes, E.; Jones, E.; Fombonne, E.J.; Kryszak, E.; Wodka, E.L.; Lamarche, E.; Lampert, E.; Butter, E.M.; O’Connor, E.; Ocampo, E.; Orrick, E.; Perez, E.; Ruzzo, E.; Singer, E.; Matthews, E.T.; Pedapati, E.V.; Fazal, F.; Miller, F.K.; Aberbach, G.; Baraghoshi, G.; Duhon, G.; Hooks, G.; Fischer, G.J.; Marzano, G.; Schoonover, G.; Dichter, G.S.; Tiede, G.; Cottrell, H.; Kaplan, H.E.; Ghina, H.; Hutter, H.; Koene, H.; Schneider, H.L.; Lechniak, H.; Li, H.; Morotti, H.; Qi, H.; Richardson, H.; Zaydens, H.; Zhang, H.; Zhao, H.; Arriaga, I.; Tso, I.F.; Acampado, J.; Gerdts, J.A.; Beeson, J.; Brown, J.; Comitre, J.; Cordova, J.; Delaporte, J.; Cubells, J.F.; Harris, J.F.; Gong, J.; Gunderson, J.; Hernandez, J.; Judge, J.; Jurayj, J.; Law, J.K.; Manoharan, J.; Montezuma, J.; Neely, J.; Orobio, J.; Pandey, J.; Piven, J.; Polanco, J.; Polite, J.; Rosewater, J.; Scherr, J.; Sutcliffe, J.S.; McCracken, J.T.; Tjernagel, J.; Toroney, J.; Veenstra-Vanderweele, J.; Wang, J.; Ahlers, K.; Schweers, K.A.; Baalman, K.; Beard, K.; Callahan, K.; Coleman, K.; Fitzgerald, K.D.; Dent, K.; Diehl, K.; Gonring, K.; Pawlowski, K.G.; Hirst, K.; Pierce, K.L.; Murillo, K.; Murray, K.; Nowell, K.; O’Brien, K.; Pama, K.; Real, K.; Singer, K.; Smith, K.; Stephenson, K.; Tsai, K.; Abbeduto, L.; Cartner, L.A.; Beeson, L.; Carpenter, L.; Casten, L.; Coppola, L.; Cordiero, L.; DeMarco, L.; Pacheco, L.D.; Corzo, L.F.; Shulman, L.H.; Walsh, L.K.; Lesher, L.; Herbert, L.M.; Prock, L.M.; Malloch, L.; Mann, L.; Grosvenor, L.P.; Simon, L.; Soorya, L.V.; Wasserburg, L.; Yeh, L.; Huang-Storms, L.Y.; Alessandri, M.; Popp, M.A.; Baer, M.; Beckwith, M.; Casseus, M.; Coughlin, M.; Currin, M.; Cutri, M.; Mallardi, M.D.; DuBois, M.; Dunlevy, M.; Butler, M.E.; Frayne, M.; Gwynette, M.L.F.; Ghaziuddin, M.; Haley, M.; Heyman, M.; Hojlo, M.; Jordy, M.; Morrier, M.J.; Kowanda, M.; Koza, M.; Lopez, M.; McTaggart, M.; Norris, M.; Hale, M.N.; O’Neil, M.; Printen, M.; Rayos, M.; Sabiha, M.; Sahin, M.; Sarris, M.; Shir, M.; Siegel, M.; Steele, M.; Sweeney, M.; Tafolla, M.; Valicenti-McDermott, M.; Verdi, M.; Dennis, M.Y.; Alvarez, N.; Bardett, N.; Berger, N.; Calderon, N.; Decius, N.; Gonzalez, N.; Harris, N.; Lawson, N.; Lillie, N.; Lo, N.; Long, N.; Russo-Ponsaran, N.M.; Madi, N.; Mccoy, N.; Nagpal, N.; Rodriguez, N.; Russell, N.; Shah, N.; Takahashi, N.; Targalia, N.; Newman, O.; Ousley, O.Y.; Heydemann, P.; Manning, P.; Carbone, P.S.; Bernier, R.A.; Gordon, R.A.; Shaffer, R.C.; Annett, R.D.; Clark, R.D.; Jou, R.; Landa, R.J.; Earl, R.K.; Libove, R.; Marini, R.; Doan, R.N.; Goin-Kochel, R.P.; Rana, R.; Remington, R.; Shikov, R.; Schultz, R.T.; Aberle, S.; Birdwell, S.; Boland, S.; Booker, S.; Carpenter, S.; Chintalapalli, S.; Conyers, S.; D’Ambrosi, S.; Eldred, S.; Francis, S.; Ganesan, S.; Hepburn, S.; Horner, S.; Hunter, S.; Brewster, S.J.; Lee, S.J.; Jacob, S.; Jean, S.; Hyun, S.; Kramer, S.; Friedman, S.L.; Licona, S.; Littlefield, S.; Kanne, S.M.; Mastel, S.; Mathai, S.; Melnyk, S.; Michaels, S.; Mohiuddin, S.; Palmer, S.; Plate, S.; Qiu, S.; Randall, S.; Sandhu, S.; Santangelo, S.; Shah, S.; Skinner, S.; Thompson, S.; White, S.; White, S.; Xiao, S.; Xu, S.; Xu, S.; Chen, T.; Greene, T.; Ho, T.; Ibanez, T.; Koomar, T.; Pramparo, T.; Rutter, T.; Shaikh, T.; Tran, T.; Yu, T.W.; Galbraith, V.; Gazestani, V.; Myers, V.J.; Ranganathan, V.; Singh, V.; Weaver, W.C.; CaI, W.; Chin, W.; Yang, W.S.; Choi, Y.B.; Warren, Z.E.; Michaelson, J.J.; Volfovsky, N.; Eichler, E.E.; Shen, Y.; Chung, W.K. Integrating de novo and inherited variants in 42,607 autism cases identifies mutations in new moderate-risk genes. Nat. Genet., 2022, 54(9), 1305-1319.
[http://dx.doi.org/10.1038/s41588-022-01148-2] [PMID: 35982159]
[9]
Cai, Q.; Hosokawa, T.; Zeng, M.; Hayashi, Y.; Zhang, M. Shank3 binds to and stabilizes the active form of Rap1 and HRas GTPases via Its NTD-ANK tandem with distinct mechanisms. Structure, 2020, 28(3), 290-300.
[http://dx.doi.org/10.1016/j.str.2019.11.018]
[10]
Hassani Nia, F.; Woike, D.; Martens, V.; Klüssendorf, M.; Hönck, H.H.; Harder, S.; Kreienkamp, H.J. Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Mol. Autism, 2020, 11(1), 85.
[http://dx.doi.org/10.1186/s13229-020-00385-8] [PMID: 33115499]
[11]
Chiu, S.L.; Chen, C.M.; Huganir, R.L. ICA69 regulates activity-dependent synaptic strengthening and learning and memory. Front. Mol. Neurosci., 2023, 16, 1171432.
[http://dx.doi.org/10.3389/fnmol.2023.1171432] [PMID: 37251649]
[12]
MacGillavry, H.D.; Kerr, J.M.; Kassner, J.; Frost, N.A.; Blanpied, T.A. Shank–cortactin interactions control actin dynamics to maintain flexibility of neuronal spines and synapses. Eur. J. Neurosci., 2016, 43(2), 179-193.
[http://dx.doi.org/10.1111/ejn.13129] [PMID: 26547831]
[13]
Hassani Nia, F.; Kreienkamp, H.J. Functional relevance of missense mutations affecting the N-terminal part of Shank3 found in autistic patients. Front. Mol. Neurosci., 2018, 11, 268.
[http://dx.doi.org/10.3389/fnmol.2018.00268] [PMID: 30131675]
[14]
Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsäter, H.; Sponheim, E.; Goubran-Botros, H.; Delorme, R.; Chabane, N.; Mouren-Simeoni, M.C.; de Mas, P.; Bieth, E.; Rogé, B.; Héron, D.; Burglen, L.; Gillberg, C.; Leboyer, M.; Bourgeron, T. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet., 2007, 39(1), 25-27.
[http://dx.doi.org/10.1038/ng1933] [PMID: 17173049]
[15]
Lilja, J.; Zacharchenko, T.; Georgiadou, M.; Jacquemet, G.; Franceschi, N.D.; Peuhu, E.; Hamidi, H.; Pouwels, J.; Martens, V.; Nia, F.H.; Beifuss, M.; Boeckers, T.; Kreienkamp, H.J.; Barsukov, I.L.; Ivaska, J. SHANK proteins limit integrin activation by directly interacting with Rap1 and R-Ras. Nat. Cell Biol., 2017, 19(4), 292-305.
[http://dx.doi.org/10.1038/ncb3487] [PMID: 28263956]
[16]
Salomaa, S. I.; Miihkinen, M.; Kremneva, E.; Paatero, I.; Lilja, J.; Jacquemet, G.; Vuorio, J.; Antenucci, L.; Kogan, K.; Nia, F. H. SHANK3 conformation regulates direct actin binding and crosstalk with Rap1 signaling. Curr. Biol., 2021, 31(22), 4956-4970.
[17]
Woike, D.; Wang, E.; Tibbe, D.; Hassani Nia, F.; Failla, A.V.; Kibæk, M.; Overgård, T.M.; Larsen, M.J.; Fagerberg, C.R.; Barsukov, I.; Kreienkamp, H.J. Mutations affecting the N-terminal domains of SHANK3 point to different pathomechanisms in neurodevelopmental disorders. Sci. Rep., 2022, 12(1), 902.
[http://dx.doi.org/10.1038/s41598-021-04723-5] [PMID: 35042901]
[18]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[19]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[20]
Henriques, J.; Cragnell, C.; Skepö, M. Molecular dynamics simulations of intrinsically disordered proteins: force field evaluation and comparison with experiment. J. Chem. Theory Comput., 2015, 11(7), 3420-3431.
[http://dx.doi.org/10.1021/ct501178z] [PMID: 26575776]
[21]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[22]
Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888.
[http://dx.doi.org/10.1021/ct400314y] [PMID: 26592383]
[23]
Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys., 1977, 23(3), 327-341.
[http://dx.doi.org/10.1016/0021-9991(77)90098-5]
[24]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[25]
Romo, T.D.; Grossfield, A. Block covariance overlap method and convergence in molecular dynamics simulation. J. Chem. Theory Comput., 2011, 7(8), 2464-2472.
[http://dx.doi.org/10.1021/ct2002754] [PMID: 26606620]
[26]
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 1983, 22(12), 2577-2637.
[http://dx.doi.org/10.1002/bip.360221211] [PMID: 6667333]
[27]
Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins, 2002, 47(3), 393-402.
[http://dx.doi.org/10.1002/prot.10104] [PMID: 11948792]
[28]
Woike, D.; Tibbe, D.; Hassani Nia, F.; Martens, V.; Wang, E.; Barsukov, I.; Kreienkamp, H-J. The Shank/ProSAP N-terminal (SPN) domain of Shank3 regulates targeting to postsynaptic sites and postsynaptic signalling. bioRxiv, 2023.
[http://dx.doi.org/10.1101/2023.04.28.538665]
[29]
Yi, F.; Danko, T.; Botelho, S.C.; Patzke, C.; Pak, C.; Wernig, M.; Südhof, T.C. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Science, 2016, 352(6286), aaf2669.
[http://dx.doi.org/10.1126/science.aaf2669] [PMID: 26966193]
[30]
Mameza, M.G.; Dvoretskova, E.; Bamann, M.; Hönck, H.H.; Güler, T.; Boeckers, T.M.; Schoen, M.; Verpelli, C.; Sala, C.; Barsukov, I.; Dityatev, A.; Kreienkamp, H.J. SHANK3 gene mutations associated with autism facilitate ligand binding to the Shank3 ankyrin repeat region. J. Biol. Chem., 2013, 288(37), 26697-26708.
[http://dx.doi.org/10.1074/jbc.M112.424747] [PMID: 23897824]
[31]
Cai, Q.; Zeng, M.; Wu, X.; Wu, H.; Zhan, Y.; Tian, R.; Zhang, M. CaMKIIα-driven, phosphatase-checked postsynaptic plasticity via phase separation. Cell Res., 2021, 31(1), 37-51.
[http://dx.doi.org/10.1038/s41422-020-00439-9] [PMID: 33235361]