Advancements in the Transdermal Drug Delivery Systems Utilizing Microemulsion-based Gels
  • * (Excluding Mailing and Handling)

Abstract

Microemulsion gel, as a promising transdermal nanoparticle delivery system, addresses the limitations of microemulsions and enhances their performance in drug delivery and release. This article aims to discuss the advantages of microemulsion gel, including improved drug bioavailability, reduced drug irritation, enhanced drug penetration and skin adhesion, and increased antimicrobial properties. It explores the methods for selecting microemulsion formulations and the general processes of microemulsion preparation, as well as commonly used oil phases, surfactants, and co-surfactants. Additionally, the biomedical applications of microemulsion gel in treating conditions, such as acne and psoriasis, are also discussed. Overall, this article elucidates the significant potential of microemulsion gel in topical drug delivery, providing insights into future development and clinical applications.

[1]
Cao M, Ren L, Chen G. Formulation optimization and ex vivo and in vivo evaluation of celecoxib microemulsion-based gel for transdermal delivery. AAPS PharmSciTech 2017; 18(6): 1960-71.
[http://dx.doi.org/10.1208/s12249-016-0667-z] [PMID: 27914040]
[2]
Patel N, Baldaniya M, Raval M, Sheth N. Formulation and development of in situ nasal gelling systems for quetiapine fumarate-loaded mucoadhesive microemulsion. J Pharm Innov 2015; 10(4): 357-73.
[http://dx.doi.org/10.1007/s12247-015-9232-7]
[3]
Patel HK, Barot BS, Parejiya PB, Shelat PK, Shukla A. Topical delivery of clobetasol propionate loaded microemulsion based gel for effective treatment of vitiligo: Ex vivo permeation and skin irritation studies. Colloids Surf B Biointerfaces 2013; 102: 86-94.
[http://dx.doi.org/10.1016/j.colsurfb.2012.08.011] [PMID: 23000677]
[4]
Zhang X, Wu Y, Hong Y, Zhu X, Lin L, Lin Q. Preparation and evaluation of dl-praeruptorin A microemulsion based hydrogel for dermal delivery. Drug Deliv 2015; 22(6): 757-64.
[http://dx.doi.org/10.3109/10717544.2014.898713] [PMID: 24724963]
[5]
Zhao L, Wang Y, Zhai Y, Wang Z, Liu J, Zhai G. Ropivacaine loaded microemulsion and microemulsion-based gel for transdermal delivery: Preparation, optimization, and evaluation. Int J Pharm 2014; 477(1-2): 47-56.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.005] [PMID: 25304092]
[6]
Coneac G, Vlaia V, Olariu I, et al. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AAPS PharmSciTech 2015; 16(4): 889-904.
[http://dx.doi.org/10.1208/s12249-014-0275-8] [PMID: 25591952]
[7]
Gannu R, Palem CR, Yamsani VV, Yamsani SK, Yamsani MR. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: Formulation optimization, ex vivo and in vivo characterization. Int J Pharm 2010; 388(1-2): 231-41.
[http://dx.doi.org/10.1016/j.ijpharm.2009.12.050] [PMID: 20060457]
[8]
Shewaiter MA, Hammady TM, El-Gindy A, Hammadi SH, Gad S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J Drug Deliv Sci Technol 2021; 61: 102110.
[http://dx.doi.org/10.1016/j.jddst.2020.102110]
[9]
Vassiliadi E, Mitsou E, Avramiotis S, et al. Structural study of (Hydroxypropyl)methyl cellulose microemulsion-based gels used for biocompatible encapsulations. Nanomaterials (Basel) 2020; 10(11): 2204.
[http://dx.doi.org/10.3390/nano10112204] [PMID: 33167302]
[10]
Ghosal K, Ray SD. Alginate/hydrophobic HPMC (60M) particulate systems: New matrix for site-specific and controlled drug delivery. Braz J Pharm Sci 2011; 47(4): 833-44.
[http://dx.doi.org/10.1590/S1984-82502011000400021]
[11]
Ghosal K, Nanda A. Development of diclofenac potassium gel from hydrophobically modified HPMC. Iran Polym J 2013; 22(6): 457-64.
[http://dx.doi.org/10.1007/s13726-013-0145-3]
[12]
Aswathanarayan JB, Vittal RR. Nanoemulsions and their potential applications in food industry. Front Sustain Food Syst 2019; 3: 95.
[http://dx.doi.org/10.3389/fsufs.2019.00095]
[13]
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, et al. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658: 124226.
[http://dx.doi.org/10.1016/j.ijpharm.2024.124226] [PMID: 38744414]
[14]
Mustafa G, Hassan D, Zeeshan M, et al. Advances in nanotechnology versus stem cell therapy for the theranostics of Huntington’s disease. J Drug Deliv Sci Technol 2023; 87: 104774.
[http://dx.doi.org/10.1016/j.jddst.2023.104774]
[15]
Fathi-Karkan S, Heidarzadeh M, Narmi MT, et al. Exosome-loaded microneedle patches: Promising factor delivery route. Int J Biol Macromol 2023; 243: 125232.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.125232] [PMID: 37302628]
[16]
Pourmadadi M, Ostovar S, Ruiz-Pulido G, et al. Novel epirubicin-loaded nanoformulations: Advancements in polymeric nanocarriers for efficient targeted cellular and subcellular anticancer drug delivery. Inorg Chem Commun 2023; 155: 110999.
[http://dx.doi.org/10.1016/j.inoche.2023.110999]
[17]
Pourmadadi M, Gerami SE, Ajalli N, et al. Novel pH-responsive hybrid hydrogels for controlled delivery of curcumin: Overcoming conventional constraints and enhancing cytotoxicity in MCF-7 cells. Hybrid Adv 2024; 6: 100210.
[18]
Okur ME, Ayla Ş, Yozgatlı V, et al. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. Saudi Pharm J 2020; 28(3): 338-48.
[http://dx.doi.org/10.1016/j.jsps.2020.01.015] [PMID: 32194336]
[19]
Zhang Y, Zhang K, Wang Z, et al. Transcutol®P/Cremophor® EL/Ethyl oleate-formulated microemulsion loaded into hyaluronic acid-based hydrogel for improved transdermal delivery and biosafety of ibuprofen. AAPS PharmSciTech 2020; 21(1): 22.
[http://dx.doi.org/10.1208/s12249-019-1584-8] [PMID: 31823083]
[20]
Pandey SS, Maulvi FA, Patel PS, et al. Cyclosporine laden tailored microemulsion-gel depot for effective treatment of psoriasis: In vitro and in vivo studies. Colloids Surf B Biointerfaces 2020; 186: 110681.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110681] [PMID: 31812077]
[21]
Mehanna MM, Abla KK, Domiati S, Elmaradny H. Superiority of microemulsion-based hydrogel for non-steroidal anti-inflammatory drug transdermal delivery: A comparative safety and anti-nociceptive efficacy study. Int J Pharm 2022; 622: 121830.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121830] [PMID: 35589005]
[22]
Ali FR, Shoaib MH, Yousuf RI, et al. Design, development, and optimization of dexibuprofen microemulsion based transdermal reservoir patches for controlled drug delivery. Biomed Res Int 2017; 2017: 4654958.
[23]
Ghosal K, Chandra A, Rajabalaya R, Chakraborty S, Nanda A. Mathematical modeling of drug release profiles for modified hydrophobic HPMC based gels. Pharmazie 2012; 67(2): 147-55.
[PMID: 22512085]
[24]
You J, Meng S, Ning YK, et al. Development and application of an osthole microemulsion hydrogel for external drug evaluation. J Drug Deliv Sci Technol 2019; 54: 101331.
[http://dx.doi.org/10.1016/j.jddst.2019.101331]
[25]
Agrawal V, Patel R, Patel M, Thanki K, Mishra S. Design and evaluation of microemulsion-based efinaconazole formulations for targeted treatment of onychomycosis through transungual route: Ex vivo and nail clipping studies. Colloids Surf B Biointerfaces 2021; 201: 111652.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111652] [PMID: 33740733]
[26]
Vlaia L, Coneac G, Muţ AM, et al. Topical biocompatible fluconazole-loaded microemulsions based on essential oils and sucrose esters: Formulation design based on pseudo-ternary phase diagrams and physicochemical characterization. Processes (Basel) 2021; 9(1): 144.
[http://dx.doi.org/10.3390/pr9010144]
[27]
Froelich A, Osmalek T, Kunstman P, Jadach B, Brzostowska M, Bialas W. Design and study of poloxamer-based microemulsion gels with naproxen. Colloids Surf A Physicochem Eng Aspects 2018; 562(5): 101-22.
[http://dx.doi.org/10.1016/j.colsurfa.2018.11.006]
[28]
Shinde UA, Modani SH, Singh KH. Design and development of repaglinide microemulsion gel for transdermal delivery. AAPS PharmSciTech 2018; 19(1): 315-25.
[http://dx.doi.org/10.1208/s12249-017-0811-4] [PMID: 28717973]
[29]
Kajbafvala A, Salabat A, Salimi A. Formulation, characterization, and in vitro/ex vivo evaluation of quercetin-loaded microemulsion for topical application. Pharm Dev Technol 2018; 23(8): 741-50.
[http://dx.doi.org/10.1080/10837450.2016.1263995] [PMID: 27871215]
[30]
Atipairin A, Chunhachaichana C, Nakpheng T, Changsan N, Srichana T, Sawatdee S. Development of a sildenafil citrate microemulsion-loaded hydrogel as a potential system for drug delivery to the penis and its cellular metabolic mechanism. Pharmaceutics 2020; 12(11): 1055.
[http://dx.doi.org/10.3390/pharmaceutics12111055] [PMID: 33158184]
[31]
Zhang J, Michniak-Kohn BB. Investigation of microemulsion and microemulsion gel formulations for dermal delivery of clotrimazole. Int J Pharm 2018; 536(1): 345-52.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.041] [PMID: 29170117]
[32]
Das S, Lee SH, Chow PS, Macbeath C. Microemulsion composed of combination of skin beneficial oils as vehicle: Development of resveratrol-loaded microemulsion based formulations for skin care applications. Colloids Surf B Biointerfaces 2020; 194: 111161.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111161] [PMID: 32521462]
[33]
Špaglová M, Čuchorová M, Čierna M, Poništ S, Bauerová K. Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels. Gels 2021; 7(1): 26.
[http://dx.doi.org/10.3390/gels7010026] [PMID: 33802416]
[34]
Feng X, Sun Y, Tan H, Ma L, Dai H, Zhang Y. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity. Food Chem 2023; 413: 135653.
[http://dx.doi.org/10.1016/j.foodchem.2023.135653] [PMID: 36773361]
[35]
Callender SP, Mathews JA, Kobernyk K, Wettig SD. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int J Pharm 2017; 526(1-2): 425-42.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.005] [PMID: 28495500]
[36]
Fang CW, Tsai LC, Fu YS, Cheng TY, Wu PC. Gel-based microemulsion design and evaluation for topical application of rivastigmine. Curr Pharm Biotechnol 2020; 21(4): 298-304.
[http://dx.doi.org/10.2174/1389201020666191113144636] [PMID: 31729297]
[37]
Ahmad J, Kohli K, Mir SR, Amin S. 2012; Self-emulsifying nano carriers for improved oral bioavailability of lipophilic drugs. Rev Adv Sci Eng 2012; 1(2): 1009.
[http://dx.doi.org/10.1166/rase.2012.1009]
[38]
Kaewbanjong J, Amnuaikit T, Souto EB, Boonme P. Antidermatophytic activity and skin retention of clotrimazole microemulsion and microemulsion-based gel in comparison to conventional cream. Skin Pharmacol Physiol 2018; 31(6): 292-7.
[http://dx.doi.org/10.1159/000491756] [PMID: 30130753]
[39]
Patel P, Pol A, Kalaria D, Date AA, Kalia Y, Patravale V. Microemulsion-based gel for the transdermal delivery of rasagiline mesylate: In vitro and in vivo assessment for Parkinson’s therapy. Eur J Pharm Biopharm 2021; 165: 66-74.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.026] [PMID: 33971272]
[40]
Souza de Araujo GR. In situ microemulsion-gel obtained from bioadhesive hydroxypropyl methylcellulose films for transdermal administration of zidovudine. Colloids Surf B Biointerfaces 2020; 2020: 188.
[41]
Tabosa MAM, de Andrade ARB, Lira AAM, Sarmento VHV, de Santana DP, Leal LB. Microemulsion formulations for the transdermal delivery of lapachol. AAPS PharmSciTech 2018; 19(4): 1837-46.
[http://dx.doi.org/10.1208/s12249-018-0995-2] [PMID: 29637497]
[42]
Desai KGH. Enhanced skin permeation of rofecoxib using topical microemulsion gel. Drug Dev Res 2004; 63(1): 33-40.
[http://dx.doi.org/10.1002/ddr.10386]
[43]
Ascenso A, Vultos F, Ferrinho D, et al. Effect of tretinoin inclusion in dimethyl-beta-cyclodextrins on release rate from a hydrogel formulation. J Incl Phenom Macrocycl Chem 2012; 73(1-4): 459-65.
[http://dx.doi.org/10.1007/s10847-011-0002-y]
[44]
Brime B, Moreno MA, Frutos G, Ballesteros MP, Frutos P. Amphotericin B in oil-water lecithin-based microemulsions: Formulation and toxicity evaluation. J Pharm Sci 2002; 91(4): 1178-85.
[http://dx.doi.org/10.1002/jps.10065] [PMID: 11948556]
[45]
Marti-Mestres G, Nielloud F. Emulsions in health care applications - An overview. J Dispers Sci Technol 2002; 23(1-3): 419-39.
[http://dx.doi.org/10.1080/01932690208984214]
[46]
Fouad SA, Basalious EB, El-Nabarawi MA, Tayel SA. Microemulsion and poloxamer microemulsion-based gel for sustained transdermal delivery of diclofenac epolamine using in-skin drug depot: In vitro/in vivo evaluation. Int J Pharm 2013; 453(2): 569-78.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.009] [PMID: 23792042]
[47]
He X, Chen J, Li Y, Meng Y, Fang S, Fang Y. Preparation of water-in-oil (W/O) cinnamaldehyde microemulsion loaded with epsilon-polylysine and its antibacterial properties. Food Biosci 2022; 46: 101586.
[http://dx.doi.org/10.1016/j.fbio.2022.101586]
[48]
Scomoroscenco C, Teodorescu M, Raducan A, et al. Novel gel microemulsion as topical drug delivery system for curcumin in dermatocosmetics. Pharmaceutics 2021; 13(4): 505.
[http://dx.doi.org/10.3390/pharmaceutics13040505] [PMID: 33916981]
[49]
Lim CJ, Lim CK, Ee GCL, Basri M. Formation of liquid crystal/gel emulsions to nano-emulsions constructed by polyalkoxylated fatty alcohol (PAFA)-based mixed surfactant systems. J Dispers Sci Technol 2019; 40(7): 1009-22.
[http://dx.doi.org/10.1080/01932691.2018.1491859]
[50]
Carvalho RTR, Oliveira PF, Palermo LCM, Ferreira AAG, Mansur CRE. Prospective acid microemulsions development for matrix acidizing petroleum reservoirs. Fuel 2019; 238: 75-85.
[http://dx.doi.org/10.1016/j.fuel.2018.10.003]
[51]
Alam A, Mustafa G, Agrawal GP, et al. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J Drug Deliv Sci Technol 2022; 71: 103277.
[http://dx.doi.org/10.1016/j.jddst.2022.103277]
[52]
Spaglova M, Papadakos M, Cuchorova M, Matusova D. Release of Tretinoin solubilized in microemulsion from carbopol and xanthan gel: In vitro versus ex vivo permeation study. Polymers 2023; 15(2): 329.
[53]
Shinde U, Pokharkar S, Modani S. Design and evaluation of microemulsion gel system of nadifloxacin. Indian J Pharm Sci 2012; 74(3): 237-47.
[http://dx.doi.org/10.4103/0250-474X.106066] [PMID: 23439454]
[54]
He E, Li H, Li X, Wu X, Lei K, Diao Y. Transdermal delivery of indirubin-loaded microemulsion gel: Preparation, characterization and anti-psoriatic activity. Int J Mol Sci 2022; 23(7): 3798.
[http://dx.doi.org/10.3390/ijms23073798] [PMID: 35409158]
[55]
Seok SH, Lee SA, Park ES. Formulation of a microemulsion-based hydrogel containing celecoxib. J Drug Deliv Sci Technol 2018; 43: 409-14.
[http://dx.doi.org/10.1016/j.jddst.2017.11.016]
[56]
Chhibber T, Wadhwa S, Chadha P, Sharma G, Katare OP. Phospholipid structured microemulsion as effective carrier system with potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection. J Drug Target 2015; 23(10): 943-52.
[http://dx.doi.org/10.3109/1061186X.2015.1048518] [PMID: 26004269]
[57]
Patel MR, Patel RB, Parikh JR, Patel BG. Novel microemulsion-based gel formulation of tazarotene for therapy of acne. Pharm Dev Technol 2016; 21(8): 921-32.
[http://dx.doi.org/10.3109/10837450.2015.1081610] [PMID: 26334480]
[58]
Shannon JF. Why do humans get acne? A hypothesis. Med Hypotheses 2020; 134: 109412.
[http://dx.doi.org/10.1016/j.mehy.2019.109412] [PMID: 31622924]
[59]
Singam V, Rastogi S, Patel KR, Lee HH, Silverberg JI. The mental health burden in acne vulgaris and rosacea: An analysis of the US National Inpatient Sample. Clin Exp Dermatol 2019; 44(7): 766-72.
[http://dx.doi.org/10.1111/ced.13919] [PMID: 30706514]
[60]
Raza K, Singh B, Lohan S, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm 2013; 456(1): 65-72.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.019] [PMID: 23973754]
[61]
Szymański Ł, Skopek R, Palusińska M, et al. Retinoic acid and its derivatives in skin. Cells 2020; 9(12): 2660.
[http://dx.doi.org/10.3390/cells9122660] [PMID: 33322246]
[62]
Morales JO, Valdés K, Morales J, Oyarzun-Ampuero F. Lipid nanoparticles for the topical delivery of retinoids and derivatives. Nanomedicine (Lond) 2015; 10(2): 253-69.
[http://dx.doi.org/10.2217/nnm.14.159] [PMID: 25600970]
[63]
Djordjevic L, Primorac M, Stupar M, Krajisnik D. Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int J Pharm 2004; 271(1-2): 11-9.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.037] [PMID: 15129969]
[64]
Junyaprasert VB, Boonme P, Songkro S, Krauel K, Rades T. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions. J Pharm Pharm Sci 2007; 10(3): 288-98.
[PMID: 17727792]
[65]
Zaenglein AL. Topical retinoids in the treatment of acne vulgaris. Semin Cutan Med Surg 2008; 27(3): 177-82.
[http://dx.doi.org/10.1016/j.sder.2008.06.001] [PMID: 18786495]
[66]
Patel MR, Patel RB, Parikh JR, Patel BG. HPTLC method for estimation of tazarotene in topical gel formulations and in vitro study. Anal Methods 2010; 2(3): 275-81.
[http://dx.doi.org/10.1039/b9ay00240e]
[67]
Russell JJ. Topical therapy for acne. Am Fam Physician 2000; 61(2): 357-66.
[PMID: 10670502]
[68]
Ghoreschi K, Thomas P, Breit S, et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat Med 2003; 9(1): 40-6.
[http://dx.doi.org/10.1038/nm804] [PMID: 12461524]
[69]
Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A. Psoriasis - as an autoimmune disease caused by molecular mimicry. Trends Immunol 2009; 30(10): 494-501.
[http://dx.doi.org/10.1016/j.it.2009.07.008] [PMID: 19781993]
[70]
Bowcock AM. The genetics of psoriasis and autoimmunity. Annu Rev Genomics Hum Genet 2005; 6(1): 93-122.
[http://dx.doi.org/10.1146/annurev.genom.6.080604.162324] [PMID: 16124855]
[71]
Naldi L, Addis A, Chimenti S, et al. Psocare Study C. Impact of body mass index and obesity on clinical response to systemic treatment for psoriasis. Dermatology 2008; 217: 365-73.
[http://dx.doi.org/10.1159/000156599] [PMID: 18810241]
[72]
Kalb RE, Fiorentino DF, Lebwohl MG, et al. Risk of serious infection with biologic and systemic treatment of psoriasis. JAMA Dermatol 2015; 151(9): 961-9.
[http://dx.doi.org/10.1001/jamadermatol.2015.0718] [PMID: 25970800]
[73]
Pathirana D, Ormerod AD, Saiag P, et al. European S3-Guidelines on the systemic treatment of psoriasis vulgaris. J Eur Acad Dermatol Venereol 2009; 23(s2) (Suppl. 2): 1-70.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03389.x] [PMID: 19712190]
[74]
Zachariae H, Abrams B, Bleehen SS, et al. Conversion of psoriasis patients from the conventional formulation of cyclosporin A to a new microemulsion formulation: A randomized, open, multicentre assessment of safety and tolerability. Dermatology 1998; 196(2): 231-6.
[http://dx.doi.org/10.1159/000017880] [PMID: 9568413]
[75]
Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R. Cyclosporine A delivery to the eye: A pharmaceutical challenge. Eur J Pharm Biopharm 2003; 56(3): 307-18.
[http://dx.doi.org/10.1016/S0939-6411(03)00138-3] [PMID: 14602172]
[76]
Nast A, Gisondi P, Ormerod AD, et al. European S3-Guidelines on the systemic treatment of psoriasis vulgaris - Update 2015 - Short version - EDF in cooperation with EADV and IPC. J Eur Acad Dermatol Venereol 2015; 29(12): 2277-94.
[http://dx.doi.org/10.1111/jdv.13354] [PMID: 26481193]
[77]
Shu Y, Xue R, Gao Y, Zhang W, Wang J. A thermo-responsive hydrogel loaded with an ionic liquid microemulsion for transdermal delivery of methotrexate. J Mater Chem B Mater Biol Med 2023; 11(24): 5494-502.
[http://dx.doi.org/10.1039/D2TB02189G] [PMID: 36458850]
[78]
Gaitanis G, Magiatis P, Velegraki A, Bassukas ID. A traditional Chinese remedy points to a natural skin habitat: Indirubin (indigo naturalis) for psoriasis and the Malassezia metabolome. Br J Dermatol 2018; 179(3): 800-0.
[http://dx.doi.org/10.1111/bjd.16807] [PMID: 29791716]
[79]
Gamret AC, Price A, Fertig RM, Lev-Tov H, Nichols AJ. Complementary and alternative medicine therapies for psoriasis. JAMA Dermatol 2018; 154(11): 1330-7.
[http://dx.doi.org/10.1001/jamadermatol.2018.2972] [PMID: 30193251]
[80]
Gaboriaud-Kolar N, Vougogiannopoulou K, Skaltsounis AL. Indirubin derivatives: A patent review (2010 - present). Expert Opin Ther Pat 2015; 25(5): 583-93.
[http://dx.doi.org/10.1517/13543776.2015.1019865] [PMID: 25887337]
[81]
Elshaer RE, Tawfik MK, Nosseir N, et al. Leflunomide-induced liver injury in mice: Involvement of TLR4 mediated activation of PI3K/mTOR/NFκB pathway. Life Sci 2019; 235: 116824.
[http://dx.doi.org/10.1016/j.lfs.2019.116824] [PMID: 31476305]
[82]
Boyd AS. Leflunomide in dermatology. J Am Acad Dermatol 2012; 66(4): 673-9.
[http://dx.doi.org/10.1016/j.jaad.2011.08.025] [PMID: 21962758]
[83]
Lu Y, Fan L, Yang LY, Huang F, Ouyang X. PEI-modified core-shell/bead-like amino silica enhanced poly (vinyl alcohol)/chitosan for diclofenac sodium efficient adsorption. Carbohydr Polym 2020; 229: 115459.
[http://dx.doi.org/10.1016/j.carbpol.2019.115459] [PMID: 31826399]
[84]
Hajjar B, Zier KI, Khalid N, Azarmi S, Löbenberg R. Evaluation of a microemulsion-based gel formulation for topical drug delivery of diclofenac sodium. J Pharm Investig 2018; 48(3): 351-62.
[http://dx.doi.org/10.1007/s40005-017-0327-7]
[85]
Dolenc A, Kristl J, Baumgartner S, Planinšek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm 2009; 376(1-2): 204-12.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.038] [PMID: 19426794]
[86]
Abu-Diak OA, Jones DS, Andrews GP. An investigation into the dissolution properties of celecoxib melt extrudates: Understanding the role of polymer type and concentration in stabilizing supersaturated drug concentrations. Mol Pharm 2011; 8(4): 1362-71.
[http://dx.doi.org/10.1021/mp200157b] [PMID: 21696180]
[87]
Gupta V, Mutalik S, Patel M, Jani G. Spherical crystals of celecoxib to improve solubility, dissolution rate and micromeritic properties. Acta Pharm 2007; 57(2): 173-84.
[http://dx.doi.org/10.2478/v10007-007-0014-8] [PMID: 17507314]
[88]
Lee H, Lee J. Dissolution enhancement of celecoxib via polymer-induced crystallization. J Cryst Growth 2013; 374: 37-42.
[http://dx.doi.org/10.1016/j.jcrysgro.2013.04.006]
[89]
Fouad EA, EL-Badry M, Mahrous GM, Alanazi FK, Neau SH, Alsarra IA. The use of spray-drying to enhance celecoxib solubility. Drug Dev Ind Pharm 2011; 37(12): 1463-72.
[http://dx.doi.org/10.3109/03639045.2011.587428] [PMID: 21707230]
[90]
Reddy MN, Rehana T, Ramakrishna S, Chowdary KPR, Diwan PV. β-cyclodextrin complexes of celecoxib: Molecular-modeling, characterization, and dissolution studies. AAPS PharmSci 2004; 6(1): 68-76.
[http://dx.doi.org/10.1208/ps060107] [PMID: 15198508]
[91]
Deniz A, Sade A, Severcan F, Keskin D, Tezcaner A, Banerjee S. Celecoxib-loaded liposomes: Effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep 2010; 30(5): 365-73.
[http://dx.doi.org/10.1042/BSR20090104] [PMID: 19900165]
[92]
Morgen M, Bloom C, Beyerinck R, et al. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm Res 2012; 29(2): 427-40.
[http://dx.doi.org/10.1007/s11095-011-0558-7] [PMID: 21863477]
[93]
Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm 2008; 346(1-2): 124-32.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.060] [PMID: 17651933]
[94]
Mou D, Chen H, Du D, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm 2008; 353(1-2): 270-6.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.051] [PMID: 18215479]
[95]
Bachhav Y, Patravale V. Microemulsion based vaginal gel of fluconazole: Formulation, in vitro and in vivo evaluation. Int J Pharm 2009; 365(1-2): 175-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.021] [PMID: 18790032]
[96]
Sallam MA, Motawaa AM, Mortada SM. A modern approach for controlled transdermal delivery of diflunisal: Optimization and in vivo evaluation. Drug Dev Ind Pharm 2013; 39(4): 600-10.
[http://dx.doi.org/10.3109/03639045.2012.692476] [PMID: 22697341]
[97]
Fridkin SK, Hageman JC, Morrison M, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N Engl J Med 2005; 352(14): 1436-44.
[http://dx.doi.org/10.1056/NEJMoa043252] [PMID: 15814879]
[98]
Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006; 19(2): 403-34.
[http://dx.doi.org/10.1128/CMR.19.2.403-434.2006] [PMID: 16614255]
[99]
Šiširak M, Zvizdić A, Hukić M. Methicillin-resistant Staphylococcus aureus (MRSA) as a cause of nosocomial wound infections. Bosn J Basic Med Sci 2010; 10(1): 32-7.
[http://dx.doi.org/10.17305/bjbms.2010.2733] [PMID: 20192928]
[100]
Coombs RR. Fusidic acid in staphylococcal bone and joint infection. J Antimicrob Chemother 1990; 25(Suppl B): 53-60.
[http://dx.doi.org/10.1093/jac/25.suppl_B.53]
[101]
Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 2012; 64: 175-93.
[http://dx.doi.org/10.1016/j.addr.2012.09.018] [PMID: 11104900]
[102]
Kawakami K, Yoshikawa T, Hayashi T, Nishihara Y, Masuda K. Microemulsion formulation for enhanced absorption of poorly soluble drugs. J Control Release 2002; 81(1-2): 75-82.
[http://dx.doi.org/10.1016/S0168-3659(02)00050-0] [PMID: 11992680]
[103]
Raza K, Katare OP, Setia A, Bhatia A, Singh B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J Microencapsul 2013; 30(3): 225-36.
[http://dx.doi.org/10.3109/02652048.2012.717115] [PMID: 23088318]
[104]
Schöfer H, Simonsen L. Fusidic acid in dermatology: An updated review. Eur J Dermatol 2010; 20(1): 006-15.
[http://dx.doi.org/10.1684/ejd.2010.0833] [PMID: 20007058]
[105]
Oryan A, Jalili M, Kamali A, Nikahval B. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns 2018; 44(7): 1775-86.
[http://dx.doi.org/10.1016/j.burns.2018.05.016] [PMID: 30078473]