Infectious Disorders - Drug Targets

Author(s): Shagun Sharma, Vandana Jhalora, Shubhita Mathur and Renu Bist*

DOI: 10.2174/0118715265278809240101073539

DownloadDownload PDF Flyer Cite As
A Comparison of Antibiotics’ Resistance Patterns of E. coli and B. subtilis in their Biofilms and Planktonic Forms

Article ID: e310724232507 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: A biofilm refers to a community of microbial cells that adhere to surfaces that are surrounded by an extracellular polymeric substance. Bacteria employ various defence mechanisms, including biofilm formation, to enhance their survival and resistance against antibiotics.

Objective: The current study aims to investigate the resistance patterns of Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) in both biofilms and their planktonic forms.

Methods: E. coli and B. subtilis were used to compare resistance patterns in biofilms versus planktonic forms of bacteria. An antibiotic disc diffusion test was performed to check the resistance pattern of biofilm and planktonic bacteria against different antibiotics such as penicillin G, streptomycin, and ampicillin. Biofilm formation and its validation were done by using quantitative (microtiter plate assay) and qualitative analysis (Congo red agar media).

Results: A study of surface-association curves of E. coli and B. subtilis revealed that surface adhesion in biofilms was continuously constant as compared to their planktonic forms, thereby confirming the increased survival of bacteria in biofilms. Also, biofilms have shown high resistance towards the penicillin G, ampicillin and streptomycin as compared to their planktonic form.

Conclusion: It is safely inferred that E. coli and B. subtilis, in their biofilms, become increasingly resistant to penicillin G, ampicillin and streptomycin.

Keywords: Biofilm, bacteria, antibiotics, resistance, ampicillin, disc diffusion.

Graphical Abstract

[1]
Donlan RM. Biofilms: Microbial life on surfaces. Emerg Infect Dis 2002; 8(9): 881-90.
[http://dx.doi.org/10.3201/eid0809.020063] [PMID: 12194761]
[2]
Costerton JW, Montanaro L, Arciola CR. Biofilm in implant infections: Its production and regulation. Int J Artif Organs 2005; 28(11): 1062-8.
[http://dx.doi.org/10.1177/039139880502801103] [PMID: 16353112]
[3]
de Carvalho CC. Biofilms: Recent developments on an old battle. Recent Pat Biotechnol 2007; 1(1): 49-57.
[http://dx.doi.org/10.2174/187220807779813965] [PMID: 19075832]
[4]
Garnett JA, Matthews S. Interactions in bacterial biofilm development: A structural perspective. Curr Protein Pept Sci 2012; 13(8): 739-55.
[http://dx.doi.org/10.2174/138920312804871166] [PMID: 23305361]
[5]
Willey JM, Sherwood LM, Woolverton CJ. Prescott, harley and klein’s microbiology. 7th. New York 2008.
[6]
Muhammad MH, Idris AL, Fan X, et al. Beyond risk: Bacterial biofilms and their regulating approaches. Front Microbiol 2020; 11: 928.
[http://dx.doi.org/10.3389/fmicb.2020.00928] [PMID: 32508772]
[7]
Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health 2017; 10(4): 369-78.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[8]
Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS Microbiol 2018; 4(2): 274-88.
[http://dx.doi.org/10.3934/microbiol.2018.2.274] [PMID: 31294215]
[9]
Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by Gram‐negative bacteria. Microbiol Spectr 2015; 3(4): 3.4.15.
[http://dx.doi.org/10.1128/microbiolspec.MB-0018-2015] [PMID: 26350310]
[10]
Houry A, Briandet R, Aymerich S, Gohar M. Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 2010; 156(4): 1009-18.
[http://dx.doi.org/10.1099/mic.0.034827-0] [PMID: 20035003]
[11]
Mah TF. Biofilm-specific antibiotic resistance. Future Microbiol 2012; 7(9): 1061-72.
[http://dx.doi.org/10.2217/fmb.12.76] [PMID: 22953707]
[12]
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 2023; 11(6): 1614.
[http://dx.doi.org/10.3390/microorganisms11061614] [PMID: 37375116]
[13]
Nguyen PT, Nguyen TT, Bui DC, Hong PT, Hoang QK, Nguyen HT. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiol 2020; 6(4): 451-69.
[http://dx.doi.org/10.3934/microbiol.2020027] [PMID: 33364538]
[14]
Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol 2010; 8(9): 623-33.
[http://dx.doi.org/10.1038/nrmicro2415] [PMID: 20676145]
[15]
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol 2016; 14(9): 563-75.
[http://dx.doi.org/10.1038/nrmicro.2016.94] [PMID: 27510863]
[16]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[17]
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Microbiol Spectr 2016; 4(2)
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015]
[18]
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 2017; 11(1): 53-62.
[http://dx.doi.org/10.2174/1874285801711010053] [PMID: 28553416]
[19]
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20(10): 621-35.
[http://dx.doi.org/10.1038/s41579-022-00682-4] [PMID: 35115704]
[20]
de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock REW. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 2013; 16(5): 580-9.
[http://dx.doi.org/10.1016/j.mib.2013.06.013] [PMID: 23880136]
[21]
Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012; 65(2): 183-95.
[http://dx.doi.org/10.1111/j.1574-695X.2012.00960.x] [PMID: 22444301]
[22]
Tolmasky ME. Strategies to prolong the useful life of existing antibiotics and help overcoming the antibiotic resistance crisis. In: Frontiers in Clinical Drug Research-Anti Infectives. Atta-ur-Rhaman, Ed 2017; pp. 1-27.
[http://dx.doi.org/10.2174/9781681084879117040003]
[23]
Ekici G, Dümen E. Escherichia coliand food safety. In: The universe of Escherichia coli. IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.82375]
[24]
Chekabab SM, Paquin-Veillette J, Dozois CM, Harel J. The ecological habitat and transmission of Escherichia coliO157:H7. FEMS Microbiol Lett 2013; 341(1): 1-12.
[http://dx.doi.org/10.1111/1574-6968.12078] [PMID: 23305397]
[25]
Poirel L, Madec JY, Lupo A, et al. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 2018; 6(4): 6.4.14.
[http://dx.doi.org/10.1128/microbiolspec.ARBA-0026-2017] [PMID: 30003866]
[26]
Anes J, McCusker MP, Fanning SÃ, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 2015; 6: 587.
[http://dx.doi.org/10.3389/fmicb.2015.00587] [PMID: 26113845]
[27]
O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol 2000; 54(1): 49-79.
[http://dx.doi.org/10.1146/annurev.micro.54.1.49] [PMID: 11018124]
[28]
Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. Sticking together: Building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 2013; 11(3): 157-68.
[http://dx.doi.org/10.1038/nrmicro2960] [PMID: 23353768]
[29]
Kumar D, Singh AK, Ali MR, Chander Y. Antimicrobial susceptibility profile of extended spectrum β-lactamase (ESBL) producing Escherichia colifrom various clinical samples. Infectious Diseases: Research and Treatment. 2014; p. 7.
[30]
Lal A, Cheeptham N. Starch agar protocol. Am Soc Microbiol 2012; 1: 1-9.
[31]
Shemesh M, Chai Y. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J Bacteriol 2013; 195(12): 2747-54.
[http://dx.doi.org/10.1128/JB.00028-13] [PMID: 23564171]
[32]
Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol 1989; 42(8): 872-4.
[http://dx.doi.org/10.1136/jcp.42.8.872] [PMID: 2475530]
[33]
Merritt JH, Kadouri DE, O’Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol 2011; 22(1): 1B.
[http://dx.doi.org/10.1002/9780471729259.mc01b01s22] [PMID: 18770545]
[34]
Bauer AW, Perry DM, Kirby WM. Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results. AMA Arch Intern Med 1959; 104(2): 208-16.
[http://dx.doi.org/10.1001/archinte.1959.00270080034004] [PMID: 13669774]
[35]
Clinical and laboratory standards institute. M7-A7: Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: 11th Informational Supplement. Wayne, PA, USA : Clinical and Laboratory Standards Institute (CLSI). 2006.
[36]
Mishra A, Sharma V, Bist R. Prevalence of extended spectrum β-lactamases producing E. coli in conferring multi drug resistance against antimicrobials vegetos 31. 2018; 96.
[37]
Ruhal R, Kataria R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol Res 2021; 251: 126829.
[http://dx.doi.org/10.1016/j.micres.2021.126829] [PMID: 34332222]
[38]
Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9(1): 34-9.
[http://dx.doi.org/10.1016/S0966-842X(00)01913-2] [PMID: 11166241]
[39]
Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 2021; 19(9): 600-14.
[http://dx.doi.org/10.1038/s41579-021-00540-9] [PMID: 33824496]
[40]
Rahman SU, Ahmad M. Isolation and identification of Escherichia colifrom urine samples and their antibiotic susceptibility pattern. J Entomol Zool Stud 2019; 7(3): 259-64.
[41]
Tariq AL, Sudha S, Reyaz AL. Isolation and screening of Bacillus species from sediments and application in bioremediation. Int J Curr Microbiol Appl Sci 2016; 5(6): 916-24.
[http://dx.doi.org/10.20546/ijcmas.2016.506.099]
[42]
Kuss S, Tanner EEL, Ordovas-Montanes M, Compton RG. Electrochemical recognition and quantification of cytochrome c expression in Bacillus subtilis and aerobe/anaerobe Escherichia coliusing N,N,N′,N′-tetramethyl-para-phenylene-diamine (TMPD). Chem Sci 2017; 8(11): 7682-8.
[http://dx.doi.org/10.1039/C7SC03498A] [PMID: 29568431]
[43]
Beshiru A, Okoh AI, Igbinosa EO. Processed ready-to-eat (RTE) foods sold in Yenagoa Nigeria were colonized by diarrheagenic Escherichia coliwhich constitute a probable hazard to human health. PLoS One 2022; 17(4): e0266059.
[http://dx.doi.org/10.1371/journal.pone.0266059] [PMID: 35381048]
[44]
Bagaya J, Ssekatawa K, Nakabiri G, et al. Molecular characterization of Carbapenem-resistant Escherichia coliisolates from sewage at Mulago National Referral Hospital, Kampala: A cross-sectional study. Ann Microbiol 2023; 73(1): 28.
[http://dx.doi.org/10.1186/s13213-023-01732-9]
[45]
Awais M, Shah AA, Hameed A, Hasan F. Isolation, identification and optimization of bacitracin produced by Bacillus sp. Pak J Bot 2007; 39(4): 1303.
[46]
Costerton JW, Cheng KJ, Geesey GG, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol 1987; 41(1): 435-64.
[http://dx.doi.org/10.1146/annurev.mi.41.100187.002251] [PMID: 3318676]
[47]
Nguyen JM, Moore RE, Spicer SK, Gaddy JA, Townsend SD. Synthetic phosphoethanolamine cellobiose promotes Escherichia colibiofilm formation and congo red binding. ChemBioChem 2021; 22(15): 2540-5.
[http://dx.doi.org/10.1002/cbic.202000869] [PMID: 33890354]
[48]
Pathak R, Vergis J, Chouhan G, et al. Comparative efficiency of carbohydrates on the biofilm‐forming ability of enteroaggregative Escherichia coli. J Food Saf 2022; 42(3): e12971.
[http://dx.doi.org/10.1111/jfs.12971]
[49]
Jebril NMT. Evaluation of two fixation techniques for direct observation of biofilm formation of Bacillus subtilis in situ, on Congo red agar, using scanning electron microscopy. Vet World 2020; 13(6): 1133-7.
[http://dx.doi.org/10.14202/vetworld.2020.1133-1137] [PMID: 32801564]
[50]
Katongole P, Nalubega F, Florence NC, Asiimwe B, Andia I. Biofilm formation, antimicrobial susceptibility and virulence genes of Uropathogenic Escherichia coliisolated from clinical isolates in Uganda. BMC Infect Dis 2020; 20(1): 453.
[http://dx.doi.org/10.1186/s12879-020-05186-1] [PMID: 32600258]
[51]
Reisner A, Krogfelt KA, Klein BM, Zechner EL, Molin S. In vitro biofilm formation of commensal and pathogenic Escherichia colistrains: Impact of environmental and genetic factors. J Bacteriol 2006; 188(10): 3572-81.
[http://dx.doi.org/10.1128/JB.188.10.3572-3581.2006] [PMID: 16672611]
[52]
Mishra A, Bist R, Sharma V. Study of pervasiveness, antimicrobial vulnerability and resolution of best method for determining extended spectrum beta lactamases Escherichia coliisolates. Hos Pal Med Int Jnl 2019; 3(2): 59-64.
[53]
Dhanoa T, Li W, Thomas K, Wu B. Sub-minimum inhibitory concentration of streptomycin and cephaloridine-induced capsular polysaccharide production in Escherichia coliK-12 increases biofilm formation in a Wzy-transporter dependent manner. J Exp Microbiol Immunol 2015; p. 19.